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Abstract

Hydrological models for runoff estimations and flash-flood predictions are very sensi-
tive to rainfall’s spatial and temporal variability. The increasing use of radar and satel-
lite data in hydrological applications, due to the sparse distribution of rain gauges over
most catchments worldwide, requires improving our knowledge of the uncertainties of5

these data. In 2011, a new super-dense network of rain gauges, containing 27 gauges
covering an area of about 4 km2, was installed near Kibbutz Galed in northern Israel.
This network was established for a detailed exploration of the uncertainties and er-
rors regarding rainfall variability in remote-sensing at subpixel-scale resolution. In this
paper, we present the analysis of the first year’s record collected from this network10

and from the Shacham weather radar. The gauge–rainfall spatial correlation and un-
certainty were examined along with the estimated radar error. The zero-distance cor-
relation between rain gauges was high (0.92 on the 1-min scale) and increased as
the time scale increased. The variance of the differences between radar pixel rainfall
and averaged point rainfall (the variance reduction factor – VRF) was 1.6 %, as mea-15

sured for the 1-min scale. It was also found that at least four uniformly distributed rain
stations are needed to represent the rainfall on the radar pixel scale. The radar–rain
gauge error was mainly derived from radar estimation errors as the gauge sampling er-
ror contributed up to 22 % to the total error. The radar rainfall estimations improved with
increasing time scale and the radar-to-true rainfall ratio decreased with increasing time20

scale. Rainfall measurements collected with this network of rain gauges in the coming
years will be used for further examination of rainfall’s spatial and temporal variability.

1 Introduction

Complex interactions exist between the spatial and temporal variability of rainfall and
watershed hydrological responses (Morin et al., 2006). This has been demonstrated25

by several hydrological studies: Singh (1997) discussed how the spatial and temporal

2



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

variability of rainfall affects the runoff hydrograph and peak discharge; Arnaud et al.
(2011) indicated that large catchments, on the scale of hundreds of square kilometers,
are more sensitive than small catchments to uncertainties resulting from not consid-
ering the spatial variability of the rainfall; Zoccatelli et al. (2011) pointed out that the
catchment response is sensitive to the rainfall’s spatial variability, even for small catch-5

ment sizes (a few dozens of square kilometers), and that neglecting the spatial vari-
ability would affect runoff timing; Rozalis et al. (2010) established a hydrological model
for flash-flood prediction and found it to be very sensitive to the temporal variability
of the rainfall, affecting both runoff amount and peak discharge; Faures et al. (1995)
indicated that knowing the spatial variability of convective rainfall is essential, even for10

catchments of very small scale (less than a few square kilometers) when conducting
hydrological modeling.

Rainfall is usually measured for hydrological applications by rain-gauge networks,
weather radars or satellites. Although rain gauges are the most commonly used source,
they are often too sparsely distributed; only a few dense rain-gauge networks world-15

wide adequately cover entire catchments. Weather radar records rainfall at high spatial
and temporal resolution (e.g. 1.5 km2 and 3 min – see Sect. 2), which is suitable for
most hydrological modeling purposes. Satellite-based rainfall estimates can also be
used for hydrological applications but they typically represent larger space and time
scales and can potentially be applied to large catchments (as discussed by Nikolopou-20

los et al., 2010). The increasing use of radar and satellite data in hydrological applica-
tions requires improving our knowledge of the uncertainties of these data (see a recent
discussion by Berne and Krajewski (2013) of current limitations and challenges in the
use of weather radars in hydrology). A main difficulty in this regard is that remotely
sensed rainfall estimates are provided in spatially averaged pixels (typically 1–4 km2)25

and no equivalent ground truth data are available because of the above-mentioned
sparseness of rain-gauge networks (see extensive discussion by Krajewski and Smith,
2002). In 2003, Krajewski et al. (2003) declared that “new designs of the rain gauge
networks should be considered” to learn more about the high-resolution variability of

3

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rainfall. Almost a decade later, Krajewski et al. (2010) summarized their paper by stat-
ing that “one key factor in solving the persistent problem of radar-rainfall uncertainties
is the availability of dense rain gauge networks that could provide valuable information
for modeling these uncertainties”. In 2011, a new super-dense network of rain gauges
was installed in northern Israel. This network was established to explore in detail the5

uncertainties and errors caused by rainfall variability at remote-sensing subpixel res-
olution. This is the first step in continuing research to expand our knowledge of the
spatial and temporal variability of rainfall at scales below 2 km.

