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Abstract

Watershed models have been used extensively for quantifying nonpoint source (NPS)
pollution, but few studies have been conducted on the error-transitivity from different
input data sets to NPS modeling. In this paper, the effects of four input data, including
rainfall, digital elevation models (DEMs), land use maps, and the amount of fertilizer, on5

NPS simulation were quantified and compared. A systematic input-induced uncertainty
was investigated using watershed model for phosphorus load prediction. Based on the
results, the rain gauge density resulted in the largest model uncertainty, followed by
DEMs, whereas land use and fertilizer amount exhibited limited impacts. The mean
coefficient of variation for errors in single rain gauges-, multiple gauges-, ASTER10

GDEM-, NFGIS DEM-, land use-, and fertilizer amount information was 0.390, 0.274,
0.186, 0.073, 0.033 and 0.005, respectively. The use of specific input information, such
as key gauges, is also highlighted to achieve the required model accuracy. In this
sense, these results provide valuable information to other model-based studies for the
control of prediction uncertainty.15

1 Introduction

Nonpoint source (NPS) pollution has become the major obstacle in sustaining high-
quality water supplies in developed countries, such as the United States, as well as
in developing countries, such as China (Zheng et al., 2011). Hydrological models,
such as the Agricultural Non-Point Source Model (AGNPS) and Soil and Water20

Assessment Tool (SWAT) (Arnold et al., 1998), provide essential tools for quantifying
NPS loads and understanding their effects on water quality deterioration. Nevertheless,
due to the complexity of watershed systems and substantial requirements for input
data, uncertainty becomes an inevitable part of model-based research and thus
management plans (Beven, 2006; Xue et al., 2014). Typically, model uncertainty comes25

from its structure, parameter choice and input data. Structure uncertainty results from
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incomplete knowledge of watershed processes or different assumptions during model
setup, whereas parameter uncertainty arises due to the availability of validation data,
imprecise representation of parameter ranges and distributions. In addition, input
uncertainty is generated from simplifications in natural randomness and temporal-
spatial data variability and would be inevitably magnified by model uncertainty to larger5

output errors.
Model inputs typically include spatial data, such as spatial precipitation input, digital

elevation models (DEMs), land use maps and soil maps, as well as attribute data,
such as fertilizer amount (Shen et al., 2013). The uncertainty of spatial data, typically
in the forms of GIS maps, is derived from many factors, including the quantity of10

available scenes, the resolution for the data that were captured, and the choice
of interpolation techniques (Wu et al., 2005). Rainfall plays a crucial role in runoff
production and mass transport so its reliability has been considered as major factor for
the accuracy of hydrological models. Traditionally, the rain station is the fundamental
tool for representing spatial distribution of rainfall within a watershed (Andréassian15

et al., 2001). Designing the proper location, number and density of rain-gauge stations
is important to hydrological research (Duncan et al., 1993). Studies have explored the
impact of heterogeneous rainfall data on parameter estimation and model outputs and
concluded that large bias could be expected if detailed variations in the rainfall data are
not considered (Strauch et al., 2012).20

As another important GIS data, a DEM is used to extract surface characteristic
parameters, such as watershed boundary, slope, and thus flow direction, so its
resolution influences model outputs (Lin et al., 2013; Wellen et al., 2014). Studies have
noted that coarser DEMs smooth watershed slope and thereby reduce the simulated
peak flow or sediment yields (Zhang et al., 2014). It is also shown that nitrogen output25

decreased with the decreased DEM resolution, while a decreased DEM resolution does
not always resulted in decreased total phosphorus (TP) (Chaubey et al., 2005). In this
sense, the question about whether higher-resolution data would always lead to better
model performance should be considered first (Shen et al., 2013). In the meantime, GIS
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data may be available from alternative sources; therefore, another question is which
specific data set should be used. For example, land use maps could be obtained from
federal, state and local government agencies, whereas county and local governments
are developing detailed datasets (Shen and Zhao, 2010; Han et al., 2014). Land use
maps for a specific point in time, typically obtained by interpreting remote sensing data,5

are often used, and possible changes in land uses during that specific period are not
considered (Mango et al., 2011; Pai and Saraswat, 2013).

