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Abstract

Inverse modelling of in situ soil water dynamics is a powerful tool to test process un-
derstanding and determine soil hydraulic properties at the scale of interest. The ob-
servations of soil water state variables are typically evaluated using the ordinary least
squares approach. However, the underlying assumptions of this classical statistical ap-5

proach of independent, homoscedastic, and Gaussian distributed residuals are rarely
tested in practice. In this case study, we estimated the soil hydraulic properties of a
homogeneous, bare soil profile from field observations of soil water contents. We used
a formal Bayesian approach to estimate the posterior distribution of the parameters in
the van Genuchten–Mualem (VGM) model of the soil hydraulic properties. Three like-10

lihood models that differ with respect to assumptions about the statistical features of
the time series of residuals were used. Our results show that the assumptions of the
ordinary least squares did not hold, because the residuals were strongly autocorre-
lated, heteroscedastic and non-Gaussian distributed. From a statistical point of view,
the parameter estimates obtained with this classical statistical approach are there-15

fore invalid. Since a test of the classic first-order autoregressive (AR(1)) model led to
strongly biased model predictions, we introduced an modified AR(1) model which elim-
inates this critical deficit of the classic AR(1) scheme. The resulting improved likelihood
model, which additionally accounts for heteroscedasticity and nonnormality, lead to a
correct statistical characterization of the residuals and thus outperformed the other two20

likelihood models. We consider the corresponding parameter estimates as statistically
correct and showed that they differ systematically from those obtained under ordinary
least squares assumptions. Moreover, the uncertainty in the parameter estimates was
increased by accounting for autocorrelation in the observations. Our results suggest
that formal Bayesian inference using a likelihood model that correctly formalizes the25

statistical properties of the residuals may also prove useful in other inverse modelling
applications in soil hydrology.
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1 Introduction

Modelling of in situ soil water dynamics requires knowledge of the soil hydraulic proper-
ties that characterize the soil at the site of interest. Various methods have been devel-
oped to determine the soil hydraulic properties on soil samples taken to the laboratory.
Among these laboratory methods, the multi-step outflow method (van Dam et al., 1994;5

Durner and Iden, 2011) and the evaporation method (Šimůnek et al., 1998; Peters and
Durner, 2008) have found widespread application because they allow for the deter-
mination of both the soil water retention function and the soil hydraulic conductivity
function from a single experiment.

However, there is ever increasing evidence in the soil hydrological literature that the10

hydraulic properties determined on soil cores in the laboratory are of limited use for
predictive modelling of soil water dynamics under field conditions (e.g. Mertens et al.,
2005; Baroni et al., 2010). The possible reasons for this are manifold. For example,
Mallants et al. (1997) suggested that the sample volume analysed in the laboratory
may not be a representative elementary volume. Another likely reason was discussed15

by Basile et al. (2003), who stressed that laboratory experiments typically aim at the
determination of the soil hydraulic functions that belong to the primary drainage curve,
that is, starting from an initial condition that is as closely as possible to complete sat-
uration. This condition, however, basically never occurs in situ, and the so derived
properties may therefore not be representative for in situ conditions. Closely related to20

the argument of Basile et al. (2003) is the fact that hysteresis is typically neglected in
modelling of in situ soil water dynamics, even though it is widely acknowledged to be
an intrinsic feature of soils which affects soil water dynamics (e.g. Dane and Wierenga,
1975; Lenhard et al., 1991). Other effects, like dynamic non-equilibrium (Diamantopou-
los and Durner, 2012), which may be significant in some situations but are neglected in25

standard modelling approaches may further limit the usefulness of the hydraulic prop-
erties derived in the laboratory to predict water dynamics in field soils.
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Given these limitations it is promising to make use of in situ observations of soil wa-
ter state variables to obtain more useful estimates of the soil hydraulic properties by
inverse modelling (Vereecken et al., 2008). The soil hydraulic properties derived in this
way give the best possible description of the observational data. Since they are con-
ditional on the model formulation used for parameter inference, they are also deemed5

particular useful for predictive modelling. However, as the soil hydraulic properties are
part of the flow model, they may compensate for deficits in the model formulation and
for errors in the forcing variables.