Several studies have dealt with rainfall variability at pixel and subpixel scales: in
1998, Krajewski et al. (1998) recognized the need to establish rain-gauge networks at10

the radar subpixel scale to estimate radar-rainfall uncertainty. They deployed a network,
which included 10 stations (see configuration in Krajewski et al., 2003), in the Iowa City
Municipal Airport. Habib et al. (2001b) used this network to estimate the errors result-
ing from the use of tipping-bucket rain gauges with the aim of capturing the rainfall’s
small-scale temporal variability. By fitting a nonparametric regression on rainfall data15

collected from 15 collocated rain gauges (EVAC PicoNet network, Oklahoma), Ciach
(2003) analyzed the local random errors of tipping-bucket rain gauges on a smaller
scale. Later, Ciach and Krajewski (2006) used the PicoNet to analyze the spatial cor-
relation of the rainfall over a 3 km×3 km area; Ciach and Krajewski (1999) introduced
the error separation method which allows distinguishing the rain-gauge sampling error20

from the radar rainfall estimation error. They used a network of five rain gauges with
a scale similar to that of the radar pixel. Data from the PicoNet were used also by Seo
and Krajewski (2011) to test the assumption that the covariance between radar rain-
fall error and rain gauge error in representing the radar sampling domain is negligible
when using the error separation method. Two dense networks of eight gauges within25

a 4-km2 grid located at the Brue catchment were used by Wood et al. (2000) to esti-
mate the errors of the individual gauge and radar compared to the “true” mean areal
rainfall. This network was later used by Villarini et al. (2008) to assess the errors re-
sulting from temporal gaps in rainfall observations and the uncertainties resulting from
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areal-to-point estimations. Habib et al. (2001a) estimated the correlation coefficient of
point rainfall using a clustered network of rain gauges deployed in Florida (TEFLUN-B
network). Gebremichael and Krajewski (2004) used both TEFLUN-B and TRMM-LBA
networks to estimate the radar’s ability to characterize the small-scale spatial variability
of rainfall by comparing the correlation function of the gauge and the radar. A network5

consisting of nine optical rain gauges within 500 m×500 m was deployed in Denmark
by Jensen and Pedersen (2005) to explore the radar subpixel-scale rainfall variation.
Pedersen et al. (2010) used the same network to determine the coefficient of variation
and the spatial correlation of the rainfall field. Fiener et al. (2009) installed a network
consisting of 13 tipping-bucket rain gauges on a 1.4-km2 area in Germany to determine10

the spatial variability of rainfall on a subkilometer scale, taking into account the wind’s
potential effect. The Walnut Gulch Experimental Watershed (WGEW), equipped with
about 10 rain gauges per every TRMM Precipitation Radar pixel (∼5 km in diameter),
was used by Amitai et al. (2012) who conducted rain rate comparisons of these two
resources for a semiarid climate. Several studies have explored the small-scale spatial15

variability of the rainfall drop size distribution (DSD) (Tapiador et al., 2010; Tokay et al.,
2010). Jaffrain et al. (2011) deployed 16 optical disdrometers over a 1 km×1 km area
in Switzerland and determined the coefficient of variation of the total concentration of
drops, the mass-weighted diameter and the rain rate over the network.

In the current study we set up the first step toward estimating the spatial subpixel20

sampling uncertainties and the errors of weather radar rainfall estimates using a super-
dense rain-gauge network. The paper is composed of five sections: Section 2 is dedi-
cated to technical information regarding the rain gauge network’s installation and data
quality control (QC). This section also contains information about the weather radar
and rainfall estimations. The rainfall spatial correlation is described in Sect. 3. The25

uncertainty quantification for the mean areal rainfall representing the subpixel level is
discussed in Sect. 4. The radar rainfall error variance and the radar evaluation are
presented in Sect. 5. The conclusions of the paper and the near-future plans for the
rain-gauge network are presented in Sect. 6.
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2 Data

2.1 Galed dense rain-gauge network

A very dense network of rain gauges was deployed in November 2011 near Kibbutz
Galed, about 15 km east of northern Israel’s coastline (Fig. 1). The network consists of
27 rain gauges, maintained by the Hydrometeorology Lab of the Hebrew University of5

Jerusalem, and one additional rain gauge operated by the Israel Meteorology Service.
The rain gauges are deployed in 14 stations (coupled gauges per station, as in the Iowa
network, Krajewski et al., 2003) covering an area of about 4 km2 in the fields surround-
ing the Kibbutz (Fig. 1). This network differs spatially, but is in a similar range as the
networks used in previous studies, for example: the EVAC PicoNet in Oklahoma City10

with 25 rain stations deployed over 9 km2 (Ciach and Krajewski, 2006), the Scheyern
Experimental Farm with 10 rain gauges over 1.4 km2 (Fiener et al., 2009), the Aarhus
network consisting of 9 gauges equally spaced within a 0.25-km2 area (Jensen and
Pedersen, 2005; Pedersen et al., 2010) or the 8 gauges deployed in a 4-km2 area of
the Brue catchment (Villarini et al., 2008).15

