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Abstract

Methods from two statistical downscaling categories were used to investigate the im-
pact of climate change on high rainfall and flow extremes of the upper Blue Nile basin.
The main downscaling differences considered were on the rainfall variable while a gen-
erally similar method was applied for temperature. The applied downscaling meth-5

ods are a stochastic weather generator, LARS-WG, and an advanced change factor
method, the Quantile Perturbation Method (QPM). These were applied on 10 GCM
runs and two emission scenarios (A1B and B1). The downscaled rainfall and evapo-
transpiration were input into a calibrated and validated lumped conceptual model. The
future simulations were conducted for 2050s and 2090s horizon and were compared10

with 1980–2000 control period. From the results all downscaling methods agree in pro-
jecting increase in temperature for both periods. Nevertheless, the change signal on
the rainfall was dependent on the climate model and the downscaling method applied.
LARS weather generator was good for monthly statistics although caution has to be
taken when it is applied for impact analysis dealing with extremes, as it showed a de-15

viation from the extreme value distribution’s tail shape. Contrary, the QPM method was
good for extreme cases but only for good quality daily climate model data. The study
showed the choice of downscaling method is an important factor to be considered and
results based on one downscaling method may not give the full picture. Regardless,
the projections on the extreme high flows and the mean main rainy season flow mostly20

showed a decreasing change signal for both periods. This is either by decreasing rain-
fall or increasing evapotranspiration depending on the downscaling method.

1 Introduction

The upper Blue Nile is one of the river basins in east Africa characterized by high rainfall
variability. Arguably the highest impact of this variability happens through extremes, be25

it floods or extended droughts. The rainfall of this region is modulated by monsoonal
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climate (Camberlin, 1996; Jury, 2010), large scale atmospheric oscillations such as
ENSO (Abtew et al., 2009), changes in the SST or oscillations of Pacific and Atlantic
oceans (Diro et al., 2010; Jury, 2010; Taye and Willems, 2012). Additionally the topog-
raphy of the basin plays a great role (Dinku et al., 2008). These different mechanisms
control the rainfall even if the link among them is not entirely understood. Furthermore,5

since there is high confidence in the continuation of anthropogenic climate change as
shown by wide range of scenarios for future greenhouse gas emissions (IPCC, 2012)
impact of this change will further complicate rainfall variability. One of the potential im-
pacts of climate change will be in the frequency, intensity and predictability of rainfall.
This challenge will ultimately influence water availability in the region which will have10

far reaching consequences on water supply, agriculture and hydropower generation
among others.

Future climate change projections are far from forecasts. Rather they are different
probable scenarios that have been constructed based on assumptions about popu-
lation and world development (IPCC, 2007). These scenarios were run by different15

institutions using climate or circulation models. The outputs from these models have
uncertain change signals. The upper Blue Nile is one of the regions where the rainfall
projection is highly uncertain (Setegn et al., 2011; Taye et al., 2011). However, estimat-
ing impact of climate change on hydrology typically involves the utilization of climate
model outputs from general circulation models (GCM) and/or regional circulation mod-20

els (RCM) followed by one or more downscaling techniques to finally force hydrological
models and obtain future flow projections. By quantifying the difference between the
observed/current hydro-meteorological variables and the future projections, it is pos-
sible to estimate the probable future impact. Due to the presence of various climate
models, emission scenarios, downscaling methods and hydrological models, one has25

to make a choice which method to utilize for the specific case under study. Conse-
quently, the uncertainty involved in the final outcome is related to the different aspects
of the impact study process.
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Although the climate models are usually held responsible for the high uncertainty,
the other aspects of the impact study process should also be investigated for their
contribution on the final results. One of these components is the downscaling, the pro-
cess that ensures to narrow down the scale discrepancy between the coarser scale
outputs of the GCMs and the required local scale variables for hydrological modeling.5

Chen et al. (2011) argues that major sources of uncertainty are linked to GCMs and
emission scenarios while uncertainty related but not limited to the choice of a down-
scaling method have been given less attention. Generally, downscaling techniques are
classified into dynamic and statistical downscaling. Dynamic downscaling nests higher
resolution RCMs into coarse resolution GCMs to produce complete set of meteoro-10

logical variables which are consistent with each other. The output from this method
is still at a coarser scale compared to what is required locally. Statistical downscal-
ing overcomes this challenge. Extensive details on the strength and weaknesses of
both methods can be found in Wilby and Wigley (1997), Wilby and Dawson (2007),
Fowler et al. (2007) and Teutschbein et al. (2011) among others. Statistical downscal-15

ing is preferred by hydrologists because it is computationally undemanding, flexible and
provides the possibility of uncertainty analysis (Wilby et al., 2002). This method has
different categories according to the technique applied. For instance, bias correction
methods use various algorithms to adjust the GCM outputs and use the corrected data
in hydrological models. The delta change (change factor) method transfers the climate20

model based change signals to the observations and utilizes the perturbed series for
further analysis. Stochastic weather generator based method perturbs its parameters
according to changes projected by GCMs. The advantage of this method is its ability to
rapidly produce sets of climate scenarios for studying the impact of rare climate events
and investigating natural variability (Chen et al., 2011). Other downscaling approaches25

use empirical transfer functions, regression methods, or weather pattern-based ap-
proaches (Willems et al., 2012). Provided that the future is unknown and some of the
assumptions cannot be tested, the importance of applying several downscaling meth-
ods and comparing the results is undeniable. Such approach was previously applied
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by Arnbjerg-Nielsen (2012), Willems and Vrac (2011) and Sunyer et al. (2012) among
others.