Despite the research progress described above, input-induced uncertainty remains
a significant challenge due to various input data, which largely limits the applicability
of watershed models. For example, model-based programs, such as Total Maximum10

Daily Loads (TMDLs), are often criticized for their inadequate consideration of input
uncertainty (Chen et al., 2012). First, there is relatively more uncertainty research about
hydrological processes but less on NPS pollution. Second, the sensitivity of watershed
models also depends on how well attribute data aggregation describes the relevant
characteristics of human management. Thus, it is useful to understand the assumptions15

of attribute data and how these assumptions will likely impact the model results. Third,
previous studies have not evaluated the relative contribution of each input data set so
a strategy on how to reduce input uncertainty cannot be formulated in a cost-effective
manner (Munoz-Carpena et al., 2006).

The main objective of this paper is to conduct a comprehensive assessment of20

input-induced uncertainty in TP modeling. Four key types of input data, i.e., rainfall,
topography, land use and fertilizer amount, are analysed, and their uncertainties are
quantified. The uncertainties related to these input data are then compared.
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2 Materials and methods

2.1 The description of the study area

The Upper Daning River Watershed, which is located in the Three Gorges Reservoir
Area of China, was selected as the studied watershed (Fig. 1). This watershed,
covering an area of 2421 km2, is characterized as being located in a northern5

subtropical monsoon climate with an annual mean rainfall of 1182 mm (ranging from
761 to 1356 mm). This watershed is very mountainous with elevations ranging from
200 to 2605 m. The primary land uses in this watershed are forest (61.8 %), arable land
(25.3 %), and pasture (12.5 %), and yellow-brown earths (26.5 %), yellow-cinnamon
soils (16.9 %) and purplish soils (14.5 %) are the dominant soil types. Based on the10

characteristics of the river system, the studied watershed was broken into six drainage
regions: Dongxi river, Xixi river, Baiyang river, upper region of the Wuxi hydrological
gauge, Houxi river, and upper region of the county boundary (watershed outlet). As
illustrated in Fig. 1, the corresponding outlets of are referred to as DX, XX, BY, WX,
HX, and CF, respectively. In this study, TP was evaluated as P was recognized as the15

key limiting factor of eutrophication in this region.

2.2 Model description

In this study, the SWAT model, as a commonly-used watershed model, was used for
NPS-TP modeling. The studied watershed was partitioned into 22 sub-watersheds from
a constructed DEM and each sub-watershed is then divided into hydrologic response20

units (HRUs) by designing their homogeneous slope, soil, and land use. To use the
SWAT model efficiently and effectively, the SWAT-CUP software (Abbaspour et al.,
2007) was applied for model calibration and validation. The measured water quality
and flow data were obtained from the Changjiang Water Resources Commission as
well as local government. Thereafter, the SWAT model was calibrated and validated25

using the initial input data (Shen et al., 2012a), and the transitivity error from input data
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to model outputs was quantified by changing the available datasets while keeping the
calibrated parameters fixed.

2.3 Generation of input-induced uncertainty

Errors introduced by rainfall data, DEMs and land use maps were analyzed. The
influence of soil type maps was not analyzed, because only one soil map data (coarse5

resolution at 1 : 1 000 000) was available for the study region. These GIS data are the
most frequently used in hydrology and NPS modeling in the Yangtze River Watershed
and other areas of China. The errors related to fertilizer amount were also investigated
due to the lack of detailed farm-scale data.

2.3.1 Spatial data 1: rainfall data10

In this study, rainfall datasets were collected from twelve rain gauges located within the
watershed boundary and two outside stations that were within approximately 10 km
of the watershed boundary were also used (Fig. 1). The rain gauge falling within
a given sub-catchment is identified using the GIS software. The annual mean rainfall
recorded by these rain gauges is listed in Table 1. Previous studies have demonstrated15

rainfall uncertainty comes from the lack of representative rain gauges and the need to
interpolate the rainfall data between rain gauges (Andréassian et al., 2001; McMillan
et al., 2011). In this sense, rainfall data-induced uncertainty was analyzed in two steps:
(1) the dataset of each rain gauge was used as inputs for the SWAT model separately,
and the model performances were ranked based on the ENS values for single gauge20

simulations, (2) random combinations of m rain gauges (m ranged from 2 to 12)
were generated and used as SWAT inputs. Our previous study (Shen et al., 2012a)
has already focused on the impact of interpolation methods on the spatial rainfall
heterogeneity; therefore, the expected rainfall spatial distributions were only generated
by the chosen density of rain gauges. The centroid method was selected because it25
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was the current approach incorporated into the current version of SWAT model and the
easiest to apply (Shen et al., 2012a).

