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Abstract

In this study, we combine stochastic network models that reproduce the actual width
function and the width function based instantaneous unit hydrograph (WFIUH) that
directly makes use of a width function and converts it into runoff hydrographs. We eval-
uated the stochastic network models in terms of reproducing the actual width function5

and also the robustness of the semi-distributed model (WFIUH) in application to a test
watershed in South Korea. The stochastic network model has an advantage that it repli-
cates width functions of actual river networks, whereas the WFIUH has an advantage
that the parameter values are physically determined, which can be potentially advanta-
geous in prediction of ungauged basins. This study demonstrates that the combination10

of the Gibbsian model and the WFIUH is able to reproduce runoff hydrographs not
just for the case of uniform rainfall over the test catchment but also for moving storms.
Therefore, results of this study indicate that the impact of spatial and temporal rainfall
variation on runoff hydrographs can be evaluated by the suggested approach in un-
gauged basins even without detailed knowledge of river networks. Once the regional15

similarity in river network configuration is identified, the proposed approach can be
potentially utilized to estimate the runoff hydrographs for ungauged basins.

1 Introduction

Prediction in ungauged basins (PUB) has been a long-standing topic in hydrology,
which aims at accurate simulation of a catchment without any observation and, hence,20

without model calibration. The assessment of future impact of changes such as cli-
mate change or land use changes on hydrologic responses is also solved partly in the
same way of the ungauged basin problem because future responses under different
condition cannot be gaged (Beven, 2012). In essence, the ungauged basins requires
the development of new predictive approaches that are based on a deep understand-25

ing of hydrologic function at multiple space–time scales and also they encourage us
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to go beyond an immediate problem-solving needs and to pursue knowledge and un-
derstanding of natural processes (PUB Science Plan, 2003). In this regard, the impli-
cation and importance of the ungauged basin problem cannot be emphasized enough
in hydrology. However, most catchments around the world still do not have runoff mea-
surements, although runoff information is needed almost everywhere for the purpose of5

water-related risk management such as flood and drought mitigation, water resources
management such as development, distribution and maintenance of water supply sys-
tems, guidelines for land development and so forth (Blöschl et al., 2013).

In spite of substantial improvement in the PUB, there is no common agreement
that the PUB is solvable by a regionalization strategy or any other advanced theo-10

ries (Beven, 2012). Making predictions in ungauged basins has primarily focused on
regionalization methods, which tie hydrologic or physical characteristics of watersheds
mainly with runoff characteristics or model parameters. Then, assuming such charac-
teristics of an ungauged basin are known, the runoff characteristics of the ungauged
basin are estimated based on regression equations or other regionalization schemes.15

In most cases, regionalization methods have been developed for the estimation of
the characteristics of flood frequency distributions (Fleming and Franz, 1971; Lamb,
1999; Blazkova and Beven, 2002), flow duration curves (Holmes et al., 2002; Castel-
larin et al., 2007; Li et al., 2010), and the parameters of hydrological models (Nash,
1960; Abdulla and Lettenmaier, 1997; Fernandez et al., 2000; Heuvelmans et al., 2006;20

Boughton and Chiew, 2007; Bastola et al., 2008; Hundecha et al., 2008; Wallner et al.,
2008) at ungauged sites. Especially, Oudin et al. (2008) compared three regionalization
scheme, namely, spatial proximity, physical similarity, and regression scheme in France
and showed that spatial proximity showed best results while the regression approach
showed the least compared to other schemes, but all regionalization results were far25

behind the results with full calibration.
In this paper, our research interests are focused on the river network of an ungauged

basin. The idea is coupling a synthetic width function obtained from stochastic network
models and a runoff-rainfall model utilizing the width function in a direct manner to
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estimate hydrographs of an ungauged basin. Seo and Schmidt (2014) showed that the
network characteristics of urban drainage networks in terms of the width function can
be regenerated by a stochastic network model, which is referred to as the Gibbsian
model proposed by Troutman and Karlinger (1992). In addition, we introduce a geo-
morphologic rainfall–runoff models that directly utilizes the width function proposed by5

