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Abstract

The estimation of river flow is significantly related to the impact of urban hydrology,
as this could provide information to solve important problems, such as flooding down-
stream. The nonlinear prediction method has been employed for analysis of four years
of daily river flow data for the Langat River at Kajang, Malaysia, which is located in5

a downstream area. The nonlinear prediction method involves two steps; namely, the
reconstruction of phase space and prediction. The reconstruction of phase space in-
volves reconstruction from a single variable to the m-dimensional phase space in which
the dimension m is based on optimal values from two methods: the correlation dimen-
sion method (Model I) and false nearest neighbour(s) (Model II). The selection of an10

appropriate method for selecting a combination of preliminary parameters, such as
m, is important to provide an accurate prediction. From our investigation, we gather
that via manipulation of the appropriate parameters for the reconstruction of the phase
space, Model II provides better prediction results. In particular, we have used Model
II together with the local linear prediction method to achieve the prediction results for15

the downstream area with a high correlation coefficient. In summary, the results show
that Langat River in Kajang is chaotic, and, therefore, predictable using the nonlinear
prediction method. Thus, the analysis and prediction of river flow in this area can pro-
vide river flow information to the proper authorities for the construction of flood control,
particularly for the downstream area.20

1 Introduction

Urbanization and urban growth are essential factors for planners and policy makers be-
cause the urbanization pattern has major implications for the hydrological processes.
Urbanization can have various effects on certain hydrological problems, such as flood
prevention in urban areas, allocation of adequate resources in terms of water qual-25

ity and quantity, and waterborne waste disposal (Hall, 1984). Thus, the problems of
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urban hydrology involve flood and pollution prevention. However, our study only con-
siders flood prevention based on the river flow prediction. If an undeveloped area is
then transformed into a developed area, the conditions of the soil structure will be dis-
turbed (Hall, 1984). These factors can change the magnitude of the river flow. The
volume of runoff will increase significantly with the increase in the magnitude of the5

river flow due to the impervious areas and the lack of drainage. Hence, downstream
flooding problems exist in urban areas. There are several methods that can be used
to estimate the river flow in a watershed that is located in an urban area, such as the
empirical and physical process methods. Referring to the empirical method for urban
hydrology research, the behaviour of river flow in the downstream area is important to10

provide accurate information for the whole river flow (Viesmann and Lewis, 1996). This
information can help in planning, development and flood prevention of the downstream
area.

The Langat River, which is one of the longest rivers in the state of Selangor, Malaysia,
is used as a case study. This research focuses on the downstream area at Kajang,15

which is well-known for experiencing flood hazards. Figure 1 shows the four gauging
stations along the Langat River. The Langat River flows from east to southeast, which
is from Lui River to Kajang. The total length of the upstream and downstream is about
34.4 km and the downstream area has been identified as a flood risk area (Mohammed
et al., 2011). Checkpoint 1 (station number 3118445) is located at the Lui River gaug-20

ing station (upstream) and Checkpoint 2 (station number 2917401) is located at the
Kajang gauging station (downstream). The Langat River at the Kajang gauging station
has been used for the river flow analysis and prediction using the nonlinear prediction
method. This area had a population of 229 655 people in 2000, which increased to
342 657 people in 2010 (Department of Irrigation and Drainage Malaysia, 2005). The25

increase in population in this area reflects the development in the Kajang area. Further-
more, the study area is adjacent to an industrial area and pig farms. Flooding in this
area can cause damage to the industrial area and pollution in the Langat River basin.
Thus, studies of the downstream area (Kajang) are important to provide information

14333

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

about the flow downstream. This study was conducted at this point so that the release
of water from Checkpoint 2 could be estimated for a certain length of time. The results
of this study could help to identify the preventive measures that could be undertaken in
this downstream area.

The analysis and prediction of river flow could provide the information about the dy-5

namics of the river flow system. However, the flow of the river is not dependent on
rainfall alone. The characteristics of an area, such as shape, slope, land, soil struc-
ture and climate change, can also affect the flow of the river in an area (Viesmann
and Lewis, 1996). Thus, the application of stochastic methods is often used to anal-
yse complex natural conditions, such as the river flow. Developments in the study of10

nonlinear time series analysis is growing with some revolutionary methods. One partic-
ular method that provides important findings is known as chaos theory, which explains
that a complex system can be analysed by deterministic methods that use a minimum
number of the system’s variables (Islam and Sivakumar, 2002). Several decades ago,
a number of studies were performed to obtain information on characterizing, modelling15