Among the different possibilities, an example from the change factor method and the
stochastic weather generator was chosen with the purpose of comparatively evaluating
the methods for quantifying impact of climate change on hydrological extremes. The5

selected stochastic weather generator is LARS-WG, a public domain and commonly
used method. From the change factor category, the more advanced quantile perturba-
tion method (QPM) was selected. Both approaches claim their applicability for extreme
conditions which makes them appropriate for this study that focuses on hydrological
extremes. Semenov and Stratonovitch (2010) states LARS-WG has been tested in di-10

verse climates and demonstrated a good performance in reproducing various weather
statistics including extreme weather events. The QPM, albeit in different versions, was
also tested for different regions (Nyeko-Ogiramoi et al., 2010; Taye et al., 2011; Willems
and Vrac, 2011; Liu et al., 2011) and was recommended to be applicable for studying
extreme events.15

The comparison of these downscaling methods was performed for the upper Blue
Nile region using ten GCM runs and two emission scenarios (A1B and B1). Previous
studies on the Blue Nile region mainly focused on the general hydrology of the basin
and most of these studies were conducted using a single downscaling technique, bias
correction approaches being the common ones (e.g. Elshamy et al., 2009; Nawaz et al.,20

2010; Kim and Kaluarachchi, 2009; Beyene et al., 2010) except Ebrahim et al. (2013)
who compared three downscaling techniques to assess hydrological impact of climate
change in one of the sub-basins of the Blue Nile, the upper Beles basin. Impact analysis
that focuses on extremes was conducted for the Lake Tana basin, one of the sub-basins
in the Blue Nile (Taye et al., 2011). Therefore, unlike the previous studies, in this paper25

the entire upper Blue Nile is considered with focus on high rainfall and flow extremes.
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2 Description of study area and data

2.1 Study area

Located in the north-western part of Ethiopia, the upper Blue Nile basin is one of the im-
portant river basins in the country covering an area of about 176 000 km2. It is the major
contributor to the Nile river flow taking the lion’s share of more than 60 %. The basin5

is characterized by a complex topography with an elevation range of over 4000 m in
the headwaters and about 500 m in downstream parts (Fig. 1). The climate in the Blue
Nile is governed by north–south seasonal migration of the Inter Tropical Convergence
Zone (ITCZ); besides topography significantly influences rainfall patterns although the
relationship between rainfall and elevation is not straightforward (Dinku et al., 2008).10

The basin receives considerable amount of rainfall ranging between 800 and 2200 mm
(Melesse et al., 2010). The largest contribution of this high rainfall occurs during the
main rainy season from June to September. The period October to May is usually
a prolonged dry period with short rainy season between March and May.

2.2 Observed data15

Daily observed meteorological data consisting of rainfall, maximum and minimum tem-
perature with relatively good quality from 11 stations was selected and used for this
study. The location of the stations is indicated on Fig. 1. These data cover the period
1981–2000 and the missing records were completed using inverse distance weighting
method from neighbouring stations. Evapotranspiration (ETo) was calculated using the20

Hargreaves method. The Hargreaves method although reported to have some limita-
tions in literature compared to the standard FAO Penman-Monteith (PM) method, it is
widely used in cases of data limited areas and still provides acceptable results. We
compared the daily ETo estimations from the Hargreaves and FAO PM method for the
period 1981–2000 and found a strong correlation with correlation coefficient value of25

0.99. Since the difference between the two methods was not significant the Hargreaves
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method was used for further analysis. This method was also applied in previous stud-
ies conducted in the upper Blue Nile basin, for example in Tekleab et al. (2011) and
Setegn et al. (2008). To obtain catchment averaged rainfall and evapotranspiration the
Thiessen polygon method was used. Discharge data at the outlet of the basin located
at the Ethio–Sudanese border (El Diem) is used for comparing with the hydrological5

simulation results.

2.3 GCM data

Daily rainfall and temperature time series from runs with ten different GCMs were ob-
tained from the Program for Climate Model Diagnosis and inter-comparison (PCMDI)
database that were used for the Intergovernmental Panel on Climate Change Fourth10

Assessment Report, 2007. The details of the models are shown in Table 1. The GCMs
data considered for this study is for the periods 1981–2000 as control simulations while
for the future simulations, two periods were considered: 2049–2065 (2050s) and 2081–
2100 (2090s). Among the IPCC SRES scenarios, A1B and B1 emission scenarios were
used for this study.15

3 Description of downscaling methods

3.1 Stochastic weather generator

LARS-WG is a stochastic weather generator that can simulate weather data at a single
site under both current and future climate conditions. LARS-WG produces synthetic
daily time series of maximum and minimum temperatures, rainfall and solar radiation.20

The weather generator uses observed daily data for a given site to compute a set of
parameters for probability distributions of the variables as well as the correlations be-
tween them. The underlining method used to approximate the probability distributions
is a semi-empirical distribution (SED) calculated on monthly basis. The computed set
of parameters is used to generate synthetic time series of arbitrary length by randomly25
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selecting values from the appropriate distributions. Afterwards, the parameters of the
distributions are perturbed for a site with the predicted monthly changes derived from
global climate model runs to finally generate a daily climate scenario of the future for
the specific site. The monthly changes are calculated as relative changes for precipi-
tation and radiation and absolute changes for minimum and maximum temperatures.5

No adjustments for distributions of dry and wet series and temperature variability are
made (Semenov and Stratonovitch, 2010).