Kirkby (1976), Mesa and Mifflin (1986), and Naden (1992). They have proposed for-
mulations of the geomorphologic Instantaneous Unit Hydrograph (IUH) based on the
width function of a basin coupled with various routing procedures, which was later de-
noted as a WFIUH by Franchini and O’Connell (1996). The WFIUH is different from the
well-known Geomorphologic Instantaneous Unit Hydrograph (GIUH) (Rodriguez-Iturbe10

and Valdes, 1979), which is based on Horton’s geomorphologic laws and the Strahler
ordering scheme (Strahler, 1957). Instead, it utilizes the width function obtained from
a river network directly and converts it to a hydrologic response function. The hydro-
logic response of a basin should be closely linked to the width function (Gupta and
Waymire, 1983) and grouping channel segments such as Strahler ordering scheme15

can result in loss of information about this response from the width function (Trout-
man and Karlinger, 1985). The width function approach is considerably simpler than
the GIUH approach because it emphasizes the metric representation of the basin in-
stead of the topologic one (Di Lazzaro, 2009). Moreover, the hydraulic parameters of
the WFIUH are physically consistent, while the GIUH velocity parameter lacks physical20

interpretation (Franchini and O’Connell, 1996).
The Gibbsian model is based on the state of the network in terms of sinuosity and

imposing different probability at each state. The model has a control over the overall
sinuosity of the network (Troutman and Karlinger, 1992). The control is depending on
the value of a parameter, β. They estimated β for 40 river networks in Montana, of25

which average catchment slope is 16.73 % and found that average β is order of 100.
In contrast, Seo and Schmidt (2012) applied the Gibbsian model to urban drainage
networks in Chicago areas and found that urban drainage network has a wide range of
β from 10−2 to 102. These results imply that river networks are more efficient in terms
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of sinuosity and the drainage time compared to artificial drainage networks, which is
counterintuitive because, typically, man-made drainage systems have been considered
to be more efficient in terms of drainage time. Small roughness of the conveyance
system has been often regarded as the main reason for the increased peak discharge
and decreased arrival time to the outlet of the urban drainage system. However, in5

terms of network efficiency and total drainage time of a drainage network, artificial
drainage network can be less efficient compared with river networks, which is the result
of an evolution through geological time scales to discharge water more efficiently in
nature.

In application of the WFIUH, the observed width function is coupled with the10

advection–diffusion equation (Mesa and Mifflin, 1986; Naden, 1992). The WFIUH is
a semi-distributed model with two parameters: kinematic celerity, c, and diffusion co-
efficient, D. It should be noted that these parameters are dependent on the geomor-
phic characteristics of local slope and discharge, which implies that, at least, the order
of magnitude of these quantities is physically determined (Franchini and O’Connell,15

1996). Due to the nature of a semi-distributed model, it is necessary to define a rep-
resentative cross-section of a catchment. However, it has not been discussed enough
to suggest a guideline to apply the WFIUH. If the Gibbsian model, combined with the
WFIUH, can reproduce the observed width function of an ungauged basin, it also en-
ables us to contribute the prediction of runoff hydrographs in an ungauged basin be-20

cause the width function is closely linked to hydrologic response of a basin. Moreover,
hydrological similarity in terms of network configuration can help runoff prediction in un-
gauged basins (Blöschl et al., 2013). As mentioned earlier, the overall sinuosity of the
Gibbsian model is represented by the value of a parameter, β. Troutman and Karlinger
found the average parameter value is 100 in Montana, which shows that the similarity25

in terms of β can be assessed, and consequently these efforts would contribute to the
PUB.

