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Abstract

Proper specification of model parameters is critical to the performance of land surface
models (LSMs). Due to high dimensionality and parameter interaction, estimating pa-
rameters of a LSM is a challenging task. Sensitivity analysis (SA) is a tool that can
screen out the most influential parameters on model outputs. In this study, we con-5

ducted parameter screening for six output fluxes for the Common Land Model: sensi-
ble heat, latent heat, upward longwave radiation, net radiation, soil temperature and
soil moisture. A total of 40 adjustable parameters were considered. Five qualitative SA
methods, including local, sum-of-trees, multivariate adaptive regression splines, delta
test and Morris methods, were compared. The proper sampling design and sufficient10

sample size necessary to effectively screen out the sensitive parameters were exam-
ined. We found that there are 2–8 sensitive parameters, depending on the output type,
and about 400 samples are adequate to reliably identify the most sensitive parameters.
We also employed a revised Sobol’ sensitivity method to quantify the importance of all
parameters. The total effects of the parameters were used to assess the contribution15

of each parameter to the total variances of the model outputs. The results confirmed
that global SA methods can generally identify the most sensitive parameters effectively,
while local SA methods result in type I errors (i.e. sensitive parameters labeled as in-
sensitive) or type II errors (i.e. insensitive parameters labeled as sensitive). Finally, we
evaluated and confirmed the screening results for their consistence with the physical20

interpretation of the model parameters.

1 Introduction

Land surface model (LSM) is an integral component of any numerical weather predic-
tion (NWP) and climate models. The ability of a LSM to represent the land surface pro-
cesses accurately and reliably depends on several factors (Duan et al., 2006). The first25

factor is the authenticity of the model structure (e.g. the equations or parameterization
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schemes of the model). The second is the quality of external forcing data and the initial
and boundary conditions. The third is the appropriateness of model parameter specifi-
cation. How to estimate model parameters has received increasing attention from the
hydrology and land surface modeling community over the recent years (Franks and
Beven, 1997; Gupta et al., 1999; Duan et al., 2001, 2003; Jackson et al., 2003; Liu5

et al., 2004; Hou et al., 2012).
In traditional hydrological modeling, model parameters are often estimated through

model calibration, i.e. a process of matching model simulation with observation by tun-
ing model parameters. However, calibrating the parameters of complicated LSMs is
a challenging task because of high dimensionality and nonlinear parameter interaction.10

With water, energy and, in some cases, carbon and nitrogen cycles being considered
concurrently, a typical LSM usually has a large number of adjustable parameters (from
10s to 100s) that govern the model equations. Typically 105 ∼ 106 or even more model
runs are required to calibrate a high-dimensional (> 10) model (Vrugt et al., 2008;
Deb et al., 2002). To compound the problem, running a LSM at a large spatiotemporal15

scale can be very time-consuming, making traditional parameter calibration methods
(e.g. genetic algorithm (GA) (Goldberg, 1989) and shuffled complex evolution method,
Duan et al., 1993) impractical.

For the reasons above, we need to reduce the dimensionality by identifying which
parameters have the most influences on model performance. Sensitivity analysis (SA)20

is a family of methods that are designed to identify the most sensitive (namely, influ-
ential) parameters from the insensitive ones (Saltelliet al., 2004). A good SA method
is able to screen out the most sensitive parameters in a relative low number of model
runs (Tong and Graziani, 2008).

There are two types of SA methods: qualitative and quantitative. Qualitative methods25

tell if a parameter is sensitive or not, while quantitative methods tell how sensitive the
parameter is by computing the impact of the parameter on the total variance of model
output. Qualitative methods usually need fewer model runs (hundreds or fewer) while
quantitative methods require a large number of model runs (tens of thousands or even
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more). In recent decades, SA methods have been applied to practical problems in many
fields (Campolongo and Saltelli, 1997; De Pauw et al., 2008; Yamwong and Achalakul,
2011). For hydrological and land surface models, Collins and Avissar (1994) employed
the Fourier amplitude sensitivity test (FAST) to evaluate the parameter importance to
the sensible heat and latent heat in LAID land surface scheme. Bastidas et al. (1999)5

proposed the Multi-Objective Generalized Sensitivity Analysis (MOGSA) method and
screened out 18 sensitive parameters from a total of 25 parameters in BATS model.
It was demonstrated that the degradation in the quality of the calibrated model perfor-
mance is negligible if the insensitive parameters were not calibrated. Tang et al. (2007)
applied local and global SA methods on the lumped Sacramento soil moisture ac-10

counting model (SAC-SMA). They aimed to identify sensitivity tools that will advance
the understanding of lumped hydrologic models. The relative efficiency and effective-
ness of several SA methods have been analyzed and compared. Hou et al. (2012)
introduced an uncertainty quantification framework to analyze the sensitivity of 10 hy-
drologic parameters in CLM4-SP with generalized linear model (GLM) method. They15

found that the simulation of sensible heat and latent heat is sensitive to subsurface
runoff generation parameters. In the aforementioned work, many SA methods have
shown their effectiveness in screening out important parameters. However, for large
complex dynamic system models which are expensive to run, we need to be able to
screen out important parameters with as fewer model runs as possible. Therefore, the20

goal of this study is to investigate the effectiveness and efficiency of different qualitative
SA methods for parameter screening.