The stations are distributed in a nonuniform design (Fig. 1), according to the terrain’s
limitations (e.g. field crops, small streams, woods). The intra-distances of the rain sta-
tions (see Table 1) vary between 57 m and 2,672 m. Each station consists of two high-
precision tipping-bucket rain gauges separated by about 1 m (as suggested by Ciach
and Krajewski, 1999; Krajewski et al., 2003) to maintain better quality control and to ac-20

quire data on the zero-distance correlation of the rainfall. The tipping-bucket rain gauge
was manufactured by YOUNG Company (model 52203). It has an orifice diameter of
18 cm with rainfall measurement resolution of 0.1 mm per tip and accuracy of 3 % up to
50 mmh−1. Each rain gauge is connected to a HOBO data logger (model UA-003-64).
The maximum input frequency of the data logger is 1 pulse s−1, with a memory of 64 K25

bytes (more than enough for 1 yr of measurements). This stands with the recommen-
dations by Habib et al. (2001b) and Wang et al. (2008) to use a gauge bucket size of
up to 0.254 mm with a temporal resolution of 1 s.
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The study area has a Mediterranean climate; its rainy season lasts from October to
May (mean annual rainfall is 550 mm), while June to September are typically dry and
hot. In this study, we present the analysis of the first year record collected from 01
November 2011 to 01 May 2012. The accumulated rainfall for this period is equal to
512 mm (averaged over the rain gauges) and is divided into 63 rain events. A rain event5

is defined as beginning when the first rain tip is detected in one of the rain gauges and
ending when there is an intermission of more than 15 min in rainfall for all gauges. Rain
events with cumulative rainfall depth of less than 0.5 mm for all gauges were excluded.
An inherent problem with tipping-bucket-derived rain intensities is that only the time at
which the bucket is completely filled is recorded and no information is available on the10

actual period of time it took to get filled. To overcome this problem, a backward linear
interpolation to the previous recorded tip was applied, with two exceptions: (1) the time
interval from the previous tip was larger than 15 min, or (2) this was the first tip in the
rain event. Note that low rain intensities are more vulnerable to the above-mentioned
problem.15

To ensure reliability of the results, QC procedures were conducted. This is essential
as the data collected from the rain gauges may be corrupted due to partial clogging of
the funnel by debris or small living creatures (for example, wasps or snails), or technical
problems (such as a low battery) resulting in lack of measurements at a given time.
Most of the errors were detected by comparing the rain intensity of rain gauge couples20

at each station and the rain event. In addition, the rain intensities of all of the gauges
were compared for each rain event. All data which were considered to be corrupted
were removed during the QC, ensuring a lack of intra- and inter-station measurement
errors. After QC, rain intensity time series for time intervals between 1 min and daily
time scales were computed for each rain gauge.25

2.2 Radar data

Data from the Shacham (EMS) Mekorot company weather radar system located at
Ben Gurion Airport, about 63 km south of the study area, were used in this study.
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Data from this radar have been used extensively for climatology and hydrology studies
over the last decade (see Karklinsky and Morin, 2006; Morin et al., 2001; Morin and
Gabella, 2007; Morin et al., 2009; Peleg and Morin, 2012; Rozalis et al., 2010; Yakir
and Morin, 2011). The radar is a C-band (5.35-cm wavelength), non-Doppler system
with a maximal transmitting power of 250 kW, a temporal resolution of about 3 min per5

volume scan, and a spatial polar resolution of 1.4◦ ×1 km in space (see grid in Fig. 1).
Data from an elevation angle of 0.5◦ (mean elevation of 710 m above ground) were
used for the analysis. No pixels with substantial ground clutter or beam blockage were
detected in the analyzed region.

A total of 11 827 radar volume scans were analyzed in this study. The radar was shut10

down by the EMS for short periods due to malfunctions and for regular maintenance,
and thus 462 mm of rainfall were recorded by the radar out of the full 512 mm rainfall
recorded by the rain gauges for the same period. We chose 12 radar pixels over the
network location and its surroundings for the analysis (Fig. 1) as the area of the gauge
network is similar to that of 2–4 joint radar pixels (approximately 4 km2).15

Rainfall intensity data (R, mm h−1) were calculated from the weather radar reflectivity
data (Z , mm6 m−3) by a fixed Z–R power law relationship adjusted for each of the 12
radar pixels using the annual cumulative rainfall amount derived from the dense rain-
gauge network. The Z–R relationships were varied from Z = 55R1.5 to Z = 133R1.5 for
the radar pixels, as summarized in Table 2. Prior to this adjustment, the radar reflectivity20

values were increased by 6 dB to compensate for system losses, as done by Morin
and Gabella (2007). A lower threshold of 0.1 mmh−1 for noise filtering and an upper
threshold of 250 mmh−1 to reduce unrealistically strong returns from hail particles were
set.