2.3.2 Spatial data 2: DEMs

In this watershed, two DEM sets were available for NPS modeling: (1) the National
Fundamental Geographic Information System of China DEM (NFGIS DEM) and (2) the5

ASTER GDEM. Specifically, the NFGIS DEM was acquired in 1998 from a topographic
map with a resolution of 90 m, whereas the ASTER GDEM was created by a satellite-
borne sensor that covered the surface land at a resolution of 30 m (Shen et al., 2013).
To study the impact of data resolution on NPS simulations, both DEMs were converted
to coarser ones using the resample function of ArcMap. Finally, four NFGIS DEM maps10

(90m×90m, 120m×120m, 150m×150m and 180m×180m), and ten ASTER GDEM
maps (30m×30m, 40m×40m, 50m×50m, 60m×60m, 70m×70m, 80m×80m,
90m×90m, 120m×120m, 150m×150m and 180m×180m) were obtained.

2.3.3 Spatial data 3: land use maps

As discussed above, land use data available for the modeling effort will likely come15

from numerous sources; therefore, an assessment of available land use data and
the time period covered by these data should be made. In this study, land use data
were obtained from the 1980s (1980–1989), 1995, 2000, and 2007. The land use
statistics are shown in Table 2. Specifically, maps from the 1980s, 1995 and 2000
were interpreted from MSS/TM/ETM images by the Chinese Academy of Sciences,20

whereas the land use map for 2007 was created from a TM image. In our previous
study (Shen et al., 2013), the resolution of land use data was shown to have only
a slight influence on simulated NPS-P for the study region; therefore, the land use map
was not resampled in this study.
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2.3.4 Attribute data: amount of fertilizer

Attribute data, including crop planting time, irrigation, fertilization, and tillage, were
mainly obtained from the agricultural bureau and local farmers; therefore, these data
only reflect the aggregate information at an average level. In this sense, there were
inevitable differences in management practices among farmers; therefore, the use of5

this average information might result in fertilizer amount errors. In this analysis, the
uncertainty due to the amount of fertilizer applied was also treated as input uncertainty.
Initially, the annual applied urea and compound fertilizer was set as 450 kgh−1 and
300 kgha−1 based on our limited local investigation. Using the Monte Carlo technique,
different fertilizer amount datasets were generated by sampling stochastically from10

a normal distribution expressed as X ∼ N(µ,σ2), where µ and σ are the recorded
amount of fertilizer and the standard deviation (SD), respectively. The Latin Hypercube
sampling technique, which employs a constrained sampling scheme instead of random
sampling, was applied to ensure a sufficient precision of sampling. To cover 99.7 % of
the error range, the sampling range was designated as ±15% from the initial amount15

of fertilizer and 5000 model runs were conducted.

2.4 Analysis of the model results

This study focused on error-transitivity from input data to NPS-TP predictions (the sum
of organic P and mineral P) at the WX for the period from 2000 to 2007. First, the
sensitivity of simulated TP to each input data was quantified in the form of summary20

statistics, such as the SD and the coefficient of variation (CV). Specifically, the CV,
which is a normalized measure of dispersion of a probability distribution, is defined as
a dimensionless number by quantifying the ratio of the SD to the MV. Compared to SD,
the CV is more appropriate for comparing different data sets; therefore, it was used as
the main approach for expressing uncertainty in this study.25
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s =

√√√√ 1
m

m∑

j=1

(
xj −x

)2
(1)

c =
s

x
(2)

where s and c represents the SD and the CV, respectively, xj represents simulated

data point j , x = 1
m

m∑
j=1
xj indicates the mean value of simulated data, and m is the

number of simulated data.5

To re-validate the range of input data, the Nash–Sutcliffe coefficients (ENS) was used
to the accuracy of SWAT outputs.

