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Abstract

The process of evapotranspiration (ET) plays a critical role in the earth system, driving
key land-surface processes in the energy, water and carbon cycles. Land-cover (LC)
exerts multiple controls on ET, yet the global distribution of ET by LC and the related
physical variables are poorly understood. The lack of quantitative understanding of5

global ET variation with LC begets considerable uncertainties regarding how ET
and key land-surface processes will change alongside ongoing anthropogenic LC
transformations.

Here we apply statistical analysis and models to a new global ET database to
advance our understanding of how annual actual ET varies with LC type. We derive10

global fields for each LC using linear mixed effect models (LMMs) that use geographical
and meteorological variables as possible independent regression variables.

Our inventory of ET observations reveals important gaps in spatial coverage that
overlie hotpots of global change. There is a spatial bias of observations towards the
mid latitudes, and LCs with large areas in the high latitudes (lakes, wetlands and barren15

land) are poorly represented. From the distribution of points as well as the uncertainty
analysis completed by bootstrapping we identify high priority regions in need of more
data collection.

Our analysis of the new database provides new insights into how ET varies globally,
providing more robust estimates of global ET rates for a broad range of LC types.20

Results reveal that different LC types have distinct global patterns of ET. Furthermore,
zonal ET means among LCs reveal new patterns: ET rates in low latitudinal bands
are more sensitive to LC change than in higher latitude bands; LCs with a higher
evaporation component show higher variability of ET at the global scale; and LCs with
dispersed rather than contiguous global locations have a higher variability of ET at the25

global scale.
Results from this study indicate two major advancements are required to improve our

ability to predict how ET will vary with global change. First, further collection of ground
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truth observations of ET is needed to fill gaps in LC types and spatial location identified
in this paper. Second, LC types need to be de-aggregated into finer categories to better
characterize ET, to reduce uncertainty and weakened strength to predictor variables,
associated by aggregation of heterogeneous LC types into one group; this will require
the development of higher-resolution LC databases.5

1 Introduction

Evapotranspiration (ET), the land-surface flux of the water cycle, is a critical process
in the Earth system as it drives land–atmosphere interactions for three major global
cycles, the energy, water, and carbon cycles, directly and indirectly affecting surface
temperature, plant productivity, and water availability. Accurate global-scale estimates10

of ET are thus critical for better understanding of climatological (Shukla and Mintz,
1982), hydrological (Mueller et al., 2013), and carbon interactions (Jasechko et al.,
2013). However, estimations of ET made by process-based models are uncertain
due to the complexity and nonlinearity of the systems governing ET as well as the
lack of reference observations to validate the estimates (Mueller et al., 2011). Thus,15

independent global spatial fields of ET are needed for validation of Land Surface
Models (LSMs), and to increase our understanding of the spatial patterns in the water
cycle (Boé and Terray, 2008; Mueller et al., 2011; Seneviratne et al., 2010).

Land-cover (LC) type influences the four major pathways that drive ET, through:
(a) water availability, (b) energy availability, (c) photosynthesis rates, and (d)20

atmospheric moisture gradient (Supplement A; Sterling et al., 2013). LC change alters
water availability at the land surface by changing rooting depth, changing soil properties
that retain moisture, and by directly removing or adding water to the surface through
irrigation, inundation and draining. LC change alters energy availability by changing the
albedo and the thermal inertia of the surface. LC change alters photosynthesis rates25

by changing leaf area, stomatal density, water use efficiency (e.g., C3 to C4 plants)
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and nutrient availability. Lastly, LC change alters the atmospheric moisture gradient by
altering the surface roughness and therefore surface turbulent exchange.

While ET is challenging both to model and to measure on the ground, there are
a range of ET datasets that have advanced our understanding of this important flux:
diagnostic observation-based datasets, reanalyses, and uncoupled or coupled LSMs,5

with each having its own biases and limitations (Mueller et al., 2011, 2013). These
datasets are useful in establishing global patterns of ET, and how they vary by climate
type, but do not deliberately set out to estimate ET for individual LC types. To date,
there is no available database designed to test the response of ET to LC change,
particularly one that covers a broad range of LC types. Thus, the characterization of10

ET rates and patterns among different LC types has remained elusive.
Here we use a new assembly of information on point-based estimates of ET for

discrete LC types to gain new insights on how ET varies with a broad range of
LC types. We create and employ a database of point-based estimates of annual
actual ET rates (ET_OBS) and generate global fields of ET (ET_LMM) from these15

observations generated with a linear mixed effect model (LMM) using meteorological
and geographical predictors. We examine the following questions:

1. What are the patterns in available information from ET observations among LC
types?

2. What are the global patterns of annual actual ET for different LC types?20

3. What are the patterns of uncertainties for global predictions of ET using
a statistical model among LC types?
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2 Methods