and predicting hydrological phenomena as a deterministic system (e.g. Jayawardena
and Lai, 1993; Sivakumar, 2000; Ghorbani et al., 2010). The results showed that the
river flow prediction and other hydrological processes are in good agreement with the
actual data values (Sivakumar, 2003; Regonda et al., 2005; She and Yang, 2010; Khat-
ibi et al., 2012). In addition, prediction using chaos theory can reveal the number of20

variables that affect the dynamics of the river flow.
Studies on river flow analysis and prediction in Malaysia have been done and im-

proved for a variety of purposes, such as providing information for flood prevention.
Several methods, such as support vector machine method (Shabri and Suhartono,
2012), neural network model (Ahmad and Juahir, 2006) and hydrodynamic modelling25

(Ghani et al., 2010), have been used for river flow prediction. However, several meth-
ods have yet to be explored for the purpose of river flow prediction in Malaysia, such
as chaos theory, Bayesian methods and wavelet methods. River flow prediction using
chaos theory involves a single variable (river flow data) albeit there are other dominant
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variables affecting river flow prediction. Meanwhile, the Bayesian and Wavelet meth-
ods are dependent on a number of dominant variables, such as rainfall, temperature
and soil type. To the best of our knowledge, this is the first attempt to use the for the
analysis and prediction of river flow in Malaysia.

2 Nonlinear prediction method5

The nonlinear prediction method (NLP) of chaos theory is used to analyse river flow
and predict the future value of the flow. There are two steps in NLP – phase space
reconstruction and prediction. Reconstruction of the phase space uses observed data
(one-dimensional) to build the m-dimensional phase space that reflects the dynamics
of the river flow (Abarbanel, 1996; Adenan and Noorani, 2013). A scalar time series10

x(t) forms a one-dimensional time series:

{xi} = {x1,x2,x3, . . . ,xN} (1)

where N is the total number of points in the time series that can be transformed into
m-dimensional vectors:

Y t =
{
xt,xt+τ,xt+2τ, . . . ,xt+(m−1)τ

}
(2)15

where τ is an appropriate time delay and m is a chosen embedding dimension (Abar-
banel, 1996; Tongal and Berndtsson, 2013).

Referring to Eq. (2), the value of τ and m are needed to reconstruct the phase space.
In this study, τ has been predetermined. Selection of the appropriate τ is important
during the reconstruction of the phase space. The most optimal value of τ can provide20

a separation of neighbouring projections with respect to the dimension of the phase
space. If the value of τ is too small, the coordinates of the phase space cannot properly
describe the dynamics of the system. Meanwhile, information on trajectories in the
phase space will diverge if the value of τ is too big (Sangoyomi et al., 1996; Islam and
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Sivakumar, 2002). The optimal value of m in phase space reconstruction can describe
the topology of the attractor. The number of dimensions in the reconstructed phase
space is equal to the number of columns in the matrix resulting from the embedding
parameters in the time series. If the number of columns is insufficient, it cannot reflect
the phase space dynamics of the system. Therefore, the selection of the preliminary5

parameter pair (τ,m) is important to reflect the dynamics of the phase space.

2.1 Determination of preliminary parameter pair (τ,m)

Previous studies on the river flow prediction showed that when a condition of time delay
τ = 1 is used in phase space reconstruction, the results gave good predictions (Sivaku-
mar, 2002, 2003). Thus, in this study, the time delay τ = 1 is used. The embedding10

dimension m is calculated using the correlation dimension and false nearest neighbour
method (FNN). There are two models to be considered, Model I and Model II, which
involve different combinations of preliminary parameter pairs for the reconstruction of
the phase space. Model I involves τ = 1, and m is the result of the calculation from
the correlation dimension; and Model II involves the combination τ = 1, and m is the15

result of the calculation of FNN. A comparison of the prediction results is conducted to
distinguish the strength of the two models.