ENS = 1−

n∑
i=1

(
xsim,i −xmea,i

)2

n∑
i=1

(
xmea,i −xmea

)2
(3)

where xmea,i and xsim,i is the simulated and measured data for the i th pair, respectively,
xmea represents the mean value of the measured values, and n is the total number of10

paired values.
Generally, watershed modeling involves two kinds of uncertainty: (1) systematic

model uncertainty regardless of correct input, and (2) uncertainty due to inaccurate
input. In this study, model structure was fixed and model results will be dependent
on the interaction of input errors. Based on the performance ratings by Moriasi15

et al. (2007), ENS ≥ 0.5 was recommended for selecting behavior input datasets though
those effective simulations, which refer to the phenomenon of equifinality and can
be representative of a watershed system (ENS ≥ 0.5) (Liu and Gupta, 2007). In the
next step, behavior input data (ENS ≥ 0.5) were grouped in all possible ways to further
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constrain the model uncertainty by using a multi-input ensemble method. Finally, input-
induced model uncertainty was generated via sampling from the output distributions
that are generated from these effective input datasets.

3 Results

3.1 Calibration and validation5

As shown in Table 3, for the flow simulation, the ENS were 0.89 and 0.66 in the
calibration and validation periods, respectively. The ENS values were 0.73 and 0.67
for sediment during the calibration and validation periods, and 0.75 and 0.46 for TP.
More details about the final SWAT parameters can be found in our previous studies
(Shen et al., 2012a, 2013). Compared to the SWAT performances complied by Moriasi10

et al. (2007), the accuracy of flow prediction could be judged as very good, while the
sediment and TP simulations were judged to be satisfactory.

3.2 Sensitivity of each input dataset

To determine the sensitivity of each input dataset, the degree of uncertainty of
simulated TP was illustrated in Fig. 2. As shown in Fig. 2a, the annual mean CV ranged15

from 0.284 (2006) to 0.587 (2003), indicating there were significant uncertainties in
these single rain gauge simulations. The ENS values for each rain gauge are 0.70 for
XN, 0.49 for LM, 0.39 for TF, 0.38 for SY, 0.31 for WX2, 0.07 for WX, 0.06 for WG, 0.02
for XJB, −0.07 for ZL, −0.12 for CA, −0.68 for GL, and −2.87 for JL. This indicates that
most of the ENS values were low, especially for ZL, CA, GL and JL because no rainfall20

data were recorded in these gauges for the period from 2000 to 2003. As shown in
Fig. 2b, using data from multiple rain gauges as inputs, the CVs ranged from 0.098
(2006) to 0.433 (2000), suggesting that TP simulations are sensitive to the density
of rain gauges. The model performance improved when the number of rain gauges
increased from 2 to 5. However, a plateau was reached at approximately 6 gauges.25
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Using NFGIS DEMs (Fig. 2c), the CV values were found to be low with an annual
mean CV of 0.026–0.119, but the CV values were higher using ASTER DEMs (Fig. 2d),
with CV values ranging from 0.105 to 0.383. Figure 2e shows the statistical analysis
using different land use maps. Compared to the input data presented above, the annual
mean CV values, which ranged from 0.009 to 0.036, were relatively low. Besides, as5

shown in Fig. 2f, the simulated TP showed only slight variation related to the errors in
the amount of fertilizer, with mean CV values of 0.003–0.008.

Finally, a multi-input ensemble method was used for a comprehensive evaluation
of input-induced model uncertainty. As shown in Table 4, the annual CV values of
simulated TP ranged from 0.101 to 0.271, indicating a temporal variation for the period10

from 2000 to 2007. The ensemble of input-induced outputs was also determined for all
six given outlets. As illustrated in Fig. 3, the annual mean CV values were 0.190 for XX,
0.088 for DX, 0.206 for HX, 0.162 for BY, 0.168 for WX and 0.135 for CF.