2.1 GETA 2.0 database

The GETA 2.0 (Global ET Assembly 2.0) database is a new global-scale dataset of
annual actual ET rates classified by LC type (Table 1, Supplement B). The GETA 2.0
database comprises 2363 points across the globe representing 16 LC types (Table 1).5

GETA 2.0 has improved from its first version used in Sterling et al. (2013) through
the addition of over 800 more data points. The ET values in the GETA 2.0 database
(ET_OBS) include estimates covering the period 1850 to 2010, with records varying
in length from 1 to 107 years. Data are collected with a variety of methods, including
eddy covariance, energy balance, soil moisture balance, and water balance methods,10

over variable scales from plot studies to larger catchments. Criteria for inclusion in
the database are that the data points had to be published in government or scientific
literature, represent annual actual ET, represent ET for a single LC type, and be
representative of a specific location on the planet. This approach follows fundamental
work begun by Helmut Lieth in the 1960s (Lieth, 1972), later furthered by Olson (Olson,15

1975) and Atjay and coworkers (Ajtay et al., 1979), that determined characteristic net
primary productivity (NPP) fluxes for the major ecosystems of the world based on
a database of point observations from around the globe.

GETA 2.0 includes both natural and anthropogenic LCs (Table 1). The LC classes
were chosen to be closely linked to plant functional types commonly used in LSMs20

and to follow the IPCC classification scheme (Sterling and Ducharne, 2008). The LC
rasters have a five-minute resolution, enabling the identification of individual wetlands
and urban areas, as well as major topographic and physical drivers of the local climate.
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2.2 Model development

2.2.1 Independent predictors

Predictors that are independent of LC type were used to model global ET fields
for each LC type. We used predictors from the NCC 53 year (1948 to 2000), 6 h,
meteorological forcing dataset (Ngo-Duc et al., 2005), an elevation dataset (United5

States Geological Survey, 1997), and latitude and longitude. The annual average
values of seven meteorological predictors (Table 2) were extracted from the NCC
dataset. The half-century timeframe of NCC captures the same timeframe in which
most of the ET observational data were collected. Like other atmospheric forcing
datasets, the NCC dataset is designed to describe the overlying meteorology for10

a variety of LC types at a particular location on the surface, and can be considered
independent from LC type. It should be noted, however, that these atmospheric forcing
datasets are based upon data from meteorological stations located on the surface
that are typically situated on grass plots, so the atmospheric forcing data would be
representative more of grass plots than any other LC type. There are 381 GETA 2.015

data points located on large lakes, coastal zones and islands that fall in cells not
covered by rasters of the independent predictors. For points that lie on the boundary
or within 1◦ of the NCC raster we manually moved the ET points to the nearest NCC
cell from which the information was gathered for the statistical modelling of ET. For the
case of large lakes, such as Lake Chad, Lake Superior and the Aral Sea that do not20

have dataset coverage the elevation and NCC forcing datasets were interpolated using
the nearest neighbour value at the coastline for each cell. Small oceanic islands did not
have overlying meteorological data, and ET_OBS on such islands and points that were
classified generally as forests were not included in LMMing. Thus, of the 2363 GETA
data points, 2248 were used to model the global ET_LMM fields.25
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2.2.2 Modelling global fields of ET

Statistical relationships were identified between ET_OBS and the independent
predictors to generate global fields of ET for each LC type. The strength of the
relationship between ET_OBS and the independent predictors varies by LC type
(Supplement C). Global ET fields were generated at a 1◦ resolution using generalized5

LMMing, which allows for the statistical analysis of grouped data (Pinheiro and Bates,
2000). LMM quantifies the variability in ET across and within LC type, while also
controlling for independent predictors that may affect this relationship. Instead of fitting
a single numerical coefficient in a multiple linear regression model (i.e. a “fixed” effect),
the LMM allows coefficients to be normally distributed by group classification (i.e. a10

“random” effect) where each group-specific effect forms a point on the estimated
normal curve. Thus, LMM has fixed and random effects that allow for different rates
of predictors for each LC type.

We divided ET_OBS values into groups by LC type and then modelled them in
a forward stepwise fashion using the Bayesian Information Criterion (BIC) (Kadane and15

Lazar, 2004). The best model was created by selecting the predictors that generated
the lowest BIC value; the best model identified precipitation and temperature as random
effects and shortwave radiation as a fixed effect (Fig. 1). The data were tested against
the hypothesis of no spatial autocorrelation (p < 0.01) using the Moran’s I test statistic.
The hypothesis was rejected at α = 0.05, so we updated the model to include a spatial20

correlation based upon the haversine distance between points. The best fit model
followed (Eq. 1):

ln(ET) = Interceptall + InterceptLC + (TCall +TCLC) · Tair

+ (PCall +PCLC) ·Precip+SCall ·SW (1)
25

where TCall is the fixed intercept for temperature, TCLC is the random effect for
temperature, Tair is air temperature, PCall is the fixed effect for precipitation, PCLC is
the random effect for precipitation, Precip is precipitation, and SCall is the fixed effect
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for shortwave radiation, and SW is short wave radiations; all of these parameters are
normalized to z-score values.