The correlation dimension method is the most fundamental method in the study of
chaotic time series for proving the presence of chaotic behaviour in hydrological stud-
ies (Jayawardena and Lai, 1994; Martins et al., 2011; Khatibi et al., 2012). For a given20

distance r , the main idea of the correlation function C(r) is related to the shortest dis-
tance of the vectors Y t. Here the Euclidean distance is used to calculate the distance
between points on the vector space:

ds(Y i ,Y j ) = ‖Y i −Y j‖. (3)
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The correlation dimension is based on the correlation integral introduced by Grass-
berger (1986):

C(r) = lim
N→∞

2
N(N −1)

N∑
i ,j=1

H(r −‖Y i −Y j‖) (4)

where H is the Heavyside function, which has the value 0 or 1 and can be defined as:

H(r −‖Y i −Y j‖) =
{

1,0 ≤ (r −‖Y i −Y j‖)
0,0 > (r −‖Y i −Y j‖)

(5)5

and acts as a barrier to the Euclidean distance between two points on the attractor Y i
and Y j . The correlation function C(r) is calculated for the pair of points (Y i ,Y j ) with
a distance less than the radius r . In the limit to infinite amount of data (N →∞) and
sufficiently small r(r → 0), the relation C(r) ∼= αrD2 is expected (Men et al., 2004). The10

correlation dimension D2 and correlation exponent v can be defined as:

D2 = lim
r→0

v (6)

v =
δ[logC(r)]

δ[logr ]
(7)

Several steps are required to identify the value of the correlation dimension. The first15

step is to draw a graph lnC(r) vs. ln(r) with a given m. Then the gradient (correlation
exponent v) of the m-dimensional curve values has to be determined. The gradient of
the graph can be measured by the least squares method for determining the scaling.
For finite data and where the value of r exceeds the diameter, there exists a saturated
area of the graph. The saturated area is the scaling region. A better way to estimate20

the gradient is to use δ[logC(r)]/δ[logr ]. To examine if there is a chaotic nature, the
correlation exponent (slope v) vs. m-dimensional has to be plotted. If the value of the
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correlation exponent is finite, low and non-integer, the system is considered to be of
low dimensional chaotic nature (Men et al., 2004). If the correlation value increases
without limit as m increases, the system should be studied as a stochastic system.

The false nearest neighbour method (FNN) is an effective method for finding the
embedding dimension m for the reconstruction phase space. This method has been5

used to analyse river flow time series (Wu and Chau, 2010; Ghorbani et al., 2012).
This paragraph describes how FNN is implemented. Suppose the dimension increases
then the distance between the point and the nearest neighbour should not change if
it is indeed the nearest neighbouring point. Computation of the distance between the
point and the nearest neighbour is by the Euclidean distance.10

FNN can be calculated using the following algorithm. Assume
that Y i =

{
xi ,xi+τ,xi+2τ, . . . ,xi+(m−1)τ

}
has nearest neighbour Y

NN
i ={

xNN
i ,xNN

i+τ,x
NN
i+2τ, . . . ,x

NN
i+(m−1)τ

}
. Then, calculate the Euclidean distance

∥∥∥Y i −Y
NN
i

∥∥∥.

For all points i in vector space, equation
|xi+mτ−x

NN
i+mτ |

‖Y i−Y NN
i ‖ > RT is used and the value of false

nearest neighbour can be calculated. RT is a value between 10 and 30. In this study,15

the value of 15 is used (Wu and Chau, 2010). Repeat the algorithm with different
embedding dimensions and the value of the false nearest neighbour that is close to
zero is used as the embedding dimension.

2.2 Prediction

In this study, the prediction of river flow has been performed by using the local linear20

approximation method. This method was proposed by Lorenz (1969). Application of the
local linear approximation method is to (1) examine whether the river flow at the down-
stream areas can be predicted, (2) to compare the prediction results for Models I and
II. The local linear approximation method is used to predict river flow in downstream
areas as follows. The first step is to reconstruct the phase space. The combination of25

the preliminary parameter pair (τ,m) is important for reconstruction of the phase space
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because this phase space result will be used in making a prediction. The difference
between Models I and II is in the reconstruction phase space. Models I and II involve
τ = 1 but involve different methods in determining the value of m. Model I uses the cor-
relation dimension while FNN is employed for Model II. Assume that the reconstruction
of phase space is like Y i =

{
xi ,xi+τ,xi+2τ, . . . ,xi+(m−1)τ

}
. The nearest neighbour for Y t5

is required to predict Y t+1. Assume that the vector of the minimum distance to the
nearest neighbour is Y M . Next, for the local linear approximation method, the values of
Y M and Y M+1 are used to satisfy the linear equations Y M+1 = AY M +B. The constants
A and B are calculated using the least squares method. Thus, the predictive value Y t+1
can be calculated using Y t+1 = AY t +B.10

2.3 Performance evaluation

The assessment of the prediction accuracy of the models for predicting the daily river
flow is evaluated by using the mean absolute error (MAE), root mean square error
(RMSE) and correlation coefficient (CC). The MAE, RMSE and CC are as follows:

MAE =
1
n

n∑
t=1

∣∣∣yo
t − y f

t

∣∣∣ (8)15

RMSE =

√√√√1
n

n∑
t=1

(
yo
t − y f

t

)2
(9)

CC =

1
n

∑n
t=1

(
yo
t − y

o
t

)(
y f
t − y

f
t

)
√

1
n

∑n
t=1

(
yo
t − y

o
t

)2
√

1
n

∑n
t=1

(
y f
t − y

f
t

)2
(10)

where yo
t is the observed and y f

t is the forecast value at time t, and n is the number
of data points. MAE and RMSE can provide information on the predictive ability of the20
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models involved. Meanwhile, the correlation coefficient CC can measure the correlation
between the prediction and the observed data.

3 Description of data

Langat River is one of the longest rivers in Selangor and its river basin is transbound-
ary, inasmuch as it crosses three states – Selangor, Negeri Sembilan, and the Fed-5

eral Territory of Kuala Lumpur and Putrajaya (Department of Irrigation and Drainage
Malaysia, 2011).The Langat River flows from Mount Nuang in Hulu Langat district to
the Straits of Malacca in Kuala Langat. The Langat River catchment area covers a total
of 1815 km2 and is located between latitude 2◦40′152′′ N and 3◦16′15′′N, and longitude
101◦19′20′′ E and 102◦1′10′′ E (Juahir et al., 2011). There are two water reservoirs lo-10

cated in this area – Langat Dam and Semenyih Dam. Langat Dam was built with an
area of 54 km2 and Semenyih Dam has an area of 41 km2. Both of these dams were
built to deliver water for domestic and industrial use. In addition, the Langat Dam is also
used to generate electricity for the use of residents in the vicinity of the Langat Valley.
There are several towns and villages built along the Langat River – Cheras, Semenyih,15

Dengkil and Kajang. Since 1976, Langat River has also been acknowledged to be an
area that regularly suffers flooding.

The variations of daily river flow data for Checkpoint 2 are shown in Fig. 2. The
irregular patterns in data for Kajang River show that the river in this area is a complex
system. The overall data were taken from the Department of Irrigation and Drainage20

Malaysia. Missing data constitute about 0.018 % and were filled using the results of
linear interpolation calculation. The statistical parameters of the data cover a period of
four years (January 2002 to December 2005) and are shown in Table 1.
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4 Results and Discussion

River flow prediction using NLP involves the reconstruction of the phase space and
prediction. Thus, the discussion of the findings is divided into two parts. The first part
is to determine the parameters for the reconstruction of the phase space for Models I
and II. Meanwhile, the description of the prediction results are discussed in the second5

part.
The phase diagram can provide information about the dynamics of a system through

the trajectories in the phase space. The trajectories that are of interest focus on
a subspace called the attractor. In addition, the observation of attractor trajectories
in the phase space can provide information about the chaotic behaviour of the sys-10

tem. Hence, the phase diagram and the observation data involved are plotted. Figure 3
shows the phase diagram in two and three dimensions with τ = 1. The trajectories in
the phase space can indicate the presence of chaotic behaviour of the data (Sivaku-
mar, 2002). Referring to Fig. 3, the trajectories of the attractor are clearly shown in the
two phase diagrams. Thus, the data involved in this analysis are chaotic. Therefore, the15

dynamics of the system can be studied using chaos theory without involving stochastic
methods.

This study involved data from January 2002 to December 2005 (1433 days). Three
years of data are used in the reconstruction of the phase space to predict the behaviour
one year ahead. Reconstruction of the phase space is based on the embedding dimen-20

sion. In Model I, the embedding dimension is based on the calculation of the correlation
dimension. Graph lnC(r) vs. ln(r) in Fig. 4a shows the behaviour of the correlation func-
tion v vs. radius r for the increasing m-dimensional. In general, the increasing value of
the m-dimensional gradient occurs at the beginning of the curve from left m = 1 to right
m = 10. Meanwhile, the graph of the correlation dimension estimation, the relationship25

between the correlation exponent v for different values of m is shown in Fig. 4b. The
relationship between the value of correlation dimension d2 and m-dimension can be
seen in Fig. 4c, which is a graph of d2 vs. m. The value of the correlation dimension
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increased as the value of the m-dimensional increased. The increase in m-dimension
can be seen up to a scaling region where the correlation dimension is saturated. The
situation in which the value for the correlation dimension is saturated might indicate the
existence of deterministic dynamics in the system. The saturated conditions for the d2
value is in the interval (2.5,3). The saturation value for d2 is known as the correlation di-5