In Fig. 2, scatter plots of synchronous radar (averaged data from the 12 pixels) and25

rain gauge observations are presented for three time scales: 3-min (the time inter-
val between the radar volume scans), hourly and daily intervals. Ciach and Krajewski
(1999) noted that this plot can give an idea of the large amount of variability in the mea-
surements. Here we can see that for the shorter temporal resolution and for the lower

8
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rain intensity, the points scatter away from the perfect match line of the radar-to-gauge
amounts, possibly due to the problem mentioned in the previous section.

3 Spatial correlation of gauge rainfall data

The spatial rainfall correlation is commonly investigated using Pearson’s product–
moment correlation (for examples, see Ciach and Krajewski, 2006; Mandapaka et al.,5

2010; Pedersen et al., 2010; Tokay and Ozturk, 2012; Villarini et al., 2008, and more).
Correlograms for different time scales, from 1 min to daily, were computed using a lag
distance of 200 m (Fig. 3). As expected, the spatial correlation decreased as the sepa-
ration distance increased and as the time scale decreased. This trend was also shown
by Krajewski et al. (2003) for several different experiments conducted worldwide, as10

well as by Ciach and Krajewski (2006) and Villarini et al. (2008). The correlation was
parameterized using a three-parameter exponential function (see fit in Fig. 3), as sug-
gested by Gebremichael and Krajewski (2004), Habib et al. (2001a) and Villarini et al.
(2008), for the spatial correlation at separation distance h of the correlogram:

r(h) = c1 ·exp
[
−
(

h
c2

)c3
]

(1)15

where c1 represents the zero-distance correlation (nugget), c2 is the correlation dis-
tance and c3 is the shape factor.

The time dependence of the parameters given in Eq. (1) are summarized in Fig. 4.
The nugget has a value of about 0.92 on the 1-min scale, increasing to 0.98 for the20

5-min scale and then continuing asymptotically toward the daily scale. The nugget rep-
resents the zero-distance correlation, thus it gives us information about the variability
and measurement errors for each coupled rain gauge (i.e. each station); when c1 is
equal to 1 there is a perfect match between the coupled gauges. The values obtained
in this study were much higher than those reported by Villarini et al. (2008) of c1 = 0.525

on the 1-min time scale; they are on a scale similar to the values given by Krajewski
9
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et al. (2003) of c1 = 0.95–0.97 (different locations worldwide) on time scales of 15 min
or longer. The networks used in these studies were without coupled gauges, making it
difficult to estimate the nugget parameter. Where coupled gauges have been used, the
estimated nugget value is in closer agreement to the values obtained in this study, for
example: Tokay and Ozturk (2012) reported values of c1 = 0.97 on a 5-min time scale.5

The correlation distance (c2) increased with the time scale from 3 km to 79 km. The
correlation distance for 12 h (79 km) was much lower than the value of 110 km esti-
mated by Villarini et al. (2008) or the value of 320 km estimated by Tokay and Ozturk
(2012). As the spatial scale in this study is limited to a distance of a few kilometers
because of the network dimensions, we should interpret these very large correlation10

distances with caution, as was also mentioned by Tokay and Ozturk (2012).
In this study, the shape parameter (c3) was approximately 1 (a pure exponential

function), slightly changing from 0.9 to 1.2 with no obvious trend. The shape parameter
function estimated in this study was different from those obtained by Ciach and Krajew-
ski (2006), Tokay and Ozturk (2012), and Villarini et al. (2008), where an increase in15

the shape parameter was detected with an increase in the time scale (between 1.1 and
1.6, 0.37 and 0.92 and 0.4 and 1, respectively). As Villarini et al. (2008) mentioned,
differences are expected between experimental studies due to differences in the range
of inter-gauge distances, sample size and precipitation type.

4 Spatial rain gauge uncertainty20

4.1 Variance reduction factor

The rainfall variance was estimated by the well-known variance reduction factor (VRF),
which has been used by Krajewski et al. (2000) and Villarini et al. (2008) to quantify
the uncertainty results from averaging a number of rain gauges. The VRF methodology
was introduced by Morrissey et al. (1995) who considered the number of rain gauges,25

their spatial distribution, and the correlation between them. In this paper, we provide

10
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only a brief discussion of the VRF methodology; for further details, the reader is referred
to the above-mentioned papers.