An observed strong correlation between the random effects of precipitation and
temperature (Fig. 1) was investigated to ensure there was not a problem with the model
fit by fitting linear models for each LC individually with only temperature, precipitation5

and shortwave radiation as predictors; no violations of assumptions were found in the
examination of the residuals and the resultant relationships.

Next, we masked the global fields of ET that were generated by the models to the
5 min cells in which the LCs appear. This step changed the 1◦ ET predictions to 5 min
resolution, resulting in a finer resolution located only at their specified LCs (ET_LMM).10

An implicit assumption here is that the major drivers of ET at the global scale that are
not encompassed in the determination of the LC location are changing at a spatial rate
that can be represented by a 1◦ grid (e.g. insolation, precipitation, relative humidity),
and that the finer-scale variations in topography and soils are captured in the 5 min LC
rasters themselves.15

The 5 min presence/absence LC rasters used to mask ET_LMM were derived from
Ramankutty and Foley (1999) and Sterling and Ducharne (2008), except for the tree
plantation raster which was derived from Erb et al. (2007). We converted percent cover
to presence/absence at the 5 min resolution of tree plantations by preserving the area
(Kröger, 2012), assuming a linear tree plantation expansion rate between 1990 and20

2010, with an estimate of 221.1955 million hectares of tree plantations globally. For all
LCs, the rasters used to mask ET_LMM fields did not overlie neatly with the ET_OBS
points, as there are cases where ET_OBS measurements were made in cells in which
the LC measured was not the dominant LC. 58 % of ET_OBS did not align directly with
the overlying LC rasters. Because these points represent a finer resolution of LC not25

captured in the 5 min rasters, rather than an error in LC classification they remained in
the model.

To determine confidence intervals for both the random effect slopes by LC and to
generate a map of uncertainty we bootstrapped the raw data. Bootstrapping randomly
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samples the raw ET values within groups to simulate possible combinations and then
fits a model (Efron and Tibshirani, 1994). This was completed 1000 times to generate
a distribution of possible values. We generated the distribution of estimates and the
predicted ET rates 95 % confidence interval by extracting the 0.025th and 0.975th
quantiles of the bootstrapped data predictions.5

3 Results and discussion

3.1 Patterns in available information on annual ET

There is a marked variation of coverage of ET observations (ET_OBS) both spatially
and by LC type (Figs. 2 and 3); some LCs and regions in the globe have much fewer ET
observations than others. Most ET observations are in forested environments (57.5 %10

of observations, Fig. 2), and of these most are in evergreen broadleaf and evergreen
needle leaf forests; the exception is deciduous needle leaf forests, which has the fewest
ET measurements of all LC types and has a limited global extent, predominantly in
Siberia. Barren lands and savannah have the fewest ET estimates next to deciduous
needle leaf forest, followed by urban lands. As a group, anthropogenic LCs have lower15

ET coverage than the natural LCs (Fig. 2).
The spatial distribution of ET observations varies markedly across the globe (Fig. 3).

Few data points are found in Central Asia and Western Africa. Western Europe and
the United States have the densest coverage of ET measurements, although these
areas of highest density do not necessarily imply sufficient spatial coverage of ET20

measurements.
Regions with lower ET_OBS coverage intersect key global hotspots. South East Asia

is a hotspot for change in ET with LC change (Boisier et al., 2014; Sterling et al.,
2013), for correlation of summer temperature and ET (Seneviratne et al., 2006) and
for high threat to Human Water Security (HWS) (Vorosmarty et al., 2010). Equatorial25

Africa is a hotspot of ET change due to LC change (Boisier et al., 2014; Sterling et al.,
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2013), a high risk to HWS (Vorosmarty et al., 2010), and projected early temperature
departure from atmospheric CO2 increase (Mora et al., 2013). Other areas with poor
ET coverage that intersect areas of high threat to HWS and change in ET from
LC change include western South America, India, Eastern China and Afghanistan,
Western Australia, Central America, East Africa, European Russia, Western Asia and5

Southern Europe.
Our statistical model predicts that for the LCs where temperature greatly contributes

to higher ET_LMM values, precipitation does not and vice versa (Fig. 1, Table 3).
This relationship follows the theoretical moisture vs. energy-limited status of LC types
(e.g. Creed et al., 2014). For example, the ET_LMM rates for barren lands (BAR,10

often moisture limited) increase with increasing precipitation, with almost no change
with increasing temperature. Conversely, ET_LMM rates for wetlands and irrigated
agriculture (by definition energy limited) increase with temperature, with almost no
change with increasing precipitation. ET reacts to a more equal combination of
precipitation and temperature drivers for forests, savannah, non-irrigated agriculture,15

tree plantations, grazing lands and urban lands.