In this regard, this paper suggests an approach that couples a synthetic width func-
tion obtained from the Gibbsian model and the WFIUH for accurate simulation of direct
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runoff hydrographs in an ungauged basin especially for the purpose of flood estimation
and direct runoff hydrographs. We applied the suggested approach in a test watershed
in South Korea and evaluated the possibility of the suggested approach in ungauged
basins for prediction. The basic idea of this study is to combine stochastic network mod-
els that reproduce the width function of a watershed and a semi-distributed hydrologic5

model that directly utilizes the width function and converts it to a runoff hydrograph.
First, it is necessary to examine the ability of the stochastic network models that repro-
duce the actual width function and also the robustness of the semi-distributed model in
application to a test watershed. Then, we demonstrate that the combination of the two
models is able to contribute to the PUH and discuss the implication of the results.10

2 Methodology

2.1 The Gibbsian model

Three stochastic network models are considered in this study – the uniform model,
the Scheidegger model and the Gibbsian model to generate networks with specified
conditions. The uniform model (or a random walk model) is defined on a lattice with15

flow being allowed in every direction with equal probability but still flows are not allowed
to cross over existing walk, which is a self-avoiding property. To generate random walk
model, first, it starts from the outlet point and proceed to the upstream with equal
probabilities until every single point in the whole domain is visited. The Scheidegger
model (1967a, b) is a directed self-avoiding random walk model on a lattice with flow20

from each point being allowed in only two directions, each with equal probability.
Troutman and Kalinger (1992) proposed the Gibbsian model, which is based on

Gibbs’ distribution. The idea is to define a Markov chain with the spanning trees S
as the state space. To draw an analogy with the initial tree which will be obtained with
the uniform distribution (random walk model), let the elements of S to be points of25

a graph, and define the lines in this graph as follows. The analogy means what can be
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obtained with minimum changes to original state (tree) here. Let two points, s1 and s2,
be adjacent if one may be obtained from the other. To do this, it is needed to randomly
select a point in s1 and define a new direction from that point, which is going to be
a new spanning tree, s2. Then the transition probability from s1 to s2 can be defined as
follows (Troutman and Karlinger, 1992):5

Rs1s2


r−1 min{1,e−β[H(s2)−H(s1)]} s2 ∈ N(s1)

1−
∑

s∈N(s1)Rs1s s2 = s1

0 otherwise

(1)

where N(s1) is the set of trees adjacent to s1, and r , the maximum degree of the points
in S, is

r = max
s∈S

|N(s)| (2)10

The degree here means the maximum number of direction it can go. It may be shown
that the Markov chain with this transition probability has a stationary distribution given
as Gibbs’ distribution (Troutman and Karlinger, 1992).

Pβ{s} = [C(β)]−1e−βH(s) (3)15

where s belongs to S, β is a parameter, C(β) is a normalization factor defined to make
the probabilities sum to 1.

C(β) =
∑
t∈S

e−βH(t) (4)
20

H(s) is measuring the sinuosity of a given spanning tree, s.

H(s) = Ξ(s)−Ξ(B) =
∑

v∈V (B)

ds(v)−
∑

v∈V (B)

dB(v) (5)
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where v is a point of a subgraph B and ds is the distance to the outlet along s from v
while dB is the shortest distance to the outlet not along s from v . During every genera-
tion of adjacent spanning trees, it is checked if there exists any loop inside the network.

The procedure used in this paper to generate a network given a value of β is as
follows (Barndorff-Nielsen, 1998): first, start from a uniform network generated by the5

uniform model, s1, and randomly select a point, v , in the network and assign a new
flow direction from v to generate neighboring network, s2. Here, the uniform model
(Leopold and Langbein, 1962; Karlinger and Troutman, 1989) is a stochastic network
model assuming uniform probability for all directions in the generation of a network.
Second, check whether the new network, s2, has any loop inside the network. If it10

does not have any loop, draw a random value x between 0 and 1 and check that x
is less than e−β[∆H ] where ∆H is equal to the change in sinuosity between s1 and s2
(H(s2)−H(s1)). If this holds, then take the s2 as a new network. Third, let s2 be equal
to s1 and repeat the above steps sufficiently large times until the resulting tree has
a distribution close to the stationary Gibbs’ distribution.15