In LARS-WG the weather generation process is performed in three steps: calibration,
validation and climate scenario generation. During calibration it generates synthetic
weather data that corresponds to the observed statistics. This is used to validate the10

performance of the weather generator by comparing the mean and standard deviation
of the observed and the generated data at monthly scale. The generator also provides
statistical test results like Kolmogorov-Smirnov, t test and F test for further validation.
After validation the program provides the option to generate future scenarios for three
periods (2020s, 2050s and 2090s).15

3.2 Quantile perturbation method

The Quantile Perturbation Method (QPM) is an example of change factor method de-
pendent on the daily GCM runs data and the observations. The method applies the
changes (perturbation factors) obtained from the daily control and scenario quantiles
of GCM runs into the observed series in quantile based way. The perturbation factor is20

the ratio between the scenario simulation quantile and the control simulation quantile
with same non-exceedance probability or return period (Nyeko-Ogiramoi et al., 2010).
Mathematically, the perturbation factor is obtained as follows. If Xs1 ≥ Xs2 ≥ Xs3 ≥
. . . ≥ Xsn represent the scenario quantiles and Xc1 ≥ Xc2 ≥ Xc3 ≥ . . . ≥ Xcm repre-
sent the control period quantiles, where n and m are the total number of values in25

the scenario and control period respectively, the perturbation factors are derived as
Xsn/Xcm for the same return periods. When n and m are not the same interpola-
tion is used to obtain the correct value for a given return period. Note that in our case
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the control and future periods are 20 yr, 1981–2000 (control), 2045–2065 (2050s) and
2081–2100 (2090s). This makes the n and m to have the same value and no need for
interpolation.

Given that the frequency and intensity of rainfall are projected to change, both com-
ponents of the rainfall are perturbed in the QPM approach. Primarily, we give an expla-5

nation on the intensity perturbation that includes both relative and absolute changes.
The perturbation factors are calculated for each month, this means daily values of
a given month from every year considered in the analysis are collected together and
arranged in descending order for the next step. The perturbation factors are calculated
for the wet days where wet days are defined as any day with rainfall amount greater10

than a certain threshold value (e.g. 0.1 mm or 1 mm).
The smaller rainfall values that approach to zero when they are multiplied by any

number the resulting value will still remain to be small and hence the change will be
negligible or if a rainfall value close to zero in the control period is compared to a rainfall
value much larger than zero in the scenario period, high perturbation factor is obtained.15

Application of this high perturbation factor to observed rainfall values may lead to ex-
cessive changes, especially when the observed values are systematically higher than
the control period values. To address this issue instead of the relative change an abso-
lute change is proposed for rainfall values less than a certain threshold. In this paper
we defined a wet day threshold as any day with 0.1 mm of rainfall. The threshold below20

which absolute change is applicable is set to be 1 mm. Hence, the relative perturbation
factors are applied as in Eq. (1a) and the absolute factors are applied as in Eq. (1b)
to the daily observed rainfall values to obtain the future perturbed series. Again the
factors are applied to quantiles of the same return periods for each month.

Pper = Pobs ·
Psce

Pcon
for Pobs > 1mm (1a)25

Pper = Pobs + (Psce − Pcon) for Pobs < 1mm (1b)
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where: Pobs is the observed rainfall, Pper is the perturbed rainfall, Pcon is the control
period rainfall, Psce is the scenario period rainfall.

In addition to perturbing the rainfall intensities the frequency is adjusted by adding
or removing wet and dry days according to the control and scenario simulation results.
This is done after counting and comparing the total number of wet days from the current5

and future periods for a given month. When wet days are removed the wet days before
or after the longest dry spell are changed to dry days and vice versa for adding wet
days.

The general flow chart of the QPM downscaling method that accounts for both the
intensity and frequency perturbation is as follows10

1. Choose a threshold to define wet days and a threshold below which an absolute
change is applicable.

2. Count how many daily values are per month for control, scenario and observed
series and arrange the daily values per month in descending order.

3. Count number of dry and wet days for control and scenario series and obtain the15

difference.

4. Add or remove wet days based on step 4 on the observed series.

5. Calculate the relative perturbation factor based on the control and scenario series.

6. Transfer the factor on observed series and obtain the perturbed observed series
for values above a given threshold for the relative changes.20

7. For values below the threshold, absolute changes are transferred to the observed
series.

8. The combination of steps 6 and 7 is the future projection for a given climate model
run.
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The simplest form of the QPM does not consider the addition and removal of wet days.
It explicitly considers the perturbation of intensities while that of the frequency is not.
This method is also tested next to the advanced method described above.

Temperature has less daily variability compared to rainfall and thus we adopted
a simpler perturbation approach that used the temperature difference extracted from5

the scenario and control series at monthly scale. The perturbation factors (temperature
differences) are applied to the observed temperature series as in Eq. (2). This is per-
formed for both maximum and minimum temperature after which evapotranspiration is
estimated using these data.

Tper = Tobs + (Tsce − Tcon) (2)10

where: Tobs is the observed temperature, Tper is the perturbed temperature, Tcon is the
control period temperature, Tsce is the scenario period temperature.