3.2 Global ET means for individual LCs

Our analysis reveals that the order in which terrestrial biomes have the highest to
lowest ET rates follows the established order of biome NPP ranking (Lieth, 1975; Olson
et al., 1983; Saugier et al., 2001). The mean annual ET rates (for both ET_OBS and20

ET_LMM) are highest for evergreen broadleaf forest, irrigated croplands, and wetlands
and are lowest for barren land (Fig. 4, Table 1). The majority of ET_OBS lie between 0.3
and 1.5 m yr−1 (Fig. 4), with the observed mean equal to 0.84 m yr−1 and the median
equal to 0.69 m yr−1.

The data show that many LC types have significantly different global annual average25

observed ET (ET_OBS) from other LCs (Table 2). Of the 120 different comparisons
of ET_OBS LC types, 70 (58.3 %) are significantly different at α = 0.05 using Tukey’s
mean comparison test (Table 4). Non-irrigated agriculture and deciduous broadleaf
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forests are the LCs with the fewest significant differences from other LC types, these
LCs have ET values in the middle range of ET (0.25 to 1.0 m yr−1), with means between
0.6 to 0.7 m yr−1. Lakes have a significantly higher ET rate than for all other LC types.

However, the ET comparisons based on ET_OBS data are limited by the spatial
coverage of the observations. Most ET observations are located in mid-latitudes, and5

LCs with large areas in higher latitudes (e.g. lakes, wetlands and barren lands) are
more poorly-represented by the current ET observations. As a result, the mean global
average ET for these LCs derived from ET_OBS is too high. For these LCs, ET_OBS is
higher than the ET_LMM mean (Table 1, Fig. 4), as expected because ET_LMM covers
the high-latitudes. The difference in maximum value for the ET_OBS and ET_LMM is10

greatest for lakes, barren lands and wetlands.
For other LCs, the means of ET_OBS and ET_LMM are similar, such as for

evergreen broadleaf forest, deciduous broadleaf forests, savannah, shrub land,
irrigated agriculture and urban lands; the location of these LCs tend to be in the mid- to
low- latitudes for which there is better representation in ET_OBS. In general, the model15

predictions (ET_LMM) are well within one standard deviation of ET_OBS for most LCs
(Table 1, Fig. 4).

The GETA 2.0 ET estimates for individual LCs correspond well with another estimate
(Rockström et al., 1999) that summarized mean ET for LC types, although comparisons
are challenging because of lack in congruency in LC classes among studies. For the20

four LC types that are congruent with GETA 2.0 types the Rockström et al. (1999) mean
annual ET estimates fall within the ranges of ET_OBS and ET_LMM. Of interest is the
difference in Amazon ET patterns from our results and those from a summary of flux
tower data by Jung et al. (2010). Jung et al. (2010) project that ET is lower for wetlands
than topical forest in the Amazon, while our findings show wetland ET as higher than25

the surrounding tropical forest in this region (Fig. 5). The GETA 2.0 results appear to be
more accurate because wetland ET rates should be higher than the surrounding forest
based on a comparison with NPP; NPP estimates are greater for wetlands than tropical
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forests (Amthor and Group, 1998; Lieth, 1975) and there is additional direct evaporation
expected from wetlands in addition to the transpiration captured in the wetland NPP.

Global ET_LMM fields project a cumulative total ET (TET) of 70 600 km3 yr−1 for
a globe covered with natural vegetation (Fig. 5a and b) and the overlying wetlands. This
value coheres with the range of published estimates of TET (73 000 km3 yr−1, Arora,5

2001; 71 000 km3 yr−1, Baumgartner et al., 1975; 72 900 km3 yr−1, Berner and Berner,
1987; 60 000 to 85 000 km3 yr−1, Haddeland et al., 2011; 62 800 km3 yr−1, Mu et al.,
2011; 75 000 km3 yr−1, Oki, 1999; 56 000 to 84 000 km3 yr−1, Rockström et al., 1999;
and 64 500 to 72 000 km3 yr−1, Mueller et al., 2013). Our analysis includes major lakes,
not included in many other analyses, which may explain why our estimate lies on the10

higher end of the range of projected TET.

3.3 Zonal patterns of ET

The modelled ET (ET_LMM) results show that different LC types have different zonal
patterns of ET (Fig. 6). LCs differ in rates as well as the shape and variability of their
zonal ET means. Results indicate that lakes have the highest mean ET rates at almost15

all latitude points, while deciduous needle leaf forest has the lowest (Table 1, Fig. 6).
Of LCs that extend across majority of the latitudes, barren lands and shrublands have
the lowest values.

The zonal plots show that the expected response of ET to a particular LC change is
not the same across all latitudinal bands. For example, results show that conversion of20

wetlands to grazing land will decrease annual ET at all latitudes, except for above 60◦ N;
however, the difference is most significant in the mid-latitudes around 25◦ N and 25◦ S
(Fig. 6). Results suggest that a change from evergreen broadleaf forest to urban lands
would cause the greatest reductions in ET in the latitudinal band between about 20◦ S
to 20◦ N as compared with higher latitude bands. A change from shrub land to lakes25

would cause the greatest increases in ET between about 20◦ S to 20◦ N. Changing
barren land to irrigated agriculture at about 45◦ S likely will cause a smaller increase in
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ET then a change at 25◦ N latitude (Fig. 6). Thus, the zonal plots summarize the likely
ET changes resulting from specific LC changes in a particular latitude band.