2.2 The width function based IUH (WFIUH) coupled with the Gibbsian model

When transforming the distance into time with constant flow velocity, the unit hydro-
graph for a generic watershed can be easily obtained from discretizing the width func-
tion. However, volume of an actual channel and the deviation in time flowing along
a route are non-negligible. The drainage network is composed of each inflow infused20

from the sides and the outlet connected to the basin at a distance x. The network
can be considered as a series of each channel links with length of ∆x. In the case of
a semi-infinite uniform channel fed by inflow at the upstream end (x = 0), the routing
function can be derived from the advection–diffusion equation of flow perturbation:

∂Qp

∂t
= D

∂2Qp

∂x2
−c

∂Qp

∂x
(6)25
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where Qp is flow perturbation. The solution of the advection–diffusion equation is given
as follows under the boundary condition, Qp(0,t) = δ(t), Qp(x,0) = 0 and Qp(∞, t) =
0, and the constant coefficients D and c which are diffusion coefficient and celerity,
respectively (Van de Nes, 1973; Naden, 1992; Franchini and O’Connel, 1996; Da Ros
and Borga, 1997):5

u(x,t) =
x√

4πDt3
exp

[
−

(x−ct)2

4Dt

]
(7)

where u(x,t) is the impulse response of the advection–diffusion equation, i.e. when
an instantaneous upstream impulse δ(t) is introduced, the time of the discharge at
a distance x from the upstream is over (Naden, 1992; Franchini and O’Connel, 1996;10

Da Ros and Borga, 1997). From the unit impulse response, u(x,t) in Eq. (7), an IUH of
a catchment can be defined as

h(t) =

∞∫
0

W (x)u(x,t)dx (8)

where W (x) is the width function.15

W (x) in Eq. (8) can be substituted by W ′(x) which is a synthetic width function ob-
tained by simulation results of the Gibbsian model. Then, for a discrete distance inter-
val, Eq. (8) can be rewritten as

ĥ(t) =
n∑

i=1

i∆x√
4πDt3

W ′(i∆x)exp

[
−

(i∆x−ct)2

4Dt

]
∆x (9)

20

where W ′(i∆x) which is a synthetic width function. The IUH defined as Eq. (9) can be
regarded as a response function depending on spatial and temporal variation of rainfall
for each time step. Due to a stochastic nature of the Gibbsian model, one hundred
synthetic width functions were obtained from the simulation of networks.
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2.3 Study area and application of the WFIUH

The test watershed, the Chungju Dam watershed, is located in South Korea, of which
area is 6648 km2 (Fig. 1). The construction of the Chungju Dam was completed in
1985 for multiple purposes of water supply, power generation, and flood control in
Han River, the longest river in South Korea. The volume of the dam reservoir is up5

to 2.75 billion m3. The mean annual precipitation of the watershed is 1359.5 mm and
the mean annual temperature is 9.4 ◦C. Most of the test watershed is covered with
forests (82.2 %) and lest of the watershed is mostly covered by farmlands (11.6 %).
The watershed is located in a mountainous region and the mean catchment slope is
36.9 %.10

Figure 2 shows the reconstructed river networks of the Chungju Dam watershed
on a 24×28 lattice and the corresponding width function. Here, the width function
is defined as the catchment area at a distance from the outlet (Moussa, 2008). The
width function and the area function can be differently defined based on channelization
(Lashermes and Foufoula-Georgiou, 2007) but the width function basically represents15

the distance-area function (Lee and Delleur, 1976). For a given flow distance from the
outlet, the width function can be defined as number of grid points in this study. Then,
the width function is normalized by the total number within the watershed boundary.