Let Rs be the point rainfall of a single rain station (coupled gauges per station), and let
Rs be the mean areal rainfall. The variance of the mean areal rainfall can be expressed
as:5

σ2

Rs

= σ2
Rs

·VRF (2)

where σ2
Rs

is the variance of the point rainfall and the VRF is computed by:

VRF =
1

n2
·

N∑
i=1

N∑
j=1

ρ(di ,j ) ·δ(i ) ·δ(j )

− 2
N ·n

·
N∑
i=1

N∑
j=1

ρ(di ,j ) ·δ(i )+
1
N

+
2

N2
·
N−1∑
i=1

N∑
j=i+1

ρ(di ,j ) (3)10

where n is the number of rainfall measuring stations, N is the number of boxes dividing
the domain, ρ(di ,j ) is the correlation coefficient derived from Eq. (1) for the distance
between boxes i and j , and is a Boolean value with a value of 1 when box i contains
a measuring station (each box can contain only one measuring station) and a value of15

0 otherwise.
The domain area was defined with dimensions of 2.1 km×2.1 km in order to cap-

ture all of the rain stations (n = 14) participating in this study (Fig. 1; see the 4-km2

box for comparison). The grid was composed of 441 boxes (N), each with a size of
100 m×100 m. The results are plotted in Fig. 5a. The VRF was 1.6 % for a time scale20

of 1 min and it decreased with increasing time accumulated to 0.07 % for the daily time
scale. These results are similar to those presented by Villarini et al. (2008) for a 4-km2

domain, where the VRF decreased from approximately 2.7 % for a time scale of 1 min
to near zero for the daily time scale. The VRF is very close to zero, meaning that the
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mean square of the point variance is also close to zero; thus for any given time scale,
the true radar pixel rainfall will be well represented by the averaged point rainfall.

The minimum number of rain stations required for a good representation of this small
4-km2 domain was determined. The VRF was computed from one station (near the
center of the domain) to 14 stations, keeping the stations distributed as uniformly as5

possible (see networks in Morrissey et al. (1995) to obtain the lowest VRF results. As
the results for the different time scales are similar, only the results for the 1-min time
scale are plotted in Fig. 5b and discussed here. The results suggested that setting up
four rain stations uniformly in a radar pixel domain is sufficient to represent the radar
rainfall, assuming that the VRF threshold of 5 % is satisfied. VRF values lower than 2 %10

will require at least eight rain stations uniformly distributed in the domain. The lowest
VRF was computed for the setting of 10 rain stations (0.99 %) in the domain. The VRF
increases with the addition of more than 10 rain stations as the distances between the
rain stations decrease, resulting in an increase of the first term in Eq. (3).

4.2 Convective rainfall15

The contribution of convective rainfall to the total precipitation over the study area can-
not be overlooked. To check whether there are differences in the spatial correlation of
the convective versus nonconvective rainfall, we divided the rainfall series at the 5-min
time scale as follows: if at least one of the rain gauges recorded rain intensity exceeding
10 mmh−1, this 5-min interval was marked as convective; if all rain gauges recorded20

rain intensity lower than 10 mmh−1, it was marked as nonconvective. This threshold
was used by Peleg and Morin (2012) to distinguish the convective rain cells from the
total precipitation in the same area.

The spatial correlation for the convective and nonconvective rainfall for the 5-min time
scale was calculated using the methodology explained in Sect. 3, and is presented in25

Fig. 6a. The nugget of the convective precipitation is 0.97, while the nugget of the non-
convective rainfall is 0.95. The convective spatial correlation decreases rapidly to 0.4 at
a separation distance of 1.8 km, while the nonconvective spatial correlation decreases

12
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more moderately to 0.7 at the same distance. The nonconvective spatial correlation
decays in a manner similar to the 5-min correlation decay of the combined convective
and nonconvective rainfall presented in Fig. 3. The fast decay of the convective rainfall
spatial correlation implies that the areal rainfall variance is high. The standard deviation
of the convective rainfall, normalized by its mean, was plotted against the percentage5

of rain gauges exceeding the threshold of 10 mmh−1 (Fig. 6b). The normalized stan-
dard deviation (NSTD) of the convective rainfall is about 0.4. The maximum NSTD is
higher for fewer rain gauges that detect rain intensity exceeding the threshold.