The most common zonal pattern of ET shows a higher mean ET rate around the
equator that declines with increasing latitude but the shape of this relation varies
with LC type. The zonal patterns reveal that LCs with highest available surface water5

(evergreen broadleaf forest, lakes and wetlands) also have the largest increases in ET
with latitude towards the equator (Fig. 6). In contrast, LCs with the lowest amount of
available surface water (grasslands, shrub lands and barren land) have the smallest
increases in ET with latitude towards the equator. The common zonal ET shape is
consistent with another study that showed for ET rates for all LCs lumped together10

peaking at about 0◦ latitude (Zeng et al., 2012).
Results suggest that the global-scale pattern of a LC location, whether dispersed

or contiguous, impacts zonal ET variability. Results show that LCs that have more
contiguous global locations (e.g. non-irrigated croplands, deciduous broadleaf forests
and shrub lands, Fig. 5) have smoother zonal curves with less variability among latitude15

bands. In contrast, LCs with dispersed global locations (e.g. lakes, irrigated agriculture,
tree plantations, and urban lands, Fig. 5) have more jagged curves (Fig. 6), reflecting
higher variability in mean zonal ET in adjacent latitude bands. Thus LCs with larger
contiguous areal locations are expected to have more gradual changes in climate
among adjacent cells, and more direct feedback over their overlying meteorology20

than do LCs with dispersed locations. Zonal ET_LMM confidence intervals are largest
around the equator and 20–30◦ N, corresponding with the latitudinal belt that includes
a large range of climate types (e.g. deserts in Africa and tropical forests in SE Asia).

Results also indicate differences in global scale ET variability can also be explained
by relative roles of vegetation among LC types. LCs for which ET is dominated by25

one of energy or moisture limitations (barren land, wetlands, and lakes, Fig. 1) have
more variability in their zonal patterns with wider confidence intervals around the mean
(Fig. 6). In contrast, LCs for which ET is governed through a more equal combination
of water availability and energy (such as evergreen needle leaf forest, savannah, and
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non-irrigated cropland, Fig. 1) can be considered to be more vegetation-dominated;
these LCs have lower variability in their zonal patterns with smaller confidence intervals
around the mean (Fig. 6). The first group of LCs are expected to have a greater role of
evaporation in ET, as these LCs have more open water and bare soil; thus, a possible
explanation for higher ET variability of these LCs is that they can occur in a much wider5

variety of climates than the vegetation-dominated LCs, and are therefore exposed to
a larger range of ET drivers. Indeed, we observe that the ranges of the independent
predictors (shortwave radiation, precipitation and air temperature), normalized by the
LC area, are greatest for lakes, followed by urban areas and wetlands, and that barren
lands have the largest temperature and shortwave radiation range of all the LCs. For10

the “vegetation-dominated” LCs, the lower variability in global ET can be explained by
a smaller range of climate conditions experienced per unit area of the LC, and thus
these vegetation dominated LCs are exposed to a lower range of ET drivers. These
relationships imply that LCs dominated by energy or moisture limitations will have more
uncertainty in their projections with a statistical model than from vegetation-dominated15

LCs with more balanced energy and moisture limitations to ET. An exception to this
observation is that evergreen broadleaf forest (Fig. 6) which is governed by a balance
of both energy and moisture limitations also has a wide confidence interval; the higher
than expected variability of evergreen broadleaf forest may be due to its very high ET
rates or to its lower percentage of interception compared to other forest types (following20

Miralles et al., 2010). Further research using more refined LC classes is needed to
examine these hypotheses.

3.4 Uncertainties in ET for individual LC types

Confidence intervals generated using the bootstrapped models indicate that the largest
uncertainties in the ET_LMM predictions lie in Africa and northern latitudes (Fig. 7).25

These uncertainties qualitatively agree with the density of points generated from
ET_OBS in that the lowest uncertainties are located in areas with the most points, such
as North America and Europe (Fig. 7), and the largest uncertainties lie in predictions of
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Africa, Southern Asia, South America and far northern locations. In terms of LC type,
the largest uncertainties are associated with barren lands and wetlands (Fig. 7).

Reliability of ET_LMM predictions also varies with LC type due to varying levels of
extrapolation in the model resulting from predictors being used outside of the ET_OBS
range. We have mapped the regions of coverage for each LC type to identify the5

locations the ET predictions are less certain (Supplement D); some of the LCs have
poorer coverage of the independent predictors by ET_OBS, leading to less accurate
predictions in ET_LMM. In particular, barren land is not well covered by the predictor
ranges, resulting in less certain ET predictions outside of the predictor ranges in
Northern Africa, Tibet, the Arctic and the Altiplano. These maps also serve to identify10

where further data collection is needed so that ET fluxes of the LCs can be better
understood.