The application of the WFIUH is based on grids (24×28) with four flow directions.
The reconstructed river networks and the corresponding width function is directly used20

to obtain runoff hydrographs (Eq. 8). Assuming a wide rectangular channel cross-
sectional geometry, the channel bottom slope is most important to determine the value
of parameters. The celerity and the diffusion coefficient for a wide rectangular channel
is given as follows (Franchini and O’Connell, 1996):

c =
3
2
× 1
n
R2/3S1/2

0 (10)25

D =
cy0

3S0
(11)
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where, n is Manning’s roughness coefficient, R is hydraulic radius, and y is initial depth.
The celerity of the Chungju Dam watershed is determined as 1.91 m s−1, and the dif-
fusion coefficient is obtained as 5.3×103 m2 s−1 using the mean channel bottom slope
over the watershed. The values of the both parameters are within the range of param-
eter values suggested by Franchini and O’Connell (1996) for natural watersheds: 100

5

and 103 for celerity and diffusion coefficient, respectively. Figure 3 shows the resulting
runoff hydrographs obtained by the WFIUH to the test watershed for three rainstorm
events from 1999 and 2004. Figure 3 compares the obtained runoff hydrographs from
the WFIUH with the observed flows and also the runoff hydrographs from other runoff
model, HEC-1, of which parameters were optimized from two other events from 199910

and 2004. The result shows that the WFIUH successfully reproduces the runoff hy-
drographs of the test watershed compared with the observed data and also with the
results from HEC-1. It should be noted that the results from HEC-1 were obtained from
calibrated model. In contrast, the parameter values of the WFIUH is relatively stable,
robust and determined physically.15

3 Results and discussion

3.1 Generation of networks

Two items are needed for generation of networks using stochastic network models. One
is the location of the outlet and the other is the boundary of a watershed. Simulation
is performed on a 24×28 lattice within the watershed boundary with the one outlet.20

Figure 4 shows the a realization of the Scheidegger model and the uniform model of
the river network for the test watershed. The outlet of the test watershed is located
at the far left of the lattice. The channel width at each point represents the maximum
amount of discharge (peak flows) at an uniform instantaneous injection of rainfall and
is normalized by the discharge at the outlet (the peak flow at the outlet is 1 and it is25

between 0 and 1 for other parts). The result shows that the uniform model (Fig. 4a)
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is more sinuous than the Scheidegger model (Fig. 4f). The magnitude of the peak
flow at the outlet itself is higher on the Scheidegger model compared to the uniform
model (Seo and Schmidt, 2012). However, the results indicate that the maximum peak
flows are observed not just at the outlet but also other parts of the mainstream on the
uniform model as shown in Fig. 4. In contrast, although the magnitude of the peak flow5

is greater than the uniform model, the maximum peak flow is only constrained to the
outlet on the Scheidegger model. The comparison between the flow distribution of the
Scheidegger and the uniform model implies the need to consider the spatial distribution
of peak flows inside the drainage network because the spatial distribution of peak flows
is directly connected to the risk of the corresponding drainage system.10

The Scheidegger and the uniform model are related to the Gibbsian model in that
the Scheidegger model can be represented as one extreme of the Gibbsian model
when β tends to infinity and the uniform model can be also represented as the other
extreme of the Gibbsian model when β tends to zero. The realizations of the Gibbsian
model are shown in Fig. 4b–e for the different β values of 10−4, 10−2, 10−1, and 100,15

respectively. The result in Fig. 4 illustrates that the river network becomes less sinuous
as β increases. When β = 10−4, the Gibbsian network is closer to the uniform model,
whereas it is closer to the Scheidegger model when β = 102.

The result shows that the uniform model (Fig. 3a) is highly sinuous compared with the
Scheidegger model (Fig. 3f). The magnitude of the peak flow at the outlet itself is higher20

on the Scheidegger model compared to the uniform model (Seo and Schmidt, 2012).
However, the results indicate that the maximum peak flows are observed not just at the
outlet but also other parts of the mainstream on the uniform model as shown in Fig. 3. In
contrast, although the magnitude of the peak flow is greater than the uniform model, the
maximum peak flow is only constrained to the outlet on the Scheidegger model. The25