Several SA methods were used to evaluate the importance of 40 adjustable param-
eters in the Common Land Model (CoLM). The work has two objectives: (1) to test
and compare different qualitative SA methods for separating sensitive parameters from25

insensitive ones; (2) to validate the screening results using a quantitative SA method.
Towards these objectives, this study first screened out the sensitive parameters qual-
itatively with a small amount of samples, and then quantified the sensitivity of all pa-
rameters using a quantitative SA method.
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The paper is organized as follows. Section 2 presents a brief introduction of the qual-
itative SA methods for parameter screening and the quantitative SA method for com-
puting the parameter importance. Section 3 introduces the model used, CoLM, and its
adjustable parameters. The study area, the forcing and validation data, and the design
of sensitivity study are also described. Section 4 presents the results and discusses the5

performance of qualitative and quantitative SA methods. The physical interpretations
of the screening results are also examined. Section 5 provides the conclusions.

2 Methods

This study employed five qualitative SA methods to do parameter screening: local
method (Turanyi, 1990; Capaldo and Pandis, 1997), sum-of-trees (SOT) (Breiman,10

2001; Chipman et al., 2010), multivariate adaptive regression splines (MARS) (Fried-
man, 1991), delta test (DT) (Pi and Peterson, 1994) and Morris method (Morris, 1991).
Moreover, to validate the parameter screening results obtained by qualitative methods,
the revised Sobol’ method (Sobol’, 1993, 2001), was applied to compute the total
effects of parameters. Below, we provide a brief description of these methods. For15

detailed descriptions, please refer to related literature.

2.1 Local method

Local method is a derivative-based sensitivity method. The sensitivity of variable
xi ∈ [ai ,bi ] is computed as the normalized local sensitivity scaled by the variable20

range: si =
1

(bi−ai )
∂y
∂xi

|xi=αi
, where si is the local sensitivity measure, αi is a value of

xi at which the sensitivity is evaluated, ai and bi are the lower and upper bounds of
xi . The variable with a high si value is considered to have a high impact on the model
output. Obviously the value of si is dependent on location αi .

25
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2.2 Sum-of-trees (SOT) method

The SOT method is a tree-based method. A single regression tree model is a step
function, which is obtained by recursively partitioning the data space and fitting
a simple prediction model (generally, the average value) within each partition (Breiman
et al., 1984). In the process of recursively partitioning, the variables are split to5

cause maximum decrease in impurity function (residual sum of squares) until the
impurity function falls below a threshold. The SOT model uses a certain number
of bootstrapped samples to build independent regression trees and averages them
(Breiman, 2001). The total number of splits for each variable in the model stands for
the importance of this variable, i.e. the variable with the most splits in the model is10

considered to be the most important one.

2.3 Multivariate adaptive regression splines (MARS) method

The MARS method is an extension of regression tree method. After recursively par-
titioning the data space, it builds localized regression models (first-order linear or15

second-order nonlinear) instead of step functions. Therefore, this method can produce
continuous models with continuous derivatives and has better fitting ability (Friedman,
1991). This method includes a forward procedure and a backward procedure. The for-
ward procedure builds an over-fitted model by considering all variables, while the back-
ward procedure prunes the over-fitted model by removing one variable at a time. For20

each model, a generalized cross-validation (GCV) score can be computed:

GCV(M) =
1
N

∑N
i=1

(
Yi − Ŷ

)2

[
1− C(M)

N

]2
(1)
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where C(M) = 1+c(M)d , N is the number of observations, d is the effective degrees
of freedom, and c(M) is a penalty for adding a basic function.

To screen out the important variables, the increase in GCV values between the
pruned model and the over-fitted model is considered as the importance measure of
the removed variable (Steinberg et al., 1999). The larger the GCV increase, the more5

important is the removed variable.