5 Radar estimation error

5.1 Error separation method10

Ciach and Krajewski (1999) proposed the error separation method (ESM) which sepa-
rates the radar–rain gauge error in two: the radar–true area-averaged rainfall error and
the rain gauge sampling error. Below is a short description of the method; for further
information the reader is referred to Ciach and Krajewski (1999) and to an additional
example by Krajewski et al. (2000).15

Let Rr be the rainfall estimated from the radar, Rg the rainfall as measured by the rain
gauge and Rt the true area-averaged rainfall. The normalized root mean square error
of the radar-estimated rainfall versus the rain gauges is found by:

NRMSE(Rr −Rg) =

√∑N
i=1(Rr(i )−Rg(i ))2

N

Rg

(4)

20

where N is the sample size and Rg is the averaged rainfall measured by the gauges.
The normalized rain gauge sampling error can be determined (based on Eq. (18) in

13

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Ciach and Krajewski, 1999) by:

NRMSE(Rg −Rt) =

√
var(Rg) · (1−c1)

Rg

(5)

where c1 is the nugget. The radar–true area-averaged rainfall error can be then solved
by:5

var{Rr −Rt} = var
{
Rr −Rg

}
− var

{
Rg −Rt

}
(6)

where var
{
Rr −Rg

}
and var

{
Rg −Rr

}
are derived from Eqs. (4) and (5), respectively.

For the above computation, we assume that there is no bias between the rainfall mea-
sured by the rain gauges and the rainfall measured by the weather radar as each radar10

pixel is adjusted separately for the data derived from the gauges.
The results of the ESM for the different time scales are presented in Fig. 7 for the rel-

ative magnitude of each of the method components. The normalized radar–true rainfall
error is presented for the maximum and minimum values obtained from the 12 radar
pixels tested (i.e. maximum and minimum values represent one pixel each and the15

other 10 pixel values are found in the range between). The radar rain-gauge error de-
clines from a maximum 700 % error (minimum of 320 %) for a time scale of 3 min to
a maximum 65 % error (minimum 47 %) for the daily time scale. The error derived from
the rain gauge sampling error is reduce from 71 % for a time scale of 3 min to 5 % for
a daily time scale. The gauge sampling error contributes only a small part of the overall20

error: it changes from 22 % (minimum contribution of 10 %) for the 3-min time scale to
12 % (minimum of 8.5 %) for the daily time scale.

5.2 Radar rainfall evaluation

The radar rainfall was evaluated using the critical success index (CSI), false alarm ratio
(FAR) and probability of detection (POD) parameters, all well-known parameters which25

14
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have been used in numerous studies (for example: Dixon and Wiener, 1993; Germann
et al., 2006; Kyznarova and Novak, 2009). These quality parameters are defined as:

CSI =
H

H + F +M
(7)

FAR =
F

H + F
(8)

POD =
H

H +M
(9)5

where H is the number of hits – both radar and gauged areal average rainfall indicate
rain, M means number of misses – rainfall was only recorded by rain gauges, F means
false alarms – rainfall was only recorded by radar. A zero threshold was used to mark
the occurrence of rain.10

The evaluation was conducted for different time scales for each of the radar pixels
and for the radar pixel average, and the results are presented in Fig 8. All quality
parameters improved as the time scale increased, in a manner similar to the ESM
results discussed in the previous section. The CSI for the averaged radar pixel changed
from 0.56 for the 3-min time scale to 0.96 for the daily time scale and its POD increased15

from 0.73 to 0.96 for the same time scales. The FAR decreased from 0.29 for the 3-
min time scale to zero for the 3-h time scale and on. These results are affected by the
radar’s lower threshold setting, where higher threshold changes the CSI, POD and FAR
results. For some, but not all of the radar pixels, an improvement was detected.

The ratio of averaged radar rainfall to true areal rainfall was calculated for 3 min,20

30 min and daily time scales. Here, we assumed that the true rainfall is well represented
by the areal-averaged gauge-derived rainfall. The cumulative distribution (weighted by
contribution to total rain amount) of the radar-to-true rainfall ratio (in dB) is presented
in Fig. 9, following Germann et al. (2006). For the 3-min time scale, the radar under-
estimated about 76 % of the rainfall, with the radar-to-true rainfall ratio reaching up25

to −20 dB. For the daily time scale, the radar estimations improved, with the inflection
point between the under- and overestimation found around the 50 % rainfall contribution
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and the radar-to-true rainfall ratio being as low as −8 dB. The improvement of the radar
estimation for the true rainfall with increasing time scale was also expressed by the
scatter parameter, defined as half the distance between the 16th and 84th percentiles
of the error distribution (Germann et al., 2006). The scatter decreased from 4.67 dB for
the 3-min time scale to 1.56 dB for the daily time scale.5

6 Summary

Subpixel rain distribution was investigated using a high-density network of rain gauges
as part of a continuous effort to better understand the uncertainties and errors of the
rainfall estimation on this scale. This is of particular importance when using remote-
sensing rainfall data (from ground weather radar or satellite) for hydrological applica-10

tions. In this study, we used the network of 27 tipping-bucket rain gauges located in
northern Israel to evaluate the Shacham weather radar’s performance. The study con-
clusions can be summarized as follows:

– The zero-distance (nugget) correlation between rain gauges is high (0.92 on the
1-min scale) and it increases with increasing time scale. The overall rainfall corre-15

lations also increase with the time scale.