comparison between the flow distribution of the Scheidegger and the uniform model
suggests the need to consider the spatial distribution of peak flows inside the drainage
network because the spatial distribution of peak flows is directly related to the risk of
the corresponding drainage system (Seo et al., 2014).
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Figure 5 shows the bifurcation ratio (RB) calculated for the simulated networks from
the Gibbsian model, the Scheidegger model, and the uniform model. The results shows
that the mean RB tends to increase as β increases for the Gibbsian model; RB = 2.14
for the uniform model, 2.21–3.30 for Gibbs’ model, and 2.71 for the Scheidegger
model). It should be noted that the bifurcation ratio is maximized for the Gibbsian5

model when β is equal to 102 as shown in Fig. 5. Menabe et al. (2001) investigated
the scaling exponent of the peak flow and peak of the width function for a Random
Self-similar Channel Network (RSN) with different bifurcation ratios using the linear
storage-discharge approximation. They showed that the scaling exponent of the peak
flows is similar to that of the width function for the average Shreve model (RB = 4),10

whereas the scaling exponent of the peak flows behaves different from the peak of the
width function for the range of RB between 4.2 and 4.7. Therefore, the behavior of peak
flow and peak of the width function should be assessed separately with care in this
study.

Figure 6a compares the averaged width function for each stochastic network model15

with the actual width function from the test watershed of the Chungju Dam. The Gibb-
sian models with β = 10−2 and 10 are given in black dash and grey dot, respectively.
The result shows that the actual width function (A) is far from the Scheidegger model
(S) or the Gibbsian model with higher beta (100) whereas, it is close to the uniform
model (U) and the Gibbsian model with lower beta (10−2). Figure 6b depicts the Nash–20

Sutcliffe model efficiency coefficient (E ) between the actual width function and the av-
eraged width function from each stochastic network model. The result indicates that
the model efficiency decreases as β increases for the test catchment. When β = 10−4,
the model efficient is to 0.65, but it decreases to −0.08 when β = 103. The result from
model efficiency coefficient indicates that the uniform model and the Gibbsian model25

with lower β (= 10−4) generates the closest width function to the actual one.
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3.2 Combination of the Gibbsian and the WFIUH for prediction purposes

As mentioned in the introduction, this study aims to combine stochastic network mod-
els that reproduces the width function of a watershed and a semi-distributed hydrologic
model that directly utilizes the width function and converts it to a runoff hydrograph. In
previous section, we examined the ability of the stochastic network models that repro-5

duce the actual width function and also the robustness of the semi-distributed model
in application to a test watershed. In this section, we make an attempt to demonstrate
that the combination of the two models is able to contribute to the PUB. Once it is
demonstrated that the stochastic network model is utilized to reproduce the runoff hy-
drographs, the subsequent request will be finding a regional characteristics in terms of10

river network configuration.
As shown in Eq. (9), the width function from the actual river network, W (x) can be

easily substituted by W ′(x), which is a synthetic width function obtained by simulation
results of the Gibbsian model. Due to a stochastic nature of the Gibbsian model, one
hundred synthetic width functions were obtained from the simulation of networks. The15

grey part Fig. 7 shows the upper and lower quartile of the runoff hydrographs obtained
from one hundred synthetic width function obtained from the Gibbsian model with dif-
ferent values of β for a rainstorm event on 1 August in 1999 in the test watershed. As
shown in the previous section, the Gibbsian model with lower β(= 10−4) generates the
closest width function to the actual one, which is consistent in terms of runoff hydro-20

graph as shown in Fig. 7a. As β increases the runoff hydrographs becomes narrower
and the peak grows higher compared to observed flows.