2.4 Delta test (DT) method

DT method is a variable selection method based on the nearest neighbor approach.
Let Y = F (X) = F (X1, · · · ,Xm)+ε, where the noise ε = (ε1, · · · ,εm), εi (i = 1, · · · ,m) is in-10

dependent identically distributed random variable with zero mean. The DT criterion of
a variable subset S ⊆ {X1, · · · ,Xm}, δ(S), can be computed as:

δ(S) =
1

2N

N∑
i=1

(
YNS (i ) − Yi

)2
(2)

where NS (i ) = argmink 6=i ‖ X
i −X k ‖2

S represents the nearest neighbors of the input

point X i , Yi is the function value corresponding to X i , and N is the sample size. δ(S)15

is an estimate of the variance of the residual (converges to the true residual in the
limit N →∞) when only the variables in S are selected for regression. It has been
demonstrated that either adding the unrelated variables or omitting the related ones
will increase the δ value (Eirola et al., 2008). Therefore, the variable subset S with the
smallest DT criterion corresponds to the most important subset of variables, i.e. the20

most sensitive parameters.
For high dimensional problems, it is impractical to compute all possible combinations

of variable subsets (e.g. for 40 variables, the total configuration of subsets is 240 −1).
Therefore, to speed up the search for the variable subset with a minimum δ(S), search
algorithms such as GA are often used (Guillen et al., 2008). Thus, the reliability of DT25

2249

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

results depends on the effectiveness of the search algorithm applied.

2.5 Morris method

Morris method is a gradient-based SA method using an individually randomized Morris
one-factor-at-a-time (MOAT) design (Morris, 1991). This study employed an enhanced5

Morris method (Campolongo et al., 2007). Consider a model with k independent inputs
Xi (i = 1, · · · ,k) whose ranges are normalized to [0, 1]. The experimentation region Ω
is a discrete k-dimensional p-level grid. For a given value of point X0 = (x1,x2, · · · ,xk),
the elementary effect of variable Xj is defined as

dj =
f
(
x1, · · · ,xj +∆, · · · ,xk)− f (x1, · · · ,xj , · · · ,xk

)
∆

, (3)10

where ∆ is a value in 1/p−1, · · · ,p−2/p−1. The sampling strategy generates a random
starting point for each trajectory and then completing it by perturbing one input variable
by +∆ or −∆ at a time in a random order. At the end of process, a trajectory spanning
k +1 points is evaluated to compute the elementary effects for all k input variables.
After repeating this procedure r times to construct r trajectories of k +1 points in the15

input space, the total cost of the experiment is thus r × (k +1). The mean of |dj |, µj ,
and the standard deviation of dj , σj , can be construed as the sensitivity indices of input
variable Xj :

µj =
r∑

i=1

|dj (i )|
/
r , and σj =

√√√√ r∑
i=1

(
dj (i )−

∑r
1dj (i )

r

)2/
r (4)

where µj assesses the overall influence of Xj on the output, while σj estimates the20

higher order effects (i.e. effects due to interactions) of Xj .
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2.6 Sobol’ method

Sobol’ method (Sobol’, 1993) is a quantitative SA method based on the variance de-
composition theory, which decomposes the variance of the output as V =

∑n
i=1 Vi +∑

1≤i<j≤n Vi j + · · ·+ V1,2··· ,n, where n denotes the total number of parameters. The Sobol’
sensitivity index is defined as Si1,··· ,is = Vi1,··· ,is/V , where Vi1,··· ,is denotes the variance cor-5

responding to (i1, · · · , is), the integer s is called the order or the dimension of the index.
All the values of Si1,··· ,is are nonnegative, and their sum is

n∑
i=1

Si +
∑

1≤i<j≤n
Si j + · · ·+S1,2··· ,n = 1 (5)

where Si = Vi/V is the main effect (first order effect) of the i th variable, Si j = Vi j/V is
the interaction effect (second order effect) of the i th and j th variables (Sobol’, 2001).10

The total effect of the i th variable can be obtained by Eq. (6), where V−i is the variance
without considering the i -th variable (Homma and Saltelli, 1996).

STi = 1−
V−i
V

(6)

The total effect reflects the variable’s contribution to the variance of model output. The
values of those indices for important variables are generally much higher than those15

for unimportant ones.
The Sobol’ method can provide reliable quantitative sensitivity information of the in-

put variables. However, for a high dimensional problem, it needs a large number of
samples (104 to 105 or more). If a small sample size is used, the estimates of the total
effects vary greatly around the analytical values, and at times can take on unphysical20

negative values (Saltelli et al., 2000). To avoid unphysical variance values and to re-
duce the need for extremely large sample size, we carried out Sobol’ analysis on the
response surface model instead of the original model. The effectiveness of respond
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surface model based Sobol’ method (RSMSobol) has been demonstrated by Iooss
et al. (2006) and Storlie et al. (2009).