– The VRF decreases as the time scale increases. The variance of the differences
between radar pixel rainfall and averaged point rainfall is close to zero, as the VRF
for the 1-min scale is only 1.6 %. It was found that four uniformly distributed rain
stations can represent the radar pixel-scale rainfall with a VRF value of 5 %, while20

eight rain stations are required to represent the radar rainfall with a VRF threshold
of 2 %.

– There is a difference in the spatial correlations of the convective and nonconvec-
tive rainfall, as the convective rainfall correlation decreases much faster than the
nonconvective one. Further investigation is needed to understand the spatial and25

temporal differences between the different types of rainfall.
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– The radar–rain gauge error is high for the 3-min time scale (about 700 %) and
decreases toward the daily time scale (65 %). This error is mainly derived from
radar estimation errors, as the gauge sampling error contributes only 12%–22 %
to the total error, depending on the time scale.

– The radar rainfall estimations improve with increasing time scale. This is reflected5

by the increasing CSI and POD parameters with time scale and the simultane-
ous decrease in the FAR parameter. In addition, the radar-to-true rainfall ratio,
expressed by the scatter parameter, decreases with increasing time scale.

We intend to continue collecting rainfall measurements with this network of rain
gauges in the years to come. In December 2012, a disdrometer was installed at this site10

to measure rain drop size distribution (following Jaffrain et al., 2011). We are looking
for new and better ways to continue developing this network for future use with other
weather radar or satellite observations.
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Table 1. Intra-distances (m) of the rain stations.

1
1 0 2
2 1709 0 3
3 2672 1735 0 4
4 1457 620 1375 0 5
5 1395 1076 1277 456 0 6
6 1102 1052 1572 497 298 0 7
7 990 1193 1684 658 413 162 0 8
8 1699 1918 1444 1298 842 962 912 0 9
9 1920 1386 777 829 548 843 930 785 0 10

10 1620 1392 1111 778 354 598 645 557 336 0 11
11 1250 1448 1516 846 419 426 363 549 740 406 0 12
12 1303 1440 1461 831 392 438 395 525 685 350 57 0 13
13 686 1518 2057 1049 812 570 412 1019 1284 963 572 628 0 14
14 830 940 1938 634 708 434 450 1362 1253 1032 813 841 610 0
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Table 2. Z–R parameters (a and b) for each radar pixel. Sum(Rr) represents the annual radar
rainfall measurements after the adjustment and Sum(Rr R

−1
t ) is the ratio between annual radar

rainfall and true rainfall derived from averaging the rain gauge measurements.

Radar ID a b Sum(Rr) (mm) Sum(Rr R
−1
t )

10 054 58 1.5 450.8 99.36 %
10 055 55 1.5 448.8 98.92 %
10 056 59 1.5 448.3 98.81 %
10 057 61 1.5 450.1 99.21 %
11 054 94 1.5 459.6 101.30 %
11 055 88 1.5 448.6 98.88 %
11 056 87 1.5 461.2 101.65 %
11 057 91 1.5 450.3 99.25 %
12 054 133 1.5 467.8 103.11 %
12 055 123 1.5 451.1 99.43 %
12 056 125 1.5 465.6 102.62 %
12 057 122 1.5 462.5 101.94 %
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10 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 1. Map of the study area including the 14 rain stations (triangles) around Kibbutz Galed. Each station is composed of two rain gauges.
The black grid represents the radar mesh, with spatial polar resolution of 1.4◦ x 1 km. Inset shows the general location of the network in
Israel.

Fig. 2. Scatter plots of synchronous radar and rain gauge observations for 3-min (radar data are transected along the lower 0.1 mm h−1

rainfall intensity threshold), hourly and daily intervals. The radar rainfall data represent the averaged rainfall derived from the 12 radar
pixels. Dashed line represents a perfect fit between gauge and radar rainfall.

Fig. 1. Map of the study area including the 14 rain stations (triangles) around Kibbutz Galed.
Each station is composed of two rain gauges. The black grid represents the radar mesh, with
spatial polar resolution of 1.4◦ ×1 km. Inset shows the general location of the network in Israel.
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10 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 1. Map of the study area including the 14 rain stations (triangles) around Kibbutz Galed. Each station is composed of two rain gauges.
The black grid represents the radar mesh, with spatial polar resolution of 1.4◦ x 1 km. Inset shows the general location of the network in
Israel.

Fig. 2. Scatter plots of synchronous radar and rain gauge observations for 3-min (radar data are transected along the lower 0.1 mm h−1

rainfall intensity threshold), hourly and daily intervals. The radar rainfall data represent the averaged rainfall derived from the 12 radar
pixels. Dashed line represents a perfect fit between gauge and radar rainfall.