From a statistical point of view, the estimation of soil hydraulic properties by inverse
modelling of in situ observations of soil water state variables is afflicted with two com-10

plicating features of this type of observational data. The first complicating feature is that
in situ observations generally do not contain sufficient information to warrant accurate
and precise estimation of the soil hydraulic properties (Scharnagl et al., 2011). The
reason for this is that in situ data cover only a relative narrow range of soil water states.
This is true even for observations taken close to the surface where soil water dynamics15

are highest.
To account for the limited amount of information of in situ observations, it is particu-

larly beneficial to make explicit use of prior information about the soil hydraulic param-
eters in the inference process. This can be done using Bayesian statistics, which offers
a formal way to combine the information on the parameters before assimilating field20

data and the information contained in the observational data. This formal Bayesian ap-
proach was applied by Hou and Rubin (2005), who incorporated prior information about
the soil hydraulic properties in the calibration of a one-layer soil hydrological model us-
ing neutron probe and time domain reflectory (TDR) measurements. They used the
principle of minimum relative entropy (Woodbury and Ulrych, 1993) to define a prior25

probability density function of the soil hydraulic parameters from information about the
expected values, variances, as well as the lower and upper bounds of the parame-
ters derived from the ROSETTA pedotransfer function (Schaap et al., 2001). Scholer
et al. (2011) investigated the information content of ground-penetrating radar measure-
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ments for estimating the soil hydraulic properties of a four-layer profile. They used prior
information about the soil hydraulic parameters either taken from Carsel and Parrish
(1988) or derived from independent measurements on core samples taken at the field
site. Scholer et al. (2011) concluded that prior information helped to substantially con-
strain the parameter space, especially when a prior density was used that includes5

information about the correlation structure of the soil hydraulic parameters. Concurring
results were presented by Scharnagl et al. (2011) who used spatially distributed TDR
measurements to estimate the effective soil hydraulic parameters of a single-layer pro-
file. They implemented a Monte Carlo approach that allows to estimate the correlation
structure of the soil hydraulic parameters predicted by ROSETTA, which is not available10

from the standard output of this pedotransfer function. Scharnagl et al. (2011) found
that only if the full covariance matrix was used to define the prior density of the soil
hydraulic parameters, the Bayesian approach was effective and robust in constraining
the parameters to a small region of the parameter space.

The second complicating feature of in situ observations is that the corresponding15

residuals, that is, the deviations between observations and model predictions, are often
strongly autocorrelated. The obvious reason for this are model errors, that is, errors in
the model structure as well as errors in the forcing variables that are used to run the
model, which all together result in a systematic misfit between observations and model
predictions. Doherty and Welter (2010) provide an overview of the various formal and20

informal statistical approaches that are currently used to explicitly treat autocorrelation
in the residuals.

Here, we adopted a formal statistical approach, which requires that the autocor-
relation structure of the residuals is considered in the inference process. This can
be done using the classical first-order autoregressive (AR(1)) model. This model has25

found widespread application in many fields of science, such as econometrics (e.g.
Cochrane and Orcutt, 1949; Beach and MacKinnon, 1978) or catchment hydrology
(e.g. Sorooshian and Dracup, 1980; Kuczera, 1983). Quite surprisingly, up to now it
has received very little attention in the soil hydrological literature, where autocorrelation
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of the residuals as well as possible deviations from the assumptions of homogeneity
and normality are typically neglected in the inference process. We are currently aware
of only one study that considered autocorrelation of the residuals in inverse modelling
of soil hydrological processes. Wöhling and Vrugt (2011) implemented the classical
AR(1) scheme to estimate the soil hydraulic properties of a five-layer profile from multi-5

ple, parallel time series of soil water content and pressure head recorded at five depths.
They found that the calibrated model did not provide a simultaneous fit of both pressure
head and soil water content observations, with the model predicted soil water contents
deviating substantially and consistently from the corresponding observations. Wöhling
and Vrugt (2011) suspected that the reason for this failure are structural errors in the10

soil hydrological model that cannot be captured by the AR(1) scheme.
In this study, we considered a simple example of inverse modelling of in situ soil

water dynamics: a bare, homogeneous soil profile for which a time series of soil water
content observations near the surface was available. The inverse problem was posed
in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC)15

simulation. The general problem of limited information content of in situ data was taken
into account by using an informative prior distribution of the soil hydraulic parameters,
as was previously done by Scharnagl et al. (2011) at the same field site. We applied
three different likelihood models that differ in their underlying assumptions about the
statistical features of the error. The first likelihood model corresponds exactly to the20

ordinary least-squares approach, which is the de facto standard in inverse modelling
of soil hydrological processes. The second likelihood model implements the classical
AR(1) model to account for autocorrelation, which was previously used by Wöhling
and Vrugt (2011) in a soil hydrological application. This second likelihood model addi-
tionally allows for heteroscedastic and non-Gaussian distributed residuals. In the third25

likelihood model, we introduced a modified AR(1) scheme that overcomes a critical
deficiency of the classical scheme.
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2 Methods