4 Performance evaluation of methods

4.1 LARS-WG generated data

The observed daily rainfall and temperature data is used for the calibration and vali-15

dation of LARS-WG for each station within the upper Blue Nile basin. The validation
results show good simulation of the mean monthly rainfall while the standard deviation
of the monthly rainfall is not fully captured for most of the stations. The generated mean
monthly maximum and minimum temperature match fairly well with the observed val-
ues for all the stations. The temperature simulations are better than that of the rainfall.20

Since basin-wide rainfall and evapotranspiration data are required for the impact
analysis, the performance of LARS-WG generated current (baseline) series is com-
pared with the observed ones after obtaining the basin-wide rainfall. Using the mean
monthly values the percentage difference between the two was computed. The result
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shows that LARS-WG generated rainfall has both positive and negative biases. Dur-
ing the dry season, months covering between November and February, there is an
overestimation of rainfall values compared to the observation. The month of March is
negatively biased while the rest of the rainy season has less than 5 % difference with
the observation (Fig. 2).5

Additional performance evaluation was conducted for the high intensity values
(Fig. 3). This analysis shows the generated data even though it gives a relatively good
result at mean monthly scale as shown in Fig. 2 it has a negative bias at daily scale
for the high intensities. According to Semenov and Stratonovitch (2010) it is possible to
directly use the generated series in impact models. Nevertheless, since the generated10

data are biased the use of these data in impact models might lead to biased results.
A possible solution is to perform bias correction in order to obtain values that are unbi-
ased compared to the observation. A quantile based bias correction was tested in this
study by fitting a linear regression equation between the generated and observed data
sorted based on their intensities. The correction was implemented for each month sep-15

arately. After the bias correction the LARS-WG baseline shows good improvement ex-
cept that the very highest intensities remain slightly underestimated (Fig. 3, red points).
Assuming the same bias will be translated to the furture scenario periods, the equations
obtained for the current period are used to bias correct the scenario periods generated
data. This bias corrected data is used for the impact analysis.20

4.2 QPM generated data

Since the QPM method is dependent on the daily data of the GCMs, it is important
to evaluate the performance of the GCM simulations. Hence, the daily rainfall time
series obtained from the GCM control simulations were compared with the observation
time series for the same 20 yr period. The comparison is done after calculating the25

basin-wide rainfall from both the observations and the control runs. This analysis was
necessary to identify the GCMs with credible data based on how well they follow the
seasonality of rainfall. The monthly and annual rainfall statistics such as bias and root
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mean squared error was also used for the comparison. Among the 10 GCM runs only
five of them follow the seasonality of rainfall relatively well. Most of the GCMs have
a general negative bias during the wet seasons and a positive bias during the dry
seasons (Fig. 4). Five GCMs (MPEH5, CSMK3, GFCM21, INCM3 and MIHR) show
poor representation of the seasonality in which they simulate the rainy season as dry5

season and vice versa.
The poor simulation results of the GCMs is partially expected since what we are

comparing is basin-wide rainfall obtained using point rainfall (for the observations) to
rainfall obtained from a grid averaged data for the GCMs. On the other hand previous
studies (e.g., Elshamy et al., 2009; Nawaz et al., 2010; Zaitchik et al., 2012) showed10

poor performance of some GCMs for the study area which might mean using these
GCMs in the impact analysis introduces larger uncertainties. Assuming the bias in the
current and future period is the same and that it will cancel out in the downscaling pro-
cess, we continued with the QPM approach. After application of the QPM downscaling
method on the daily rainfall of the GCM runs the same five GCMs gave extremely high15

projections for the future. Figure 5 is one example in which the quantiles versus the
return periods are shown for the 2050s projection and where one can see those GCM
runs give unrealistically high results. We found out that this high projection is due to
mismatch in the simulation of the seasons during scenario and control period. That is
the wet season in the control period has many dry days and low rainfall values while20

the scenario period has high values. This difference leads to a high perturbation factor
(high rainfall value in scenario period divided by smaller rainfall value in control period)
that will be transferred to the observations, and which finally results unrealistically high
projections. This was a common feature on the five GCM runs with poor seasonality
representation on Fig. 4. For this reason, they were excluded from further analysis.25

Similarly, the daily temperature data from the GCMs are compared with the obser-
vations at monthly scale as shown in Fig. 6. The monthly performance reveals that the
GCMs are positively biased in simulating both maximum and minimum temperature.
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5 Comparison of future projections by the two methods

Due to the poor performance of daily GCMs that were excluded we remain with five
GCMs and two emission scenarios A1B and B1. From the five GCMs, two of them do
not have B1 scenario in the LARS-WG generator. Therefore, for the sake of consistency
in the next sections we present results from the remaining GCMs with A1B scenario.5

5.1 Rainfall

Table 2 provides the percentage change of rainfall projections at annual scale. Gener-
ally, the mean annual rainfall shows a decreasing projection for the 2050s and 2090s
with the exception of one model (CNCM3) after QPM downscaling. In case of LARS-
WG, the downscaled results project an increase in the mean annual rainfall for both10

periods. At seasonal scale the main rainy season (JJAS) shows a deceasing projection
using QPM for both periods. On the other hand, LARS-WG projections give increasing
rainfall except one GCM (CGMR) for the 2090s and a mixed picture for the 2050s. Us-
ing QPM downscaling the short rainy season is (MAM) shows a decreasing signal with
a percentage more than the main rainy season for all GCM runs. Using LARS-WG both15

increasing and decreasing rainfall amount is projected. Similar to the QPM results, the
percentage change is higher than that of the main rainy season. For the dry season
both downscaling methods agree in their projections; they give an increasing signal.

The simplest form of the QPM that does not include adding/removing wet days gives
similar monthly change patterns as LARS-WG. Since LARS-WG has no adjustment20

for the distribution of dry and wet series, similar result obtained from the simpler
QPM method is foreseeable. By including the adding/removing component, most of
the months showed a decreasing signal while we obtained increasing signal same as
LARS-WG using the simpler QPM approach.