To assess the importance of parameter P(i ), we computed the relative values of the
total effects of parameter P(i ):

C(i ) = STi

/ n∑
k=1

STk (7)5

The cumulative importance of a subset of parameters, A, can be computed as

C̃(A) =
∑
A

C(i ) (8)

3 Experimental setup

3.1 CoLM and adjustable parameters

CoLM (Dai et al., 2003) is a widely used land surface model. It combines the advan-10

tages of three existing land surface models: Land Surface Model (LSM) (Bonan, 1995),
biosphere-atmosphere transfer scheme (BATS) (Dickinson et al., 1993) and Institute
of Atmospheric Physics land-surface model (IAP94) (Dai and Zeng, 1997). In recent
years, it has incorporated different physical processes such as glacier, lake, wetland
and dynamic vegetation. It has also been successfully implemented in several global15

atmospheric models (Yuan and Liang, 2010).
CoLM considers the biophysical, biochemical, ecological and hydrological pro-

cesses. The energy and water transmission among soil, vegetation, snow and atmo-
sphere is well described. The model contains one vegetation layer, 10 unevenly dis-
tributed vertical soil layers, and up to 5 snow layers (depending on the snow depth).20

The parameterization scheme of soil thermal and hydraulic properties are derived
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from Farouki (1986), Clapp et al. (1978) and Cosby et al. (1984). The parameteri-
zation scheme of snow is synthesized from Anderson (1976), Jordan (1991) and Dai
et al. (1997).

In this study, forty of time-invariant coefficients and exponents in CoLM, known as
model parameters, are chosen as parameters that can be adjusted according to local5

conditions. Their physical meanings and value ranges are shown in Table 1. The ad-
justable parameters can be classified into 3 categories: canopy, soil and snow. The de-
fault parameters of canopy depend on the vegetation type in the 24-category (USGS)
vegetation dataset. Soil parameters depend on the soil texture in 17-category (FAO-
STATSGO) soil dataset. Snow parameters depend on the snow depth. In this paper,10

the parameter range is the lower and upper bound among all the possible types of
canopy, soil and snow types (Ji and Dai, 2010). For convenience, these parameters
are indexed from P1 to P40.

This study screens sensitive parameters for 6 land surface fluxes: sensible heat, la-
tent heat, upward longwave radiation, net radiation, soil temperature and soil moisture.15

The objective function is the root-mean squared error normalized by the geometric
mean (Parada et al., 2003):

RMSEi =

√∑N
j=1

(
ysim
i ,j − yobs

i ,j

)2

√∑N
j=1

(
yobs
i ,j

)2
(9)

where N is the number of observations, j indexes the time step, ysim
i ,j and yobs

i ,j are the
simulated and observed values, i ranges from 1 to 6 standing for different flux types,20

respectively. All the objective functions and their descriptions are shown in Table 2. Ob-
jective function represents the performance of simulation, so a smaller RMSE means
a better performance.
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3.2 Study area and datasets

The study area is the A’rou observation station, which is located at the upstream of
Heihe River basin in China. The geographic coordinate of A’rou is 100◦28′ E, 30◦08′ N
(see Fig. 1), the altitude is 3032.8 m a.s.l. It belongs to the typical continental climate.
The underlying surface type is alpine steppe.5

The forcing data of CoLM is shown in Table 3, including downward shortwave and
longwave radiation, precipitation, air temperature, relative humidity, air pressure and
wind speed (Hu et al., 2008). The validation data contains observations of 6 fluxes
(see Table 4). These 6 fluxes are all important physical quantities between land surface
and atmosphere. The soil temperature and moisture data are available at the depth of10

10 cm, 20 cm, 40 cm and 80 cm, while the soil column in CoLM is divided into 10 layers
(the depths are shown in Table 5). We used the linear interpolation method to get soil
temperature and moisture at the observed depths.

The data for year 2008 was used to spin up CoLM. Model simulations from 1 January
2009 to 31 December 2009 with a 3-h time step are used to evaluate model parameter15

sensitivity.

3.3 Design of sensitivity study

This study used a newly developed software package named Problem Solving environ-
ment for Uncertainty Analysis and Design Exploration (PSUADE) (Tong, 2005) for all
SA analyses. PSUADE implements various uncertainty quantification (UQ) tools such20

as design of experiments, sampling methods, qualitative and quantitative sensitivity
analysis, response surface, uncertainty assessment, and numerical optimization.

We conducted the SA study in two stages: qualitative parameter screening and quan-
titative validation. In the first stage, the study investigates the proper sampling designs
and sample sizes for different qualitative SA methods. Once the proper sampling de-25

sign and sample size are determined for each qualitative method, the most sensitive
parameters that control each of the six flux simulations are identified. In the second
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stage, the quantitative method, RSMSobol, is used to validate the parameter screen-
ing results from the first stage based on the contributions of screened parameters to
the total variances of model outputs. The parameter screening results are also checked
for their consistency with the parameters’ physical interpretations.