2.1 Measurements

A time series of soil water content was recorded at a single position in the top-
soil of a bare agricultural field near Jülich, Germany (TERENO test site Selhausen,
50◦ 52′ 9.7′′N, 6◦ 26′ 58.3′′ E, observation point no. 56, located in the upper right cor-5

ner of the measurement grid shown in Scharnagl et al., 2011). The soil had a silt loam
texture and was classified as a Stagnic Luvisol (IUSS Working Group WRB, 2007).
More information about the measurement site can be found in Scharnagl et al. (2011)
and the literature cited therein.

Soil water content was measured using TDR. A two-rod probe (25 cm rod length,10

2.3 cm rod spacing) was installed horizontally 6 cm below the soil surface. The TDR
waveforms were recorded automatically every 3 h using a TDR100 reflectometer with
a CR1000 datalogger (Campbell Scientific, Logan, UT, USA) and analyzed using the
algorithm described in Heimovaara and Bouten (1990). The apparent dielectric per-
mittivity of the soil obtained in this way was converted to soil water content using the15

model of Topp et al. (1980). Soil water content observations started 30 March and
ended 14 October 2009, covering a period of 167 days. Due to a power failure that
occurred during a storm event on 27 June 2009, the time series of observations has
a gap of about five days. This gap needs to be considered when calculating the joint
likelihood of the observations, as further explained in Sect. 2.3.20

2.2 Soil hydrological model

We simulated one-dimensional vertical water flow in a 100 cm deep, homogeneous
profile using the Richards equation:

∂θ
∂t

=
∂
∂z

(
K (h)

(
∂h
∂z

+1
))

(1)
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where θ (cm3 cm−3) is the soil water content, K (cm h−1) is the soil hydraulic con-
ductivity, h (cm) denotes the pressure head, t is time (h), and z defines the vertical
coordinate (cm, positive upward). To solve the Richards equation for given initial and
boundary conditions, we used the HYDRUS-1-D code of Šimůnek et al. (2008).

The soil hydraulic properties, θ(h) and K (h), were described with the van5

Genuchten–Mualem (VGM) model (van Genuchten, 1980). The water retention func-
tion θ(h), which is expressed here in terms of effective saturation S (dimensionless), is
given by:

S(h) =
θ(h)−θr

θs −θr
=

{
1

(1+|αh|n)m
for h ≤ 0

1 for h > 0
(2)

where θr and θs (cm3 cm−3) represent the residual and saturated water content, re-10

spectively, and α (cm−1), n, and m = 1−1/n (both dimensionless) are shape parame-
ters. The hydraulic conductivity function K (h) is given by:

K (h) = KsS(h)L
(

1−
(

1−S(h)
1
m

)m)2

(3)

where Ks (cm h−1) is the saturated hydraulic conductivity, and L (dimensionless) is an
additional shape parameter that increases the flexibility of the conductivity model.15

The upper boundary condition was defined using hourly averaged measurements of
precipitation, air temperature, relative humidity, wind speed, incoming shortwave radi-
ation, and atmospheric pressure taken at a meteorological station located about 100 m
west of the measurement site. As input to the HYDRUS-1-D model, we used hourly pre-
cipitation P , and potential evaporation Epot, where Epot was calculated from observed20

meteorological variables using the method of Allen et al. (1998). A mixed boundary
condition was used at the upper boundary that switches between a flux condition and
a pressure head condition when the pressure head at the upper boundary reaches the
lower limit of hmin

UB = −100 000 cm.
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The lower boundary was defined by a constant pressure head:

h(t) = hLB at z = −100 cm. (4)

The pressure head at the lower boundary hLB was treated as an additional unknown
parameter in the soil hydrological model.

The soil hydrological model used in this study corresponds exactly to the one used5

in Scharnagl et al. (2011). More detailed information about the model setup and the
rational for treating the lower boundary condition as an unknown parameter can be
found in this reference.