Since the focus of this study is on extreme cases, it was necessary to look at the25

daily values. Figure 7 shows the comparison of rainfall distributions of observation and
projections for 2050s and 2090s. The main observation from these results is that by
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using LARS-WG the projections obtained on the higher intensities are lower than those
of the projections by the QPM. This shows differences in the extreme value distribution
which might result in discrepancies of magnitudes for the higher return period values.
The QPM projections have similar distribution as the observations.

5.2 Temperature5

For general comparison basin-wide temperature was calculated as the arithmetic av-
erage values of all the stations. The mean annual absolute maximum and minimum
temperature change between the observed and the projected (perturbed observed) is
obtained and presented in Table 4. On average both maximum and minimum temper-
atures are projected to increase by +1 ◦C between the 2050s and 2090s. There are10

slight differences between the change factors used in LARS-WG and what we calcu-
lated using the daily data, for example an average increase of +1.9 ◦C by LARS-WG
while +1.6 ◦C from the daily GCMs’ data between the control period and 2050s. In
LARS-WG some of the GCM runs are perturbed using the change in mean tempera-
ture, so both maximum and minimum temperatures are perturbed by the same factor.15

In our case, from the 5 GCMs 4 of them were perturbed using this method. Neverthe-
less, generally the change in minimum temperature is slightly higher than the change
in maximum temperature based on the daily GCM’s data.

5.3 Evapotranspiration

Evapotranspiration is estimated using the downscaled temperature data and compared20

with the estimation from the observations. Table 5 shows the future projection for evap-
otranspiration by most of the GCM runs is a positive shift. This is expected considering
the warming trend observed in temperature. Although a relatively similar method is
used to downscale the temperature, some differences can be seen between the two
methods. Generally the projection by LARS-WG is higher than by QPM.25
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6 Impact analysis on flows

6.1 Hydrological model description

The VHM model, a lumped conceptual model, developed at the Hydraulics Division
of the KU Leuven (Willems, 2013) was calibrated and validated to be used for impact
analysis. The model constitutes of two main components: the reservoir-based routing5

and the storage components. The storage components describe water storage in the
catchment in the form of surface, root zone/soil and groundwater storage, while the lin-
ear reservoirs are used to model the routing of the rainfall contributions to the different
runoff subflows. The model structure of VHM is not fixed a priori; rather it is identified in
a case-specific manner based on a step-wise procedure. This procedure is data-based10

using the results of a number of time series pre-processing steps: subflow separation
that splits the total flow into subflow components, identification of nearly independent
events and extreme high and low flow extraction (Willems, 2009). These results are
used to identify relations between the subflow runoff coefficient per event and the rel-
ative soil moisture state and/or the antecedent rainfall. The soil moisture state is com-15

puted by cumulating the remaining rainfall fractions after evapotranspiration losses and
rainfall fractions corresponding to the subflow event volumes are deducted from the
total areal catchment rainfall.

Linear or other complex models can be identified and these relations represent sub-
models describing quick flow, interflow and slow flow volumes. These different volumes20

are then combined with linear reservoir models to describe the routing of the subflows
in which the quick flow fractions are transformed to overland and interflow while the
slow flow fraction is transformed to baseflow. Former application of the VHM approach
can be found in Liu et al. (2011), Taye et al. (2011), and Van Steenbergen and Willems
(2011).25
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6.2 Upper Blue Nile catchment response

The downscaled rainfall and evapotranspiration data were used to force a calibrated
and validated VHM model to obtain daily catchment runoff flows. The outputs were
compared with the control runs at different aggregation levels. The annual scale
changes show decreasing flow by all GCMs when the QPM downscaled inputs are5

used for both periods. In case of LARS-WG mixed projections (both increasing and de-
creasing) are obtained. From the previous section by using the QPM downscaling, we
had less annual rainfall and more annual evapotranspiration which leads to decrease
in the annual flow. On the other hand, even if LARS-WG projected more rainfall in all
GCM runs the projected increase in evapotranspiration was also high enough to lead10

to decreases in the flow for three cases out of five for 2050s, while it is one out of five
for 2090s.

For a detailed analysis of the flow result, the seasonal and monthly changes were
examined. Figure 8 shows the monthly changes for both downscaling methods and
periods. This result shows how different the change signals can be by using different15

downscaling methods. In the QPM results the decreasing signal is dominant except in
the parts of the dry months where we see increasing flows. When it comes to flows
obtained based on the LARS-WG downscaled results, the decreasing signal is limited
to the main rainy season and part of the short rainy season for some GCM runs while
the dry season shows mainly increasing flows.20

These monthly differences are related to the downscaling techniques used for the
rainfall. In the QPM, the consideration of adding/removing wet days showed that the
GCMs project more drier days for the future. Hence, with increasing evapotranspira-
tion and decreasing frequency of rainfall the decreasing signal obtained for the flow
might be reasonable. Conversely, using the LARS-WG and QPM downscaling that ex-25

cludes adding/removal of wet days, the intensity of rainfall is projected to increase (not
shown). However, due to high evapotranspiration in LARS-WG the impact on the flow
has a decreasing signal.
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Afterwards, the daily peak flow values of the current and future period are compared
using extreme value distribution plots. Figure 9 is an example of such plot in which the
pattern on the peaks is shown to have similar pattern to the high rainfall intensities as
was presented in Fig. 7. For instance, LARS-WG projections for 2050s shows that the
tail of the rainfall distribution tends to bend downwards while the observations do not5

show such behavior. The same effect is seen in the flow simulation results. In spite
of the differences in the tail of the distribution both methods project decreasing peak
flows for the future. However, when the simpler QPM approach is applied the peak
flows show an increasing trend as shown in Fig. 10. Previously, when we compare the
LARS-WG downscaled rainfall with QPM that does not consider the adding and remov-10

ing of wet days, the results obtained were similar and we expect similar response on
the flow. However, the higher evapotranspiration from LARS-WG downscaling outputs
plays a great role in decreasing the peak flows.