4 Results and discussion5

4.1 Qualitative parameter screening

4.1.1 Sampling methods and sample sizes

We tested and compared different sampling methods and sample sizes (see Table 6).
For SOT, MARS and DT, three sampling methods were evaluated: Monte Carlo (MC)
(Hastings, 1970), Latin Hypercube (LH) (McKay et al., 1979) and LPTAU (quasi ran-10

dom sequences) (Statnikow and Matusov, 2002). For each sampling method, different
sample sizes, 200, 400 and 1000 (i.e. 5, 10 and 25 times of the number of param-
eters, respectively), were investigated. Morris method has its own sampling method.
The sample size of Morris method is generally set as a multiple of n+1, where n is the
number of parameters. So this study tested three sample sizes: 205, 410 and 1025 for15

Morris method.
Take the results of SOT for example, which examines parameters most sensitive to

sensible heat flux. The SOT sensitivity scores of 40 parameters given by different sam-
pling designs are shown in Fig. 2. The numbers along each circle represent different
parameters, with the length of the needles, which range from 0 to 100, indicating the20

relative sensitivities of different parameters.
From Fig. 2, we can see the most important parameters based on SOT method.

With 1000 samples, all sampling methods identified the same sensitive parameters:
P36, P6, P30, P2, P34 and P17. When the sample size is reduced to 400, for LH and
LPTAU, the results are similar to those at 1000 samples, suggesting that a sample size25
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of 400 is adequate for identifying the most sensitive parameters. With 400 samples,
SOT based on MC sampling method can still screen out the same parameters, but
the medium sensitive parameters: P2, P34 and P17, are not as clearly identified. With
200 samples, even though SOT using all the three sampling methods can still find all
sensitive parameters, the relative sensitivities of the medium sensitive parameters are5

too small to be seen clearly (e.g. P17). This suggests that 200 samples may not be
enough for SOT method. Thus, LH and LPTAU are considered to be better sampling
designs for SOT, and 400 samples are enough for these sampling designs.

Similarly, Figs. 3–5 show the results of MARS, DT and Morris methods. We have
the following observations: (1) for MARS method, the results based on MC, LH and10

LPTAU are nearly the same, 400 samples are enough for all sampling methods; (2) LH
is more suitable for DT, 400 samples are enough; (3) for Morris method, 410 samples
are enough.

Based on above results, it seems clear that 10 times of the number of parameters are
approximately enough for qualitative SA methods to screen 40 parameters of CoLM. In15

the following study, LH is chosen for SOT, LPTAU is chosen for MARS, and LH is chosen
for DT. The sample size is set to 400 for these three designs. For Morris method, the
sample size is set to 410.

4.1.2 Intercomparison of qualitative SA methods

The parameter screening results by all qualitative SA methods for all fluxes are sum-20

marized in Figs. 6–11. The sensitivity scores of 40 parameters are normalized to [0, 1].
The most sensitive parameters get a score of 1, while the least sensitive ones get a 0
score. The vertical axis in these figures denotes different SA methods and the horizon-
tal axis denotes the 40 parameters. The grey scale of each grid indicates the sensitivity
level of each parameter by each SA method. In Fig. 6, for example, the dark grey color25

for P6 and P36 indicates that they are the most sensitive parameters for sensible heat
flux.
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From these figures we have three interesting findings. First, for each land surface
flux, the number of sensitive parameters appears to be less than 10. For latent heat
and sensible heat fluxes, there are more sensitive parameters as compared to other
fluxes, which have only 2–3 sensitive parameters. Second, the results of SOT, MARS
and Morris methods are consistent with each other except for the case of latent heat.5

For latent heat, the number of sensitive parameters is relatively larger than that of
other fluxes (this is confirmed in the following quantitative SA). SOT, MARS and Mor-
ris methods can reliably identify the most sensitive parameters, but there are some
discrepancies in indentifying the medium sensitive parameters for latent heat. Third,
the results of Local method and DT appear very different from that of other methods.10

Local method often takes sensitive parameters as insensitive ones (type I error, e.g.
P3 for soil moisture) or the insensitive parameters as sensitive ones (type II error, e.g.
P20 and P27 for sensible heat). DT can always identify the most sensitive parameters
clearly, but provide uncertain results for medium sensitive parameters, especially when
there are a large number of sensitive parameters (e.g. in the cases of sensible heat and15

latent heat). We suspected that the GA used in DT failed to find the optimal parameter
subset in those cases.

4.2 Validation of parameter screening results

The qualitative SA methods identified the most sensitive parameters for different fluxes
data, as shown in the previous section. Here we use RSMSobol method to confirm if20

these findings are reasonable. The total effect is computed by RSMSobol using 2000
samples to assess the importance of each parameter. The results are shown in Fig. 12,
in which each slice of the pie chart indicating the relative importance of the parameter,
as computed by Eq. (7). The RSMSobol results obtained are deemed as reliable since
the training and testing errors of the response surface are below 2.5 %. We note from25