2.3 Likelihood models

To simplify notation, let us denote the VGM parameters by vector x1 = [θr θs α n Ks L]10

and the pressure head at the lower boundary by x2 = [hLB]. To draw inference about
the unknown soil hydrological parameters x1 and x2 given the observations of soil
water content and meteorological forcing, the information contained in the time series
of residuals ε1, . . .,εN is used, where N is the number of observations. The residuals
are defined as:15

εi (x1,x2) = ỹi − yi (x1,x2) i = 1, . . .,N (5)

where ỹi denotes the i th water content observation, and yi is the corresponding model
prediction. Formal statistical inference requires a likelihood model that describes the
statistical features of the time series of residuals as closely and consistently as possi-
ble. The common first step in the development of the three likelihood models used in20

the present study was the standardization of the residuals:

εi (x1,x2,µi ,σi ) =
εi −µi
σi

i = 1, . . .,N (6)

where µi and σi denote the expectation and SD of the i th residual, respectively. A com-
mon assumption about the general behaviour of the expectation of the residuals, which
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was also adopted in this study, was that µi equals zero for all observations:

µi = 0 i = 1, . . .,N. (7)

In the following, we refer to Eq. (7) as the zero expectation assumption. It reflects our
prior belief that the applied model is a useful approximation of reality. If provided with
sufficient information about the distribution of material properties within the soil volume5

of interest, appropriate initial and boundary conditions, as well as model parameters,
such a model should be able to describe the observations without bias. This basic
assumption was adopted throughout this study.

To make the inference process feasible, we need to make three other basic assump-
tions on the statistical nature of the residuals. The first relates to the SD of the i th10

residual σi , which we assume either to be homoscedastic or heteroscedastic, that is,
to have either a constant or a variable SD. The second assumption relates to the serial
independence of the residuals or its counterpart, autocorrelation. Last but not least,
an assumption must be made on which statistical distribution appropriately represents
the actual distribution of the residuals. In the remainder of this subsection, we give15

a detailed description of the three different likelihood models.

Likelihood 1: The first likelihood model corresponds exactly to the ordinary least-
squares approach. In this approach, it is assumed that the residuals are ho-
moscedastic, that is, σi takes on some constant value:

σi = σconst i = 1, . . .,N. (8)20

It is common in applied Bayesian statistics to eliminate the constant SD σconst
from the inference equations (e.g. Kavetski et al., 2006; Scharnagl et al., 2011).
This is done because the primary interest is often not in this parameter of the
likelihood model but rather in the parameters of the process model. In this study,
however, we treated σconst as an additional parameter that needs to be estimated25

simultaneously with the soil hydrological parameters x1 and x2.
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By assuming that the standardised residuals follow a Gaussian distribution, the
likelihood of an individual standardised residual εi , and hence, of the correspond-
ing observation ỹi is:

p(ỹi |x1,x2,σconst) =
1

√
2πσconst

exp


−

ε2
i

2


 i = 1, . . .,N. (9)

Based on the additional assumption that the residuals are independent, the joint5

likelihood of all observation ỹ1, . . ., ỹN is:

p(ỹ1, . . ., ỹN |x1,x2,σconst) =
N∏

i=1

p(ỹi |x1,x2,σconst). (10)

The ordinary least-squares approach is the de facto standard in inverse modelling
of soil hydrological processes (e.g. Jacques et al., 2002; Sonnleitner et al., 2003;
Wollschläger et al., 2009; Schelle et al., 2012). However, its underlying assump-10

tions are rarely tested in practice. In this study, the assumptions of homoscedas-
tic, independent, and Gaussian distributed residuals did not hold in the case of
inverse modelling of in situ soil water dynamics and good statistical practice then
requires that the likelihood model is revised accordingly.

Likelihood 2: The second likelihood model allows for heteroscedastic and non-15

Gaussian distributed residuals and implements the classical AR(1) scheme to
account for serial dependence of the residuals. To parametrise heteroscedastic-
ity, we modelled the SD of the i th residual as a function of the simulated water
content, σi (yi ), using a piecewise cubic Hermite interpolating polynomial (PCHIP,
Fritsch and Carlson, 1980). The PCHIP approach offers great flexibility in mod-20

elling the underlying, but a priori unknown variation of the SD of the residuals as
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a function of the simulated water content. It was inspired by the “free-form” ap-
proach (Bitterlich et al., 2004; Iden and Durner, 2007) to model the soil hydraulic
properties.