In general by combining A1B scenarios from five GCMs and B1 scenarios from
three GCMs and using the three approaches to downscale rainfall (QPM with15

adding/removing wet days, simpler QPM and LARS weather generator), the uncer-
tainty on the peak flows can be summarized as in Fig. 11. Except for the highest two
values most of the projections for the 2050s show decreasing peak flows. In 2090s
both increasing and decreasing peak flows are projected even if most of them show
a decrease. In terms of the uncertainty, the range of projections for the 2090s is wider20

than that for the 2050s.

7 Discussions and conclusions

The uncertainty related to climate change impact can be due to the climate models
and/or the downscaling methods among others. Unlike the scenarios by different GCM
runs that are equally probable; downscaling methods are not. Chen et al. (2011) argues25

that downscaling methods are not created equal and that the choice of one or more
approaches should be evaluated on a case by case basis with respect to the objectives
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of the climate change impact study. The commonly used downscaling technique in the
Blue Nile region is one of the bias correction methods. Here in this paper, methods from
two statistical downscaling categories were used to investigate the impact of climate
change on high rainfall and flow extremes. Although it is hardly possible to select an
appropriate or best downscaling method it is essential to indicate the strength and5

weakness of the methods used in the analysis.
The difference in downscaling was mainly concentrated on the rainfall variable. The

analysis showed that although the LARS-WG generator produces good monthly statis-
tics the extreme distribution’s tail shape has some divergence from the observations.
This was demonstrated by comparing the observed data with the generated rainfall for10

the control period. It was attempted to correct the bias observed in the generated data
before use in the impact analysis. However, the highest extremes still show underesti-
mation which indicates caution has to be taken when using this method for extremes.
On the other hand, the QPM downscaling produces similar extreme value distribution’s
tails shape. Nevertheless, the method is sensitive to the quality of the daily GCM data.15

The results showed that unrealistic results could be obtained when the quality of GCM’s
data is poor. Given acceptable quality of GCM’s daily data based downscaling methods
such as the QPM method presented in this paper is recommended for extreme rainfall
and flow studies as it better represents the distribution’s tail shape. Alternatively, when
the focus is on the monthly statistics methods like the stochastic weather generator20

provide good enough information.
Although the reason is dependent on the downscaling method as either decreasing

rainfall or increasing evapotranspiration at seasonal scale, all the downscaling methods
agree in projecting decreasing flow for the main rainy season. This gives more confi-
dence in expecting more water shortage as a likely climate scenarios’ impact trend25

towards the end of the century. The decrease in the flow for the 2090 horizon was also
concluded in previous studies such as Beyene et al. (2010). This information is useful
for the water managers of the region as this season is important for agriculture and
other activities. The high uncertainty during the rest of the seasons can be an indica-
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tion of the poor performance of the GCM’s in capturing the rainfall or else it can be an
indication for seasonality shift.

The final number of GCMs used for the impact analysis on the flow was limited be-
cause we excluded some of the unrealistic outputs. Nevertheless, the uncertainty range
obtained in this paper might be greater than what is shown if more runs were used. The5

main information this paper provides is that the choice of the downscaling method has
a stake in the estimation of climate change impacts and has to be considered the
same way as we consider different GCMs to obtain the uncertainty range. The wide
uncertainty range should not discourage policy makers from taking appropriate water
management decisions. Rather what they should take from such studies is awareness10

on the potential climate change impacts and attempt to find “no-regret” solutions for the
proper management of the water resources under such changing conditions.

Acknowledgements. This study has been linked to FRIEND/NILE projects of UNESCO and
the Flanders in Trust Fund of the Flemish Government of Belgium. The authors acknowledge
meteorological data provision from the National Meteorological Agency in Ethiopia. The study15

was financially supported by a DBOF scholarship of KU Leuven.

References

Abtew, W., Melesse, A. M., and Dessalegne, T.: El Niño Southern Oscillation link to the Blue
Nile River Basin hydrology, Hydrol. Process., 23, 3653–3660, 2009.

Arnbjerg-Nielsen, K.: Quantification of climate change effects on extreme precipitation used for20

high resolution hydrologic design, Urban Water J., 9, 57–65, 2012.
Beyene, T., Lettenmaier, D. P., and Kabat, P.: Hydrologic impacts of climate change on the

Nile River Basin: implications of the 2007 IPCC scenarios, Climatic Change, 100, 433–461,
2010.

Camberlin, P.: Rainfall anomalies in the source region of the Nile and their connection with the25

Indian summer monsoon, J. Climate, 10, 1380–1392, 1996.
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying

the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011.

7876



Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., and Ropelewski, C. F.: Validation of high-
resolution satellite rainfall products over complex terrain, Int. J. Remote Sens., 29, 4097–
4110, 2008.

Diro, G., Grimes, D. I. F., and Black, E.: Teleconnections between Ethiopian summer rainfall and
sea surface temperature?: part I – observation and modelling. Clim. Dynam. 37, 121–131,5

2010.
Ebrahim, G. Y., Jonoski, A., van Griensven, A., and Baldassarre, G. Di.: Downscaling technique

uncertainty in assessing hydrological impact of climate change in the Upper Beles River
Basin, Ethiopia, Hydrol. Res., 44, 377–398, 2013.