We find that the uncertainty in global modelled annual average values of ET
(ET_LMM) varies with LC type and global location. LCs with the highest uncertainty
in ET_LMM projection have dispersed locations (Fig. 5), lower point and density of15

coverage (Figs. 2 and 3), larger areas with climate conditions outside the ET_OBS
range (Supplement D), and have a greater role of evaporation in ET. In contrast, LCs
with the lowest uncertainty have more contiguous locations, higher point and density
of coverage, smaller areas with climate conditions outside the ET_OBS range, and
are vegetation-dominated. For example, lakes and barren lands have a relatively high20

uncertainty in ET predictions, associated with decoupling of LC location from climate
variables (i.e. more possible climates in which the LC can occur), aggregation of
disparate sub-units which would cause global-scale heterogeneity in the data, and
extrapolation of ET_LMM beyond range of predictor variables, associated with gaps
in measurements in key locations (particularly barren land) (Supplement D).25

ET in ocean archipelagos is not well represented in the analysis, due to gaps in
coverage of the independent predictors. Advances in atmospheric forcing datasets to
cover ocean archipelagos are needed to address this limitation. Future work is also
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recommended to extend this analysis to cover sub-annual variation, finer spatial scales,
and the impact of successional stages on ET.

4 Conclusions

Our assembly and statistical analysis of the novel GETA 2.0 database provide
a powerful new characterization of global ET patterns for a broad range of LCs,5

building upon existing knowledge in other databases that do not classify ET by LC
type. Our results show that LCs have distinctly different means and zonal patterns.
Lakes have the highest ET rates across all latitude bands, although the high latitudes
are particularly uncertain.

The global fields of ET produced here (ET_LMM) are useful as a reference for10

process-based model estimates of ET because they are derived from statistical
modelling of observations, and do not rely on the same assumptions used in
deterministic land surface and climate models. Furthermore, information presented
here on ranges of ET observations for individual LC types (Table 1, Fig. 3) can be
used to support decisions on whether modeled ET outliers can be excluded based on15

physical considerations (e.g. McCabe et al., 2008).
An interesting finding is that ET is more sensitive to LC change in some latitude

bands than others. Changes to ET from LC change are expected to be largest in the
tropical latitude bands, particularly resulting from changes between LCs with high water
availability and low water variability. This finding implies that global land use planning20

must be particularly careful in the tropics because of the possibly heightened possible
impacts to the earth system in these latitude bands.

Our analysis suggests two fundamental LC characteristics affect global ET variability.
Contiguous LCs display smaller ET variability than dispersed LCs. And LCs that
have a heightened role of evaporation in ET have higher variability in global ET than25

vegetation-dominated LCs. More work to further explore these hypotheses is needed
to advance our ability to predict changes to ET with global change.

12118



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Our inventory of annual actual ET observations reveals regions and LC types
where estimates are most lacking, and many of these are within key global change
hotspots in the Arctic, Africa and central Asia. Some LCs have much sparser ET
observations than others. Anthropogenic LCs, including grazing land, non-irrigated
croplands, and urban areas, emerge are among the most poorly represented LCs by5

ET observations and we recommend that anthropogenic LCs be targeted for future
monitoring of ET. Many anthropogenic LCs also face higher heterogeneity of overlying
meteorological conditions within their LC type, related to a greater role of evaporation in
ET (e.g. reservoirs), increased spatial dispersion (e.g. urban areas), or poorer density
of coverage (e.g. grazing), or a combination of these factors (e.g. irrigated cropland).10

Thus it is particularly challenging to reliably project ET in anthropogenic LCs using
statistical models at the global scale. An added challenge is that anthropogenic LCs are
also difficult to parameterize in process-based models because of their heterogeneity.
As LC change continues, anthropogenic LCs will play an increasingly significant role in
overall global ET rates and advances in modelling and observation networks of ET15

in human dominated areas are needed. Division of LCs into subclasses for future
modelling will help to reduce the heterogeneity needed to better define characteristic
the land surface fluxes in these LCs.

Resolution thus is an important characteristic of any global projection of ET. Local
high and low values of ET cancel out with coarser spatial resolutions leading to20

underestimation of ET gradients within continents (Mueller et al., 2011). The relatively
fine resolution is an advantage of GETA 2.0 as it captures local features important in
terms of climate and water budgets such as individual lakes and wetlands. However, to
the extent that the ET_LMM generated here represents only a single climate within
a grid cell, the range/variability in LC types and ET rates will always be lower in25

the model than in the real world, where diverse microclimates can harbour a greater
variety of ET rates and LC types. A finer resolution scheme that accounts for more
heterogeneity will allow for improved representation of the diversity of microclimates
but will inevitably fall short of representing all possible microclimates and LCs.
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Issues related to LC change will grow in complexity, as our land surface accumulates
a more complicated history of varying types of LC change all while adjusting to changes
in overlying meteorology. Continued advances in understanding how ET varies spatially
and with LC type are necessary to improve predictions and mitigation actions for the
future. The findings here on characteristic ET rates and global patterns with LC type5

improve our quantitative understanding of the spatial patterns in the water cycle and
how ET will change with ongoing anthropogenic transformations; this fundamental
information is needed for us to better understand how the earth’s energy balance,
carbon cycle, and water cycle will respond to global change.