4 Discussion

4.1 Comparison between different input data-induced uncertainty15

Table 4 gives a clear comparison between different types of input data. For the given
catchment and rainfall characteristics, rainfall input is identified as the most important
factor in NPS simulation, whereas rain gauge density is the most important source
contributing to the overall uncertainty. The results from the statistical analysis are
reasonable as rainfall is the major driving force of NPS pollution (Andréassian et al.,20

2001; McMillan et al., 2011). As shown in Table 1, rainfall data varied substantially
among different gauges, with a 933 mm difference between the highest and lowest
annual rainfalls. This finding agrees with previous research (Strauch et al., 2013) in
which the rainfall input was averaged across the watershed by a single rain gauge,
but failed to adequately reflect spatial rainfall variations. This can be attributed to the25

SWAT rule for quantifying the sub-watershed rainfall, in which rainfall data from the
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closest gauge is selected as inputs for each sub-watershed. In cases where a sub-
watershed contains no rain gauges, the centroid is used to find the nearest gauge and
its data are substituted for the sub-watershed rainfall. Another reason might be the use
of the same parameter set in all simulations. Bardossy and Das (2008) found that fewer
gauge simulations might produce similar results when compared with those obtained5

by more rain gauges due to the compensation effect from calibration. However,
even with the best calibration process, there is always parameter uncertainty in the
model predictions due to the availability of validation data, imprecise representation of
parameter ranges and distributions; therefore, recalibration was not conducted in this
study (Van Griensven et al., 2006).10

Figure 2b illustrates that there were reductions in the CV values compared with
the single-gauge simulations, which clearly showed that the ensemble of multi-gauge
simulations outperformed the single-gauge simulations. However, no clear relationship
existed between the ENS and the rain gauge location, which is also inconsistent with
a previous study. Schuurmans and Bierkens (2007) found greater model errors if15

gauges outside the watershed were used, but this is not the case for the present study
because the outside gauges were relatively close (10 km) to the watershed boundary.
Figure 2b indicates that the use of these key gauges appear to be more informative in
constraining spatial rainfall variations but simulation efficiency did not always improve
when additional gauges are added. This demonstrates that the information content20

in rainfall spatial variation is reached after a relatively small number of key gauges
are used as model input (Seibert and Beven, 2009). It is encouraging that a small
number of gauges distributed more optimally and perform well for logistical reasons
(Bárdossy and Das, 2008; McMillan et al., 2011). In reality, there might not be many
dense rain gauge networks similar to those used for this study; therefore, the fact that25

spatial rainfall variation is a function of key gauges rather than all gauges would indicate
a wider range of applicability.

As illustrated in Fig. 2c and d, the second highest uncertainty was caused by DEMs,
and the ASTER GDEM-induced uncertainty was higher than by uncertainty induced
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by NFGIS DEM. These higher values could be due to the following two reasons: first,
NFGIS DEM was already validated in many places in China, which was not the case
for ASTER GDEM (Wu et al., 2007; Dixon and Earls, 2009). In fact, ASTER GDEM
contains systematic errors; i.e., a significant number of anomalies attributable to cloud
disturbances, the algorithm used to generate the final GDEM, and not applying inland5

water mask. Second, the initial resolution of NFGIS DEM (90m×90m) was lower than
that of ASTER GDEM (30m×30m). In reality, those high resolution DEMs might provide
better simulations, but sometimes a moderate one would be more suitable due to the
nonlinearity of erosion processes and its subsequent effect on P processes (Chaplot
et al., 2005). Given the nature of ASTER GDEM, the greater degree of averaging10

has occurred by adding shallower slopes, and the predicted TP would be lower by
increasing more infiltration and deposition of NPS-TP. In this sense, it is important
to select a certainty-appropriate data source because DEMs are generated at different
scales and a number of the implied watershed processes are scale-dependent (Brazier
et al., 2005). Care must be taken in DEMs data resolution because their resolutions15

cannot be up-scaled directly. In theory, topography exerts some level of control on
surface flow and thus NPS loads. Therefore, the smoothing of the landscape shape
induced by coarser DEMs could result in a biased estimation of TP outputs (Dixon
and Earls, 2009). It was worthwhile to parameterize the SWAT model with the extreme
slopes, as these slopes controlled the fluxes of NPS-TP. However, our previous study20

has also demonstrated that the TP simulations would not be improved if certain
resolution was reached (Shen et al., 2013). In this sense, some balance must be found
between improving the DEMs resolutions and reducing the complexity of the model
utility.