Fig. 2. Scatter plots of synchronous radar and rain gauge observations for 3-min (radar data
are transected along the lower 0.1 mmh−1 rainfall intensity threshold), hourly and daily intervals.
The radar rainfall data represent the averaged rainfall derived from the 12 radar pixels. Dashed
line represents a perfect fit between gauge and radar rainfall.
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N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network 11

Fig. 3. Correlograms of the rainfall derived from the rain gauges for several time scales (dots) and the fitted three-parameter exponential
functions (lines).

Fig. 4. Time-scale dependence of the nugget (a), correlation distance (b) and shape factor (c) used in the three-parameter exponential
function.

Fig. 3. Correlograms of the rainfall derived from the rain gauges for several time scales (dots)
and the fitted three-parameter exponential functions (lines).
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N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network 11

Fig. 3. Correlograms of the rainfall derived from the rain gauges for several time scales (dots) and the fitted three-parameter exponential
functions (lines).

Fig. 4. Time-scale dependence of the nugget (a), correlation distance (b) and shape factor (c) used in the three-parameter exponential
function.

Fig. 4. Time-scale dependence of the nugget (a), correlation distance (b) and shape factor (c)
used in the three-parameter exponential function.
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12 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 5. Variance reduction factor (VRF) as a function of (a) time scale and (b) number of rain stations in the study area for the 1-min time
scale.

Fig. 6. (a) Correlogram presenting the convective (red plus symbol) and nonconvective (blue dots) spatial rainfall coefficient and its fit
(dashed lines) using the three-parameter exponential functions. (b) Convective rain intensity normalized standard deviation. The analysis
was performed for the 5-min rain intensity data.

Fig. 5. Variance reduction factor (VRF) as a function of (a) time scale and (b) number of rain
stations in the study area for the 1-min time scale.
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12 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 5. Variance reduction factor (VRF) as a function of (a) time scale and (b) number of rain stations in the study area for the 1-min time
scale.

Fig. 6. (a) Correlogram presenting the convective (red plus symbol) and nonconvective (blue dots) spatial rainfall coefficient and its fit
(dashed lines) using the three-parameter exponential functions. (b) Convective rain intensity normalized standard deviation. The analysis
was performed for the 5-min rain intensity data.

Fig. 6. (a) Correlogram presenting the convective (red plus symbol) and nonconvective (blue
dots) spatial rainfall coefficient and its fit (dashed lines) using the three-parameter exponen-
tial functions. (b) Convective rain intensity normalized standard deviation. The analysis was
performed for the 5-min rain intensity data.
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N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network 13

Fig. 7. Errors of radar (Rr) vs. gauge (Rg) rainfall for different time scales. Gray section represents the spatial sampling error derived from
the rain gauge (Rg) vs. true areal rainfall (Rt). Blue sections represent the maximum and minimum normalized root mean square error of
radar (Rr) vs. true rainfall (Rt) derived from the 12 radar pixels.

Fig. 8. Critical success index (CSI), probability of detection (POD) and false alarm ratio (FAR) for the different time scales. Gray dots
represent the radar pixels and blue dots represent the averaged radar pixels.

Fig. 7. Errors of radar (Rr) vs. gauge (Rg) rainfall for different time scales. Gray section repre-
sents the spatial sampling error derived from the rain gauge (Rg) vs. true areal rainfall (Rt). Blue
sections represent the maximum and minimum normalized root mean square error of radar (Rr)
vs. true rainfall (Rt) derived from the 12 radar pixels.
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Fig. 7. Errors of radar (Rr) vs. gauge (Rg) rainfall for different time scales. Gray section represents the spatial sampling error derived from
the rain gauge (Rg) vs. true areal rainfall (Rt). Blue sections represent the maximum and minimum normalized root mean square error of
radar (Rr) vs. true rainfall (Rt) derived from the 12 radar pixels.

Fig. 8. Critical success index (CSI), probability of detection (POD) and false alarm ratio (FAR) for the different time scales. Gray dots
represent the radar pixels and blue dots represent the averaged radar pixels.

Fig. 8. Critical success index (CSI), probability of detection (POD) and false alarm ratio (FAR)
for the different time scales. Gray dots represent the radar pixels and blue dots represent the
averaged radar pixels.
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14 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 9. Cumulative distribution (weighted by contribution to total rain amount) of the radar-to-true rainfall ratio (Rr/Rt, in dB) (see Germann
et al., 2006) for different time scales.

Fig. 9. Cumulative distribution (weighted by contribution to total rain amount) of the radar-to-
true rainfall ratio (Rr/Rt, in dB) (see Germann et al., 2006) for different time scales.
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