Fig. 12 that the number of important parameters for each flux is indeed less than 10
(i.e. 2–8). This confirms that the results of qualitative SA methods are reasonable.
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Table 7 shows the cumulative importance of the 10 most sensitive parameters se-
lected by different qualitative SA methods, as computed according Eq. (8). The SA
method is regarded as effective if the cumulative importance of the 10 most sensi-
tive parameters is close to 100 %. Obviously, local method is ineffective in screening
the important parameters for sensible heat (79.74 %), latent heat (57.98 %), upward5

longwave radiation (51.57 %) and net radiation (85.71 %); while the other methods are
effective because the cumulative importance of the 10 most sensitive parameters are
close to 100 %. Furthermore, to confirm the effectiveness of global SA methods, Fig. 13
showed the cumulative importance of the top 10 sensitive parameters screened by dif-
ferent SA methods. X-axis is the number of parameters and y-axis is their cumulative10

importance. According to Fig. 13, the SOT and MARS method performed well for all
the land surface fluxes as their cumulative importance curves are always higher than
others.

DT is prone to selecting more parameters than other methods (commiting type II
errors) and does not distinguish the medium sensitive from highly sensitive parameters.15

But the result of validation shows that the most sensitive parameters selected by DT are
nearly the same to that given by SOT and MARS, even though the medium sensitive
parameters may differ the ones identified by other SA methods. This suggests that type
II error that may have committed by DT is not as damaging as type I error, as in the
case of local method.20

For latent heat flux, Morris method committed a type I error because it missed the
second most important parameter, P18, whose importance rate is 15.82 %, resulting in
a cumulative score of 80 % only. We originally thought that the 410 samples may be not
enough. So we experimented more samples (1025), but still found that Morris method
could not screen out P18. But after experimenting with p = 10 (instead of default p = 425

as implemented in PSUADE), we were able to identify P18 as a sensitive parameter.
This suggests a limitation of Morris method is not due to its sample size but due to the
fact that Morris samples are not space filling.
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In summary, Local method is an unsuitable SA method for a complex model like
CoLM with 40 adjustable parameters. Global SA methods are generally effective to
screen the sensitive parameters reliably providing that proper sampling design and
sufficient sample size are used.

4.3 The consistency of the screening results and physical interpretations5

In previous sections, we used five different qualitative SA methods to identify the most
sensitive parameters for all flux types. The quantitative RSMSobol method confirms
that the qualitative SA results are reasonable. Here we try to explain the SA results
based on physical interpretations of the screened parameters.

P6 and P3 are shown to be the most important parameters for soil moisture (see10

Figs. 11 and 12). From Clapp et al. (1978), P6 (Clapp and Hornberger “b” parameter)
is the exponent of wetness in the formulas for soil hydraulic conductivity and water
potential, and P3 (porosity) is a part of denominator in the formulas to compute the
wetness. A small perturbation in these values would result in much change to soil
moisture. Therefore these two parameters are sensitive for soil moisture. It should be15

mentioned that P2 (saturated hydraulic conductivity) and P4 (minimum soil suction) will
also affect the simulation of soil moisture (see Fig. 11). But they are not as sensitive as
P6 and P3, which have exponential relationship with soil moisture.

Besides soil moisture, P6 is also important for other land surface fluxes (see Fig. 12).
This is because soil moisture is an important model output which is tied to the sensible20

heat flux, latent heat flux and radiant fluxes (Henderson-Sellers, 1996). A parameter
which exerts great influence on soil moisture should have a big impact on related fluxes.
This finding is also consistent with Lettenmaier et al. (1996).

P36 (aerodynamic roughness length) is another important parameter for sensible
heat, latent heat, upward longwave radiation, net radiation and soil temperature (see25

Fig. 12). Through the influence to friction velocity, P36 affects the magnitude of the
aerodynamic resistance and the near-surface drag force for the simulation of sensible
heat, latent heat, and radiant fluxes, and then indirectly affects the soil temperature
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(Dorman and Sellers, 1989). P17 (the inverse of square root of leaf dimension), P30
(longwave reflectance of living leaf) and P34 (longwave transmittance of living leaf) are
sensitive to the simulation of surface temperature and air temperature. Accordingly they
are important for sensible heat and net radiation. The sensitivity of other parameters,
including P18 (quantum efficiency of vegetation photosynthesis) and P4 (minimum soil5

suction), to latent heat can be explained by their influence on evapotranspiration.
But not all the parameters in the screening results can be explained based on phys-

ical interpretations (e.g. P12 in screening result for latent heat). Possible reasons are:
(1) due to the limitation of the SA methods and the sample sizes, the insensitive pa-
rameters might be regarded as sensitive ones; (2) due to the authenticity of the model10

structure, the physical processes might not be described perfectly; (3) due to local con-
ditions or a lack of appropriate observations for sensitivity evaluation (e.g. saturated
hydraulic conductivity P2 not sensitive because there is no runoff observations).