Elshamy, M. E., Seierstad, I. A., and Sorteberg, A.: Impacts of climate change on Blue10

Nile flows using bias-corrected GCM scenarios, Hydrol. Earth Syst. Sci., 13, 551–565,
doi:10.5194/hess-13-551-2009, 2009.

Fowler, H., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies:
recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27,
1547–1578, 2007.15

IPCC: Climate Change 2007, in: Impacts, Adaptation and Vulnerability, Contribution of Work-
ing Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC), edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J.,
and Hanson, C. E., Cambridge University Press, Cambridge, UK, 1000 pp., 2007.

IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adap-20

tation, edited by: Field,C. B., Barros, V., Stocker, T. F., and Dahe, Q., Cambridge University
Press, Cambridge, UK and New York, USA, 582 pp., 2012.

Jury, M. R.: Ethiopian decadal climate variability, Theor. Appl. Climatol., 101, 29–40, 2010.
Kim, U. and Kaluarachchi, J. J.: Climate change impacts on water resources in the Upper Blue

Nile River Basin, Ethiopia, J. Am. Water Resour. Assoc., 45, 1361–1378, 2009.25

Liu, T., Willems, P., Pan, X. L., Bao, An. M., Chen, X., Veroustraete, F., and Dong, Q. H.: Climate
change impact on water resource extremes in a headwater region of the Tarim basin in China,
Hydrol. Earth Syst. Sci., 15, 3511–3527, doi:10.5194/hess-15-3511-2011, 2011.

Melesse, A., Abtew, W., Dessalegne, T., and Wang, X.: Low and high flow analyses and wavelet
application for characterization of the Blue Nile River system, Hydrol. Process., 24, 241–252,30

2010.
Nawaz, R., Bellerby, T., Sayed, M., and Elshamy, M.: Blue Nile runoff sensitivity to climate

change, Open Hydrol. J., 4, 137–151, 2010.

7877

Nyeko-Ogiramoi, P., Ngirane-Katashaya, G., Willems, P., and Ntegeka, V.: Evaluation and inter-
comparison of Global Climate Models’ performance over Katonga and Ruizi catchments in
Lake Victoria basin, Phys. Chem. Earth, 35, 618–633, 2010.

Semenov, M. and Stratonovitch, P.: Use of multi-model ensembles from global climate models
for assessment of climate change impacts, Clim. Res., 41, 1–14, 2010.5

Setegn, S. G., Rayner, D., Melesse, Assefa, M., Bijan, D., and Raghavan, S.: Impact of cli-
mate change on the hydroclimatology of Lake Tana Basin, Ethiopia, Water Resour. Res., 47,
W04511, doi:10.1029/2010WR009248, 2011.

Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of different regional climate models
and statistical downscaling methods for extreme rainfall estimation under climate change,10

Atmos. Res., 103, 119–128, 2012.
Taye, M. T. and Willems, P.: Temporal variability of hydroclimatic extremes in the Blue Nile basin,

Water Resour. Res., 48, 1–14, 2012.
Taye, M. T., Ntegeka, V., Ogiramoi, N. P., and Willems, P.: Assessment of climate change impact

on hydrological extremes in two source regions of the Nile River Basin, Hydrol. Earth Syst.15

Sci., 15, 209–222, doi:10.5194/hess-15-209-2011, 2011.
Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of different downscaling techniques

for hydrological climate-change impact studies at the catchment scale, Clim. Dynam. 37,
2087–2105, 2011.

Van Steenbergen, N. and Willems, P.: Method for testing the accuracy of rainfall–runoff models20

in predicting peak flow changes due to rainfall changes, in a climate changing context, J.
Hydrol., 414–415, 425–434, 2011.

Wilby, R. L. and Dawson, C. W.: SDSM 4.2 – A decision support tool for the assessment of
regional climate change impacts User Manual, Leicestershire, UK, 2007.

Wilby, R. L. and Wigley, T. M. L.: Downscaling general circulation model output: a review of25

methods and limitations, Progress Phys. Geogr., 21, 530–548, 1997.
Wilby, R. L., Dawson, C. W., and Barrow, E.: SDSM – a decision support tool for the assessment

of regional climate change impacts, Environ. Modell. Softw., 17, 145–157, 2002.
Willems, P.: A time series tool to support the multi-criteria performance evaluation of rainfall-

runoff models, Environ. Modell. Softw., 24, 311–321, 2009.30

Willems, P.: Parsimonious rainfall-runoff model construction supported by time series process-
ing and validation of hydrological extremes, J. Hydrol., in review, 2013.

7878



Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological im-
pact investigations of climate change, J. Hydrol., 402, 193–205, 2011.

Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Gregersen, I. B.,
Madsen, H., and Nguyen, V. T. V.: Impacts of Climate Change on Rainfall Extremes and
Urban Drainage Systems, IWA Publishing Company, London, UK, 238 pp., 2012.5

Zaitchik, B. F., Simane, B., Habib, S., Anderson, M. C., Ozdogan, M., and Foltz, J. D.: Building
climate resilience in the Blue Nile/Abay Highlands: a role for Earth system sciences, Int. J.
Environ. Res. Pub. Health, 9, 435–461, 2012.

7879

Table 1. Selected GCM runs for impact analysis, model acronym source is from Semenov and
Stratonovitch (2010).