mension attractor (Sivakumar, 2000). In general, the sufficient condition for the value of
the smallest integer m is m greater than 2D2 (Wu and Chan, 2010). Thus, the value of
m = 6 is related to the Langat River flow time series in Kajang. The correlation dimen-
sion d2 is finite and shows low levels of correlation dimension. Hence, Sungai Langat is
a chaotic and deterministic system. Model I involves a combination of preliminary pa-10

rameters (1,6) in the phase space reconstruction. Model II involves the calculation of m
using FNN to find a combination of the preliminary parameters for RPS. Figure 5 shows
the percentage of false nearest neighbours vs. m. Thus, the optimal value for the em-
bedding dimension identified is m = 14. Model II involves a combination of parameters
(1,14) for the reconstruction phase space.15

4.1 River flow prediction for Model I and Model II

The combination of preliminary parameters for Model I is (1,6) while for Model II it is
(1,14). Thus, for both models, the combination of the preliminary parameters (τ,m) has
been applied to construct the phase space. Figure 6 and Table 2 provide a summary
of the river flow prediction results in terms of MAE, RMSE and CC. Overall, the results20

show good performance prediction for chaos theory in predicting the future value of
the river flow for the downstream area. Referring to Table 2, a comparison of prediction
performance shows that the prediction results for Model II are better than Model I.
The correlation coefficient for Model II (0.6360) is slightly higher compared to Model I
(0.6103). Thus, analysis and prediction of the Langat River can provide information in25

which the selection of a combination of preliminary parameters in the reconstruction
phase space is essential for better prediction results. In this study, Model II uses FNN
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to calculate the embedding dimension m and is more appropriate than the correlation
dimension method.

5 Conclusions

Analysis and prediction for testing the presence of chaotic behaviour in daily river flow
data recorded at Langat River involving the station at Kajang, Selangor, Malaysia, has5

been performed. The station is located in the downstream area, which is a flood prone
area. The analysis was carried out on the river flow data for a period of 4 yr (2002–
2005). The focus of this study was to identify the chaotic behaviour of the river flow
data in the downstream area and determine whether the river flow can be predicted
when chaotic behaviour of the river exists downstream. Chaos theory, together with10

NLP, were used in the analysis. The reconstruction phase space clearly shows the
existence of a chaotic attractor. Hence, the data involved in this analysis are chaotic.
Next, was the attempt to make a prediction for one year ahead with the observed
data using the results of the reconstruction of the phase space for three years. Two
combinations of preliminary parameters were used. Model I used τ = 1 for which m is15

the result of the calculation of the correlation dimension, while Model II used τ = 1 for
which m is the result of FNN calculation. Using these methods, the optimal combination
for Model I was (1,6) and for Model II it was (1,14). The overall prediction results
showed that both models could give a good prediction for the river flow downstream.
However, the combination of the preliminary parameters for Model II using the FNN20

algorithm provided a better prediction result than Model I, which used the correlation
dimension. The results showed that Langat River in Kajang, which is in the downstream
area, is chaotic and predictable using NLP. Therefore, the results of the analysis and
prediction of river flow in the downstream area could provide information on river flow
for the authorities to take appropriate control of the downstream flooding.25
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Table 1. Statistics for river flow series at Kajang station (Checkpoint 2).

Number of Average Max Min Standard Skew Kurtosis
data Deviation

1433 8.6492 212 0.3 13.779 6.733 68.438
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Table 2. Prediction performance at Kajang station (Checkpoint 2).

MAE RMSE CC

MODEL I 2.6857 4.4025 0.6103
MODEL II 3.5160 5.6929 0.6360
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Fig. 1. Location of stations.
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Fig. 2. Variations in data for Kajang station (Checkpoint 2).
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Fig. 3. Phase space diagram.
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Fig. 4. lnC(r) vs. lnr for (a); the estimation of correlation dimension (d2) for τ = 1 and m is at
the interval of [1,10] (increasing from bottom to top in each pane) (b); relationship between d2
and m for daily river flow of Langat River (c).

14352



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. False nearest neighbour at Kajang station when τ = 1 and RT = 15.
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Fig. 6. Comparison of time series and scatter diagrams of prediction results and observed data
for (a–b) Model I (1, 6) (c–d) and Model II (1, 14).
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