5 Conclusions

In this study, we first identified the most sensitive parameters for sensible heat, latent15

heat, upward longwave radiation, net radiation, soil temperature and soil moisture us-
ing five different qualitative SA methods. We investigated the proper sampling design
and sample size necessary for screening the parameters effectively. Based on the SA
results, there are 2–8 parameters that are deemed as most sensitive in CoLM, depend-
ing on the flux type. We employed a quantitative SA method to confirm the screening20

results. The results of quantitative method are consistent with those of qualitative meth-
ods. Moreover, the screening results are generally consistent with the physical inter-
pretations of the model parameters.

By using meteorological and land surface observation data in A’rou, Heihe of North-
west China, this study demonstrates the feasibility of employing different qualitative SA25

methods to find the most important parameters in a complex model. For a 40-parameter
CoLM, we were able to screen out the most important parameters using only about 400
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samples. The kind of parameter screening approach studied here should be applicable
to other complicated models. However, caution must be exercised in interpreting these
results. The parameters identified in this study were obtained with data of limited length
and at a single site with particular geographical conditions. Results from a different lo-
cation or a different condition can be quite different from the ones shown in this study.5

The screened parameters are also tied to available land surface fluxes used in the
study. Parameters such as saturated hydraulic conductivity (P2) were not considered
as important parameters because we did not examine parameter sensitivity to runoff
generation. To truly understand the parameter sensitivity for CoLM, we need to con-
duct a more comprehensive SA study by including more geographical locations, more10

observation data types and longer data sets. In future research, parameter screening
of CoLM will be extended to regional and even global scale by using more available
data.

Even though we identified the most important parameters for CoLM, we did not per-
form model calibration to obtain the most appropriate estimates for these parameters.15

Model calibration for complex multi-flux, high-dimensional LSMs such as CoLM can
be extremely complicated. To do model calibration in such cases, future studies must
explore more mathematical tools including surrogate modeling approach to save com-
putational resources, multi-objective optimization strategy for model calibration of multi-
physics models.20
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Table 1. Adjustable parameters and their ranges.

Index Parameter Physical meaning Unit Range

P1 dewmx maximum ponding of leaf area – (0.05, 0.15)
P2 hksati saturated hydraulic conductivity mms−1 (0.001, 1)
P3 porsl Porosity, Fraction of soil that is voids – (0.25, 0.75)
P4 phi0 minimum soil suction mm (50, 500)
P5 wtfact fraction of shallow groundwater area – (0.15, 0.45)
P6 bsw Clapp and Hornberger “b” parameter – (2.5, 7.5)
P7 wimp water impermeable when porosity is less than wimp – (0.01, 0.1)
P8 zlnd roughness length for soil surface m (0.005, 0.015)
P9 pondmx maximum ponding depth for soil surface mm (5, 15)
P10 csoilc drag coefficient for soil under canopy – (0.002, 0.006)
P11 zsno roughness length for snow – (0.0012, 0.0036)
P12 capr tuning factor of soil surface temperature – (0.17, 0.51)
P13 cnfac Crank Nicholson factor between 0 and 1 – (0.25, 0.5)
P14 slti slope of low temperature inhibition function – (0.1, 0.3)
P15 hlti 1/2 point of low temperature inhibition function – (278, 288)
P16 shti slope of high temperature inhibition function – (0.15, 0.45)
P17 sqrtdi the inverse of square root of leaf dimension – (2.5, 7.5)
P18 effcon quantum efficiency of vegetation photosynthesis molCO2 (0.035, 0.35)

molquanta−1

P19 vmax25 maximum carboxylation rate at 25◦ – (10×10−6, 200×10−6)
P20 hhti 1/2 point of high temperature inhibition function – (305, 315)
P21 trda temperature coefficient of conductance-photosynthesis model – (0.65,1.95)
P22 trdm temperature coefficient of conductance-photosynthesis model – (300, 350)
P23 trop temperature coefficient of conductance-photosynthesis model – (250, 300)
P24 gradm slope of conductance-photosynthesis model – (4, 9)
P25 binter intercept of conductance-photosynthesis model – (0.125, 0.375)
P26 extkn coefficient of leaf nitrogen allocation – (0.5, 0.75)
P27 chil leaf angle distribution factor – (−0.3, 0.1)
P28 ref(1,1) shortwave reflectance of living leaf – (0.07, 0.105)
P29 ref(1,2) shortwave reflectance of dead leaf – (0.16, 0.36)
P30 ref(2,1) longwave reflectance of living leaf – (0.35, 0.58)
P31 ref(2,2) longwave reflectance of dead leaf – (0.39, 0.58)
P32 tran(1,1) shortwave transmittance of living leaf – (0.04, 0.08)
P33 tran(1,2) shortwave transmittance of dead leaf – (0.1, 0.3)
P34 tran(2,1) longwave transmittance of living leaf – (0.1, 0.3)
P35 tran(2,2) longwave transmittance of dead leaf – (0.3, 0.5)
P36 z0m aerodynamic roughness length m (0.05, 0.3)
P37 ssi irreducible water saturation of snow – (0.03, 0.04)
P38 smpmax wilting point potential mm [−2×105, −1×105]
P39 smpmin restriction for min of soil potential mm [−1×108, −9×107]
P40 trsmx0 maximum transpiration for vegetation mms−1 [1×10−4, 100×10−4]
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Table 2. The objective functions.