Research Centre and Country Global climate Model Grid
model acronym resolution

Commonwealth Scientific and Industrial Research CSIRO-MK3.0 CSMK3 1.9×1.9◦

Organization, Australia
Canadian Centre for Climate Modelling and CGCM33.1 (T47) CGMR 2.8×2.8◦

Analysis, Canada
Centre National de Recherches Météorologiques, CNRM-CM3 CNCM3 1.9×1.9◦

France
Institute Pierre Simon Laplace, France IPSL-CM4 IPCM4 2.5×3.75◦

Institute of Atmospheric Physics, China FGOALS-g1.0 FGOALS 2.8×2.8◦

Institute for Numerical Mathematics, Russia INM-CM3.0 INCM3 4×5◦

Max-Planck Institute for Meteorology, Germany ECHAM5-OM MPEH5 1.9×1.9◦

National Institute for Environmental Studies, Japan MRI-CGCM2.3.2 MIHR 2.8×2.8◦

Geophysical Fluid Dynamics Lab, USA GFDL-CM2.1 GFCM21 2.0×2.5◦

Goddard Institute for Space Studies, USA GISS-AOM GIAOM 3×4◦
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Table 2. Mean annual rainfall projection given in percentage change using QPM and LARS-WG
for 2050s and 2090s.

QPM LARS

2050s 2090s 2050s 2090s

1. CNCM3 19.86 21.46 32.75 40.17
2. GIAOM −4.08 −9.60 15.46 23.42
3. CGMR −7.86 −23.54 10.89 27.09
4. FGOALS −7.48 −16.92 33.03 53.79
5. IPCM4 −9.69 −13.43 20.78 44.83
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Table 3. Mean seasonal rainfall projection given in percentage change using QPM and LARS-
WG for 2050s and 2090s.

JJAS MAM

QPM LARS QPM LARS
2050s 2090s 2050s 2090s 2050s 2090s 2050s 2090s

1. CNCM3 −6.61 −6.13 0.67 4.10 −27.59 −31.07 −5.67 −7.75
2. GIAOM −9.54 −3.44 −5.38 7.13 −18.55 −28.26 14.75 22.78
3. CGMR −12.26 −20.76 −10.23 −15.88 −62.76 −62.02 −28.89 −23.38
4. FGOALS −2.05 −1.54 −0.25 5.30 −52.22 −55.75 3.34 15.50
5. IPCM4 −1.08 −2.75 1.80 1.85 −42.31 −47.25 3.45 3.55

7882



Table 4. Mean annual absolute maximum and minimum temperature change (◦C) using QPM
and LARS-WG for 2050s and 2090s.

Tmax Tmin

QPM LARS QPM LARS
2050s 2090s 2050s 2090s 2050s 2090s 2050s 2090s

1. CNCM3 1.71 2.69 2.33 3.37 2.69 3.78 2.33 3.37
2. GIAOM 1.24 2.06 1.30 2.06 1.53 2.38 1.55 2.39
3. CGMR 2.21 3.00 2.47 3.38 2.33 3.27 2.48 3.39
4. FGOALS 1.22 1.85 1.44 2.22 1.21 2.28 1.45 2.23
5. IPCM4 1.85 2.76 2.36 4.04 2.69 4.65 2.36 4.04

7883

Table 5. Mean annual evapotranspiration projections given in percentage change using QPM
and LARS-WG for 2050s and 2090s.

QPM LARS

2050s 2090s 2050s 2090s

1. CNCM3 2.31 4.72 7.14 10.17
2. GIAOM 2.67 4.74 3.43 5.36
3. CGMR 5.89 8.19 7.50 10.10
4. FGOALS 3.20 3.99 4.56 6.79
5. IPCM4 2.63 1.61 7.21 12.05
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Table 6. Mean annual flow projections given in percentage change using QPM and LARS-WG
for 2050s and 2090s.

QPM LARS

2050s 2090s 2050s 2090s

1. CNCM3 −1.87 −5.99 2.67 7.57
2. GIAOM −23.21 −20.65 −6.49 5.26
3. CGMR −33.07 −41.45 −18.05 −12.95
4. FGOALS −24.14 −19.48 1.45 21.07
5. IPCM4 −19.91 −24.67 −4.60 5.95
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Fig. 1. Location of the upper Blue Nile basin.
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Fig. 2. Mean monthly rainfall of observed and LARS-WG generated baseline (left) and percent-
age change of LARS-WG baseline series in comparison with the observed data for the control
period.
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Fig. 3. Comparison of peak rainfall intensities for observation and LARS-WG generated data
before and after bias correction.
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Fig. 4. Monthly performance of 10 the GCM runs for the control period.
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Fig. 5. Example of projected rainfall using the quantile perturbation method for 2050s and A1B
scenario.
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Fig. 6. Mean monthly bias of control GCM runs compared to observations for maximum and
minimum temperature.

7891

Fig. 7. Rainfall projection using A1B scenario for 2050s (left) and 2090s (right) using QPM (top)
and LARS-WG (bottom) compared with the observations.
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Fig. 8. Monthly flow changes for 2050s (top) and 2090s (bottom) using QPM (left) and LARS-
WG (right).
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Fig. 9. Peak flow projection using A1B scenario for 2050s (left) and 2090s (right) using QPM
(top) and LARS-WG (bottom) compared with the control period simulation.
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Fig. 10. Peak flow projection using A1B scenario for 2050s (left) and 2090s (right) using QPM
without adding and removing wet days compared with the control period simulation.
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Fig. 11. Future peak flow simulations with five A1B scenarios and three B1 scenarios using
three downscaling approaches for 2050s (left) and 2090s (right) compared with the control
period simulation.
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