The PCHIP is calculated on four points, defined by matrix Ω (size 4×2). The
relationship σi (yi ) can then formally be written as:5

PCHIP : Ω =




θa σa
θb σb
θc σc
θd σd


→ σi (yi ) i = 1, . . .,N (11)

where θa,...,d and σa,...,d represent the x and y ordinates of the four points, re-
spectively. The x ordinates of the first and last of these points were defined by
θa = 0.9 ỹmin and θd = 1.1 ỹmax, respectively, where ỹmin denotes the minimum and
ỹmax the maximum of the soil water content observations. This definition of θa and10

θd was chosen to avoid extrapolation of the PCHIP. The remaining two x ordi-
nates, θb and θc, were set equidistantly between the minimum and maximum
values. The corresponding y ordinates, σa,...,d, are unknown parameters of the
likelihood model.

In a next step, we consider the autocorrelation of the residuals using the clas-15

sical AR(1) scheme. Its application presumes homoscedasticity of the residuals
(e.g. Box et al., 2008; Evin et al., 2013) and has therefore to be applied to the
standardised residuals. The classical AR(1) scheme is defined by:

ηi (x1,x2,Ω,φ) = εi −φεi−1
i = 2, . . .,N (12)

where ηi represents the decorrelated standardised residuals and φ is the auto-20

correlation coefficient. The decorrelated residuals ηi can be considered as the re-
maining, unexplained deviations between observations and corresponding model
predictions after removal of the systematic deviations that can be explained by
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autocorrelation. The autocorrelation coefficient φ is an additional parameter of
the likelihood model. In general, for a AR(1) process to be stationary, the autocor-
relation coefficient must satisfy |φ| < 1 (e.g. Box et al., 2008).

The classical AR(1) scheme in Eq. (12) was successfully applied to inverse mod-
elling in catchment hydrology (e.g. Sorooshian and Dracup, 1980; Kuczera, 1983;5

Bates and Campbell, 2001; Vrugt et al., 2009b). It failed, however, in the soil hy-
drological application reported by Wöhling and Vrugt (2011). To understand the
reason for this failure, it is instructive to look at the expectation of the decorrelated
and restandardised residuals η

i
. Taking expectations on both sides of Eq. (12)

gives:10

E(ηi ) = E(εi )−E(φ)E(εi−1
)

= (1−E(φ)) E(εi ) i = 2, . . .,N (13)

where we used E(εi ) = E(εi−1
), which follows directly from the basic assumption

given in Eq. (7). The expectation of the decorrelated residuals shows that the
classical AR(1) scheme may introduce bias in the decorrelated residuals because15

the expectation of ηi will always be closer to zero than the expectation of εi . This
disadvantage is most pronounced if E (φ)→ 1, in which case E (ηi ) approaches
zero even if E (εi ) differs markedly from zero. In fact, as we illustrated in this study,
this bias may distort the inference process and may lead to meaningless results,
very similar to those obtained by Wöhling and Vrugt (2011).20

The transformation of the residuals implied by the AR(1) scheme in Eq. (12) needs
to be accounted for in the formulation of the likelihood model. To do so, we need
to restandardise the decorrelated residuals as:

η
i
(x1,x2,Ω,φ) =

ηi√
1−φ2

i = 2, . . .,N (14)

where
√

1−φ2 is just the SD of the decorrelated residuals (e.g. Box et al., 2008).25
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If we further assume that the restandardised decorrelated residuals η
i

follow

a Student distribution with unit variance, the likelihood of a single observation
is given by:

p(ỹi |x1,x2,Ω,φ,ν) =
Γ
( ν+1

2

)√ ν
ν−2

Γ
( ν

2

)√
πν
√

1−φ2 σi


1+

η2

i

ν−2



− ν+1

2

i = 2, . . .,N (15)

where Γ denotes the gamma function and ν>2 is a kurtosis parameter that con-5

trols the tailing behaviour of the distribution. For ν→ 2, the tailing of the Student
distribution becomes increasingly heavy, while for ν→∞ the Student distribution
converges to the Gaussian distribution. This is illustrated in Fig. 1a.The Student
distribution has been proposed for the use in parameter inference by West (1984)
and Lange et al. (1989), among others, because it has the ability to adequately10

fit heavy-tailed distributions, which also makes the inference process more robust
against possible outliers in the observations.