Objective function Description

RMSE1 sensible heat
RMSE2 latent heat
RMSE3 upward longwave radiation
RMSE4 net radiation
RMSE5 soil temperature (average of 4 layers)
RMSE6 soil moisture (average of 4 layers)
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Table 3. The forcing data taken from A’rou observation station.

Forcing data Downward Downward Preci- Air tempera- Relative Air Wind
shortwave longwave pitation ture (2 m) humidity (2 m) pressure speed (10 m)

Unit wm2 wm2 mm ◦C % hPa ms−1

Time period 1 January 2008 to 31 December 2009
Time step 0.5 h 0.5 h 1h 0.5 h 0.5 h 1h 0.5 h
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Table 4. The validation data.

Validation Sensible Latent Upward Net Soil Soil
data heat heat longwave radiation temperature moisture

Unit wm−2 wm−2 wm−2 wm−2 ◦C cm3 cm−3

Time period 11 Jun 2008 to 31 Dec 2009 1 Jun 2008 to 31 Dec 2009 1 Jan 2008 to 31 Dec 2009
Time step 0.5 h 0.5 h 10 min 10 min 0.5 h 0.5 h

Note: the soil temperature and moisture data contains the data of 10 cm, 20 cm, 40 cm, 80 cm and 120 cm,
respectively.
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Table 5. The z and ∆z in each layer.

layer 1 2 3 4 5 6 7 8 9 10

z (cm) 0.71 2.79 6.23 11.89 21.22 36.61 61.98 103.80 172.76 286.46
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Table 6. The experiment designs to confirm the proper sampling methods and sample size for
SA methods.

SA methods SOT MARS DT Morris

Sampling methods MC, LH, LPTAU MOAT
Sample sizes 200, 400, 1000 205, 410, 1025
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Table 7. The cumulative importace of the 10 most sensitive parameters screened by different
qualitative SA methods.

SA Sensible Latent Upward Net Soil Soil
method heat heat longwave radiation temperature moisture

Local 79.74 % 57.98 % 51.57 % 85.71 % 96.15 % 98.00 %
SOT 98.86 % 97.10 % 98.69 % 98.66 % 97.49 % 99.71 %
MARS 99.15 % 95.83 % 99.82 % 99.96 % 97.93 % 99.98 %
DT 96.86 % 90.60 % 98.67 % 99.12 % 95.09 % 99.73 %
Morris 99.06 % 80.01 % 99.68 % 99.51 % 98.70 % 99.93 %
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Fig. 1. The location of study area. 

 

 

 

 

Fig. 1. The location of study area.
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Fig. 1. The location of study area. 

 

 

 

 

Fig. 2. The SOT parameter screening results of sensible heat.
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Fig. 2. The SOT parameter screening results of sensible heat. 

 

 

Fig. 3. The MARS parameter screening results of sensible heat. 

 
Fig. 3. The MARS parameter screening results of sensible heat.
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Fig. 4. The DT parameter screening results of sensible heat. 
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Fig. 4. The DT parameter screening results of sensible heat.
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Fig. 5. The Morris parameter screening results of sensible heat. 
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Fig. 5. The Morris parameter screening results of sensible heat.
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Fig. 6. The qualitative SA results of different methods for sensible heat.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The qualitative SA results of different methods for sensible heat.
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Fig. 7. The qualitative SA results of different methods for latent heat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The qualitative SA results of different methods for latent heat.
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Fig. 8. The qualitative SA results of different methods for upward longwave radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The qualitative SA results of different methods for upward longwave radiation.
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Fig. 8. The qualitative SA results of different methods for upward longwave radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The qualitative SA results of different methods for net radiation.
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Fig. 9. The qualitative SA results of different methods for net radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The qualitative SA results of different methods for soil temperature. 

 

 

 

 

 

 

 

Fig. 10. The qualitative SA results of different methods for soil temperature.
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Fig. 11. The qualitative SA results of different methods for soil moisture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The qualitative SA results of different methods for soil moisture.
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Fig. 12. The importance rates of parameters obtained by RSMSobol' total effect analysis. 
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Fig. 12. The importance rates of parameters obtained by RSMSobol’ total effect analysis.
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Fig. 13. The relationship between the number of screened parameter and cumulative importance for different SA 

methods. Fig. 13. The relationship between the number of screened parameter and cumulative impor-
tance for different SA methods.
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