5 List of Supplement10

A. Conceptual model of common pathways through which LC change affects ET.

B. The GETA 2.0 Database, all points used in the modelling of ET, as well as
an addition 13 points not used in modelling of ET_LMM because of a general
forested classification (FFF). References for each estimate are included.15

C. Scatter plots of annual actual ET (ET_OBS) and independent predictors (Table 2)
for each LC type.

D. Global plots of areas where ET_LMM projections are outside the ranges of20

independent predictors captured by ET_OBS.

The Supplement related to this article is available online at
doi:10.5194/hessd-11-12103-2014-supplement.
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Table 1. LC type and annual actual ET estimation (m yr−1). Type refers to LC type, whether
natural (N) or anthropogenic (A). ET_LMM refers to ET statistics derived from the ET_LMM
method. ET_OBS refers to ET statistics derived from the ET_OBS.

LC type Symbol Type ET_LMM (m yr−1) ET_OBS (m yr−1) Difference of Mean
Max Range Mean Std. Max Range Mean Std. ET (ET_OBS-ET_LMM)

Evergreen broadleaf forest EBF N 1.56 1.22 1.21 0.16 3.28 3.15 1.2 0.39 0.01
Deciduous broadleaf forest DBF N 1.19 0.84 0.75 0.2 2.41 2.26 0.71 0.35 0.04
Evergreen needle leaf forest ENF N 1.34 1.2 0.39 0.16 1.5 1.41 0.56 0.27 −0.17
Deciduous needle leaf forest DNF N 0.6 0.44 0.28 0.05 1.95 1.84 0.47 0.47 −0.19
Mixed forest1 MXF N 1.39 1.26 0.34 0.18 2.84 2.66 0.66 0.35 −0.32
Savannah SAV N 1.31 1.15 0.78 0.24 3.18 2.91 0.88 0.48 −0.1
Grassland GRS N 1.27 1.19 0.42 0.15 2.24 2.23 0.58 0.42 −0.16
Shrubland2 SHR N 0.93 0.92 0.31 0.13 0.97 0.9 0.39 0.22 −0.08
Barren land BAR N 1.04 1.04 0.07 0.07 1.67 1.66 0.32 0.3 −0.25
Wetlands WTL N 1.94 1.82 0.83 0.51 4.01 3.81 1.06 0.64 −0.23
Lakes and Resevoirs3 LAK A/N 2.59 2.46 0.56 0.39 3.58 3.45 1.61 0.74 −1.05
Irrigated cropland4 CRI A 1.5 1.11 0.93 0.25 4.6 4.3 1.14 0.79 −0.21
Non-irrigated cropland5 CRN A 1.45 1.45 0.65 0.3 1.83 1.66 0.62 0.35 0.03
Tree plantations TPL A 1.37 1.17 0.67 0.37 2.5 2.37 0.83 0.4 −0.16
Grazing GRZ A 1.66 1.66 0.66 0.32 2.69 2.57 0.77 0.52 −0.11
Urban and built-up HMO A 1.18 1.13 0.48 0.17 1.13 1.02 0.52 0.23 −0.04

1 These are forest areas with mixed species (specified).
2 Combined closed shrubland and open shrubland.
3 Includes both lakes and inundated lands, grouped together because of their shared properties.
4 Includes cells that are dominated by irrigated cropland, but not all cells containing cropland.
5 The cropland dataset contains locations in desert areas which are likely erroneous, unless irrigated. We did not remove these cells in our global ET field generation. CRN
was modified to not include irrigated cropland cells.
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Table 2. Independent variables tested as model predictors of ET.

Variable Name Description Units Source

Precipitation Combined rainfall and snowfall rate kg m−1 Ngo-Duc et al. (2005)
Tair Near surface air temperature at 2 m K Ngo-Duc et al. (2005)
Qair Near surface specific humidity at 2 m kg kg−1 Ngo-Duc et al. (2005)
Wind Near surface wind speed at 10 m M s−1 Ngo-Duc et al. (2005)
Psurf Surface Pressure Pa Ngo-Duc et al. (2005)
Swdown Surface incident shortwave radiation W m2 Ngo-Duc et al. (2005)
Lwdown Surface incident long wave radiation W m2 Ngo-Duc et al. (2005)
Elevation Land elevation m USGS (2013)
Lat Latitude 1◦ ×1◦ NA
Long Longitude 1◦ ×1◦ NA
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Table 3. Regression coefficients estimated using a linear mixed model with spatial correlation.
These estimates are for the log ET amounts across the globe. Rasters used for prediction have
been standardized and transformed to the log scale so that the slopes are directly comparable
between predictors and within LCs.