In contrast, land use maps and fertilizer amount resulted in low uncertainties. The25

result differ from those of Payraudeau et al. (2004), who found that model outputs
were highly sensitive to land use changes. This could be explained by the fact that
most agricultural land was redistributed to forest and other land uses in the study of
Payraudeau et al. (2004), which leads to significant changes in soil compaction and
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ground cover. However, these low values in our study could be due to minor land
use changes during the period from the 1980s to 2007. As shown in Table 2, the
fraction of forest area decreased gradually from 61.75 to 54.76 %, whereas agricultural
land increased from 25.68 to 33.47 %. Figure 2f indicates that the fertilizer input has
only a slight impact on in-stream TP loads. This was because P application was low5

in this watershed with the inorganic N being applied in greater amounts and more
widely. Additionally, according to the mechanism of the SWAT model, P would be
taken up mainly by crop rotation, and this process would govern the turnover rates
and transport of P. Therefore, only a small proportion of P will finally flow into the water
body as in-stream NPS-TP. In this sense, there might also be minor CV values if other10

representative attribute practices, e.g., tillage data, were selected. This indicates the
degree of sensitivity due to single input data depends on two factors: the ratio of each
individual input contribution to the total load (which is the case for management data)
and the error in the individual input (which is more meaningful for land use maps).

4.2 Comprehensive evaluation of input data-induced uncertainty15

As shown in Fig. 3, this demonstrated that input-induced uncertainty may be highly
area-specific; i.e., dependent upon the scale of the drainage area and rainfall variability.
For example, when multiple gauges (from 1 to 12) are used as model inputs, the
simulated TP remained stable for the DX and no model uncertainty was observed. This
could be due to the mechanism of SWAT, in which only the rainfall data from the closest20

gauge to the centroid were chosen and used as the sole model input for that specific
sub-watershed. As shown in Fig. 1, there is only one sub-watershed in the DX region
and the XN gauge is closest to its centroid; therefore, the rainfall data from the same
gauge was used every time for this region. However, the CV values remained high for
other outlets, ranging from 0.187 (CF) to 0.448 (XX), suggesting that rain gauge density25

indicated different impacts under different spatial scales of drainage areas. In addition,
using different DEM data, the CV values were relatively low for XX, DX, WX and CF,
with an annual mean CV of 0.022–0.055, but the CV values were relatively high for HX
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and BY, with values of 0.152 and 0.136, respectively. This could be explained by the
fact that there are more mountainous areas along XX, DX, WX and CF; therefore, the
generated topography in these regions, such as the watershed boundary, surface slope
and other characteristic parameters, could be extracted more easily by DEM data.

These results pose two significant scientific challenges for TMDLs. First, as model5

uncertainty is difficult to quantify, the margin of safety (MOS) was often arbitrarily
assumed as 10 % error. However, as shown in Table 4, this assumption is not highly
related to the reliability of the model system and supported the quantification of
TMDLs poorly. Specifically, ccompare to our previous studies (Shen et al., 2012b),
the uncertainties caused by input errors were greater than those resulting from model10

parameters in 2001, 2005, and 2007, whereas uncertainties caused by inputs were
lower in the remaining years. Overall, the mean CV (0.168) for input-induced TP
uncertainty was slightly higher than that (0.156) for the parameter uncertainty, which
agrees with previous studies (Kuczera et al., 2006). Therefore, input data uncertainty is
critical in NPS modeling and efforts should be made to reduce this type of uncertainty.15

Second, as illustrated in Fig. 3, the input data-induced uncertainty varies considerably
temporally and spatially as a complex function of climate, underlying topography, land
use, soil type, and management (Shen and Zhao, 2010; Chen et al., 2012). In this
sense, a site-specific MOS might be more robust to any particular sequence of input
errors than current steady MOS.20