To evaluate how close the averaged runoff hydrograph to the observed hydrographs
quantitatively, the Nash–Sutcliffe model efficient coefficient is once more calculated be-
tween them for three rainstorm events (Fig. 8). Again, the results indicate consistently25

that the Gibbsian model with lower β generates the closest runoff hydrographs com-
pared with observed hydrographs. However, for the rainstorm event of 1 August 1999,
the result indicates that the model efficiency is highest (0.87) when β = 10−3, which
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is different from the case of width function; the Gibbsian with β = 10−4 produced the
closest width function to the actual one. For other two rainstorm events (19 Septem-
ber 1999 and 19 June 2004), the model efficiencies have maximum values of 0.71 and
0.64, respectively when β = 10−4, which is consistent with the behavior of the synthetic
width function. As mentioned earlier, the behavior of the width function and the runoff5

hydrographs do not coincide with each other unconditionally. In general, it is obvious
that the Gibbsian model with lower β produces closest width function as well as result-
ing runoff hydrographs compared with observation.

3.3 Spatial and temporal variation of rainfall: rainstorm movement

This section additionally introduces synthetic moving storms to evaluate that the sug-10

gested approach is able to reproduce runoff hydrographs not just for the case of uniform
rainfall but also for the case of moving storms for the test watershed. Once it is evalu-
ated, the impact of spatial and temporal rainfall distribution on runoff hydrographs can
be potentially assessed by the suggested approach in ungauged basins even without
detailed knowledge of river networks. The hypothetical moving storm’s shape is a nar-15

row band, of which width (the lengthscale parallel to the storm direction) is same with
the grid size of 4 km and the lengthscale perpendicular to the storm direction is wide
enough to cover the entire watershed with a rainfall intensity of 1 mm hr−1.

Figure 9 depicts runoff hydrographs from synthetic width functions of one hundred
simulations depending on β for a unit instantaneous rainfall, which is uniform through-20

out the test watershed. The grey area in Fig. 9 illustrates the range between the lower
and upper quartile from the simulation results, whereas the black dot represents the
averaged hydrograph compared with the hydrograph from the actual width function
(solid). As β increases, the result shows that the peak increases and the shape of
hydrographs becomes narrower compared with the actual width function as shown in25

Fig. 9. Figure 10 illustes the same results for a moving storm, which is moving upstream
depending on β. The result shows that the peak is decreased and the rising limb of the
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resulting hydrographs starts earlier compared with the uniform rainfall results shown in
Fig. 9.

In order to evaluate the proposed approach more quantitatively, Fig. 11 depicts
Nash–Sutcliffe efficiency of averaged runoff hydrographs from synthetic width functions
compared with the hydrograph of the actual network for a uniform rainfall, and a storm5

moving south, north, east, and west. Figure 11 additionally shows the ratio of peak
flows when synthetic width functions are used (Qps) and when actual network is used
(Qpa). The result shows that the combination of the Gibbsian model and the WFIUH
sucessfully regenerates the runoff hydrographs in case of moving storms. For exam-
ple, Fig. 11d indicates that the Nash–Sutcliffe coefficient is up to 0.98 and the peak10

ratio is also 0.98 when the Gibbsian model (β = 10−4) is utilized instead of the real
river network to obtain runoff hydrographs. In Fig. 11e, the Nash–Sucliffe (0.87) and
the peak ratio (0.70) are lowest for a rainstorm moving west among the moving storm
cases, but the suggested approach still captures the main characteristics of runoff hy-
drographs resulting from temporal and spatial rainfall variation due to storm movement.15

Therefore, these results imply that the impact of spatial and temporal rainfall distribu-
tion on runoff hydrographs can be potentially assessed by the suggested approach in
ungauged basins even without detailed knowledge of river networks.

3.4 Sensitivity of the parameters depending on geometry

As mentioned earlier, the width function approach is considerably simpler than the20

GIUH approach because it emphasizes the metric representation of the basin instead
of the topologic one. Moreover, the hydraulic parameters of the WFIUH are physically
consistent, while the GIUH velocity parameter lacks physical interpretation (Franchini
and O’Connell, 1996). Figure 12 illustrates the changes in Nash–Sucliffe model efficient
coefficient (E ) between runoff hydrographs using synthetic width functions (β = 10−4)25

compared with observed flows for the event on 1 August 1999 depending on the
changes of parameter values. The results shows that the runoff hydrographs are more
sensitive to the celerity (c) than the diffusion doefficient (D). This study applied the
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mean channel bottom slope over the watershed to determine the parameter values,
but a more detailed analysis is expected in the future to build a general consensus
about proper methodology for application of the WFIUH. Moreover, it should be noted
that the sensitivity analysis for grid sizes and the process involving effective rainfall are
excluded in this study and should be considered in future studies more in detail.5