Intercept Random Effect Fixed Effect
Tair Precip SW

All 0.64 1.19 1.2 1.14
EBF 1.2 0.95 1.00 NA
DBF 1.04 0.97 0.93 NA
ENF 1.07 1.03 1.01 NA
DNF 1.06 1.04 0.96 NA
MXF 0.99 1.00 1.04 NA
SAV 0.94 1.00 1.00 NA
GRS 0.84 0.92 1.09 NA
SHR 0.71 0.89 1.11 NA
BAR 0.55 0.85 1.44 NA
WTL 1.3 1.15 0.82 NA
LAK 1.54 1.17 0.8 NA
CRI 1.26 1.06 0.85 NA
CRN 0.98 0.99 1.03 NA
TPL 1.07 1.03 0.95 NA
GRZ 1.03 0.97 1.08 NA
HMO 0.83 1.01 1.02 NA
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Table 4. Tukey Mean comparison test of differing LC ET_OBS means. Significance at alpha=
0.05 level is noted by bold typeface.

EBF DBF ENF DNF MXF SAV GRS SHR BAR WTL LAK CRI CRN TPL GRZ HMO

EBF
DBF 0.00
ENF 0.00 0.00
DNF 0.00 0.57 1.00
MXF 0.00 1.00 0.55 0.90
SAV 0.00 0.62 0.00 0.05 0.21
GRS 0.00 0.33 1.00 1.00 0.99 0.01
SHR 0.00 0.00 0.11 1.00 0.00 0.00 0.14
BAR 0.00 0.00 0.05 1.00 0.00 0.00 0.05 1.00
WTL 0.36 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00
LAK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CRI 1.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 1.00 0.00
CRN 0.00 0.98 1.00 0.99 1.00 0.18 1.00 0.15 0.05 0.00 0.00 0.00
TPL 0.00 0.34 0.00 0.05 0.04 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
GRZ 0.00 1.00 0.01 0.31 0.89 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.80 1.00
HMO 0.00 0.42 1.00 1.00 0.92 0.02 1.00 0.98 0.74 0.00 0.00 0.00 1.00 0.01 0.19
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Figure 1. Linear mixed modelling slope by predictor. Slopes of two random effects – air
temperature (blue) and precipitation (green) – and fixed slope – shortwave radiation (red). The
fixed effect is displayed by the dotted line, with the additional random effect shown by the dot.
Lighter shading indicates the bootstrapped distribution, where the horizontal line is the mean
of the bootstrapped distribution.
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Figure 2. Count and density of ET measurements (ET_OBS) by LC. Count of points in the
GETA database for each LC shown in dark blue using the left axis, and the density of points for
each land-cover (light blue) calculated per km2 on the right axis (×10−4).
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Figure 3. Global patterns of ET_OBS density for all LCs, as derived from the GETA 2.0
database.
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Figure 4. Mean (point) and standard deviation (line) of annual ET values by land-cover.
ET_OBS represent point observations of ET from the GETA 2.0 database and ET_LMM
represents ET of global fields generated by a statistical model from ET_OBS.
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Figure 5. ET_LMM (m yr−1) global annual actual ET projections. (A) Natural vegetation with
wetland overlay. Grey indicates areas permanently covered by ice or large lakes. (B) ET_LMM
for anthropogenic LCs. (i) Irrigated agriculture, (ii) non-irrigated agriculture, (iii) grazing land,
(iv) urban lands, (v) lakes and reservoirs and (vi) tree plantations.
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Figure 6. Zonal patterns of ET_LMM for LC types. The line represents the zonal mean, and the
lighter area represents the 95 % confidence interval derived from bootstrapped data. Green
represents natural vegetation (DBF, DNF, ENF, GRS, MXF, SAV, SHR, and EBF), and red
represents anthropogenic vegetation (CRI, CRN, GRZ, HMO, TPL, BAR, LAK, (here classified
as anthropogenic although it is a mix of natural lakes and anthropogenic reservoirs) and WTL)
(see Table 1 for abbreviations). The black line plots represent the number of observations at
that latitude. LC types are order alphabetically, except for the last row, which contains the LCs
with the largest spread for ease of labelling (a: CRI, b: CRN, c: DBF, d: DNF, e: ENF, f: GRS,
g: GRZ, h: HMO, i: MXF, j: SAV, k: SHR, l: TPL, m: BAR, n: EBF, o: LAK, p: WTL).
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Figure 7. Uncertainty interval size for ET_LMM generated from 1000 bootstrapped datasets
displayed with an equalized stretched histogram to emphasize the differences in location for
potential vegetation.
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