5 Conclusions

In this research, the impacts of four different input data types, including rainfall data,
DEMs, land use maps, and amount of fertilizer, on NPS modeling were quantified
and compared. Based on the results, input data-induced uncertainty is critical in NPS
modeling and efforts should be made to decrease this type of uncertainty. For the25

case study, the mean CV value ranged from 0.101 to 0.271, which is slightly higher
than that for the parameter uncertainty. The study indicated that rainfall input resulted
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in the highest uncertainty, followed by DEM, land use maps, and fertilizer amount.
Therefore, measures should be taken first to reduce this source of uncertainty by
adding rain gauges, modifying the selection mechanism of rain gauge in SWAT, and
using appropriate interpolation techniques. This paper also demonstrated the required
input information would be reached if several key rain gauges and moderate-resolution5

DEMs are used. This paper provides valuable information for developing TMDLs in
the Three Gorges Reservoir Area, and these results are also valuable to other model-
based watershed studies for the control of model uncertainty.

However, this conclusion might be only appropriate for NPS-TP and not for other
pollutants, i.e., the generation and transportation of nitrogen differ substantially from10

those of NPS-P. Furthermore, the influence of soil type maps was not analyzed,
because only one coarse soil map was available for the study region. More researches
are needed if detailed input data sets are collected.
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Table 1. The recorded annual mean rainfall data for each rain gauge (2000–2007).

Rain gauge JL GL WG TF ZL SY CA LM XN WX WX2 XJB

MV/mm 1938 1648 1609 1416 1406 1358 1279 1255 1193 1079 1055 1005
SD/mm 445 334 309 260 357 235 222 243 264 235 269 180

MV indicates the mean value and SD represents the standard deviation.
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Table 2. The fraction of land use types within the watershed for different periods.

Land use 1980s 1995 2000 2007
Area Percent Area Percent Area Percent Area Percent

(km2) (%) (km2) (%) (km2) (%) (km2) (%)

Farm land 622.5 25.68 % 588.3 24.27 % 613.3 25.30 % 811.1 33.47 %
Forest 1496.8 61.75 % 1564.8 64.56 % 1498.1 61.80 % 1327.1 54.76 %
Grass land 294.5 12.15 % 261.5 10.79 % 302.0 12.46 % 267.2 11.02 %
Water 8.9 0.37 % 8.7 0.36 % 8.9 0.37 % 11.9 0.49 %
Residential area 1.1 0.05 % 0.6 0.02 % 1.7 0.07 % 6.3 0.26 %
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Table 3. The values of ENS and R2 of the SWAT model during the calibration and validation
period.

Variable Indicator Calibration Validation

Flow ENS 0.66 0.89
R2 0.79 0.95

Sediment ENS 0.73 0.67
R2 0.83 0.83

TP ENS 0.75 0.13

R2 0.86 0.79
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Table 4. The sensitivity of simulated TP (CV values) to different input dataset.

Input data 2000 2001 2002 2003 2004 2005 2006 2007 Mean

Single gauge 0.419 0.421 0.332 0.587 0.319 0.417 0.284 0.410 0.388
Multi-gauges 0.433 0.362 0.240 0.287 0.141 0.256 0.098 0.241 0.249
NFGIS DEM 0.026 0.119 0.059 0.025 0.026 0.043 0.105 0.040 0.056
ASTER GDEM 0.189 0.276 0.225 0.105 0.198 0.255 0.383 0.274 0.197
Land use maps 0.022 0.013 0.018 0.018 0.024 0.036 0.009 0.024 0.027
Fertilizer amount 0.004 0.003 0.003 0.003 0.006 0.007 0.003 0.005 0.005

Input uncertainty 0.151 0.208 0.116 0.101 0.112 0.271 0.141 0.246 0.168
Parameter uncertainty 0.167 0.145 0.177 0.141 0.147 0.151 0.154 0.164 0.156
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Figure 1. Locations of and the rain gauges within the Upper Daning River Watershed.
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Figure 2. Uncertainty of simulated TP induced by each input data, in which the line, error bar
and inverted column indicate the mean value, SD and CV values, respectively.
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Figure 3. Comprehensive uncertainty of input data-induced simulated TP, in which the line,
error bar and inverted column indicate the mean value, SD and CV values, respectively.
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