4 Conclusions

In this paper, we suggested an approach that combines a synthetic width function ob-
tained from the stochastic network model and the WFIUH especially for the purpose
of flood estimation and direct runoff hydrographs. We applied the suggested approach
in a test watershed in South Korea and evaluated the possibility of the suggested ap-10

proach in ungauged basins for prediction. The original intend of this study is to com-
bine stochastic network models that reproduce the width function of a watershed and
a semi-distributed hydrologic model that directly utilizes the width function and converts
it to a runoff hydrograph. We demonstrated the ability of the stochastic network models
that reproduce the actual width function and also the robustness of the semi-distributed15

model in application to a test watershed in South Korea.
Additional analysis for moving storm effects revealed that the proposed approach

is able to assess the impact of spatial and temporal rainfall distribution on runoff hy-
drographs even without detailed knowledge of river networks. The proposed approach
is beneficial especially in prediction of ungauged basins because the stochastic net-20

work model has advantage that it reproduces width functions of actual river networks,
whereas the WFIUH has advantages that the parameter values are physically deter-
mined, which can be advantageous in prediction of ungauged basins. Once the re-
gional similarity in river network configuration is identified, the suggested approach
can be potentially utilized to estimate the runoff hydrographs for ungauged basins.25
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Figure 1. Test watershed (the Chungju Dam watershed) in South Korea.
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Figure 2. (a) Reconstructed river network on a lattice and (b) the corresponding normalized
width function of the test watershed.
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Figure 3. Application of the WFIUH to the test watershed for rainstorm events of (a) 1 Au-
gust 1999, (b) 19 September 1999, and (c) 19 June 2004.
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Figure 4. Realization of networks using stochastic network models: (a) the uniform model,
(b) the Gibbsian (β = 10−4), (c) the Gibbsian (β = 10−2), (d) the Gibbsian (β = 10−1), (e) the
Gibbsian (β = 100), (f) the Scheidegger model.
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Figure 5. Bifurcation ratio (RB) of the uniform model (U), the Gibbsian model (with β from 10−4

to 103), and the Scheidegger model (S) simulated for the test watershed.
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Figure 6. (a) Averaged width functions of the uniform model (U), the Gibbsian model (with β
from 10−4 to 103), the Scheidegger model (S), and the actual width function (A) of the test water-
shed; (b) Nash–Sutcliffe efficiency coefficient (E) between actual and averaged width functions.
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Figure 7. Runoff hydrographs from synthetic width functions of 100 simulations depending on
β for the rainfall event of 1 August 1999.
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Figure 8. Nash–Sutcliffe efficiency coefficient (E) between observed runoff hydrograph and
averaged runoff hydrographs from synthetic width functions for three historical rainfall events.
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Figure 9. Runoff hydrographs from synthetic width functions of one hundred simulations de-
pending on β for a unit instantaneous rainfall (uniform throughout the watershed).
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Figure 10. Runoff hydrographs from synthetic width functions depending on β for a rainstorm
moving north (a hypothetical storm band moving upstream).

11277

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 11. Nash–Sutcliffe efficiency of averaged runoff hydrographs from synthetic width func-
tions compared with the hydrograph of the actual network for (a) a uniform rainfall, and a storm
moving (b) south, (c) north, (d) east, and (e) west.
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Figure 12. Changes in Nash–Sucliffe model efficient coefficient (E) between runoff hydrographs
using synthetic width functions (β = 10−4) compared with observed flows for the event on 1 Au-
gust 1999 depending on the changes of parameter values.
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