In a next step, we applied the method of Fernández and Steel (1998) to introduce
skewness in the symmetric Student distribution shown in Eq. (15). The skewed
Student distribution is given by:15

p(ỹi |x1,x2,Ω,φ,ν,κ) =
2c2Γ

( ν+1
2

)√ ν
ν−2

(
κ + 1

κ

)
Γ
( ν

2

)√
πν
√

1−φ2 σi

×

1+

1
ν−2

( c1 +c2ηi

κsgn(c1+c2 ηi
)

)2


− ν+1

2

i = 2, . . .,N (16)

where sgn represents the signum function, c1 and c2 are correction terms that
account for the shift in expectation and variance of the decorrelated and re-
standardised residuals caused by the skewing mechanism, respectively, and κ > 020
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is a skewness parameter. For κ = 1, the skewed Student distribution is symmetric,
while for κ < 1 it is left-skewed and for κ > 1 right-skewed. An illustration of this is
given in Fig. 1b. The correction terms c1 and c2 are calculated as:

c1(ν,κ) =

(
κ2 − 1

κ2

)
2 Γ
( ν+1

2

)√ ν
ν−2 (ν−2)

(
κ + 1

κ

)
Γ
( ν

2

)√
πν (ν−1)

(17)

and5

c2(ν,κ) =

√√√√−c2
1 +

κ3 + 1
κ3

κ + 1
κ

. (18)

A detailed description of the method used for its derivation of can be found in
Fernández and Steel (1998). An instructive example of an application of a skewed
distribution for inference purposes can be found in Schoups and Vrugt (2010),
who used the same method to introduce skewness in a symmetric exponential10

power distribution.

Finally, by assuming that the AR(1) scheme removes the autocorrelation in the
residuals, the joint likelihood of observations ỹ2, . . ., ỹN can be calculated as:

p(ỹ2, . . ., ỹN |ỹ1,x1,x2,Ω,φ,ν,κ) =
N∏

i=2

p(ỹi |x1,x2,Ω,φ,ν,κ). (19)

This joint likelihood is a conditional likelihood because it gives the joint likelihood15

of the ỹ2, . . ., ỹN observations given the first observation ỹ1. The first observation
is used to calculate the second decorrelated residual η2, but is not further con-
sidered in the calculation of the joint likelihood in Eq. (19). Note that this does not
adversely affect the inference for N� 1.
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Likelihood 3: The third likelihood model differs from the previous likelihood model in
that it implements a modified AR(1) scheme that does not suffer from the defi-
ciency of the classical scheme used in the previous likelihood model. The modi-
fied AR(1) scheme is given by:

ηi (x,x2,Ω,φ) = εi −φεi−1
+
φ
N

N∑

j=1

εj i = 2, . . .,N (20)5

where the last term on the right hand side assures that the expectation of ηi
will always be the same as the expectation of εi . This can be seen from taking
expectations of both sides of Eq. (20):

E(ηi ) = E(εi )−E(φ)E(εi−1
)+E(φ)E(εi )

= E(εi ) i = 2, . . .,N (21)10

where again we used E(εi ) = E(εi−1
). All other assumptions are the same as

for Likelihood 2, we solely replace Eq. (13) by the modified expression given
in Eq. (20). We show in this study that the use of the modified AR(1) scheme
removes the bias in the model prediction caused by the classic AR(1) scheme.
Furthermore, statistical inference using Likelihood 3 resulted in reliable parame-15

ter estimates that fulfilled the underlying assumptions of the likelihood model.

As mentioned in Sect. 2.1, the time series of soil water content observations has
a gap of about five days. The gap does not affect the calculations in the ordinary least-
squares scheme of Likelihood 1. However, it calls for an extra step when using Likeli-
hoods 2 and 3. This is because the autoregressive schemes applied in these likelihood20

models requires the same distance between neighbouring observations. For these two
models, we therefore calculated two joint likelihoods, one for the first part of the time
series of observations, and another one for the second part after the data gap. These
two likelihoods were then multiplied to compute the likelihood to observe the entire data
set.25
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2.4 Bayes’ theorem

The joint likelihood summarizes in a probabilistic way what we can learn about the esti-
mated parameters given the observations. However, sometimes it is desirable to make
explicit use of prior knowledge about the parameters in the inference process. Bayes’
theorem provides a formal way of combining information from observations with prior5

information about the estimated parameters. In case of Likelihood 1, Bayes’ theorem
can be written as:

p(x1,x2,σconst|ỹ) ∝ p(x1) p(x2)p(σconst) p(ỹ|x1,x2,σconst) (22)

where the term p(x1,x2,σconst|ỹ) on the left hand side is the posterior density of the
estimated parameters given the observations. p(x1), p(x2), and p(σconst) represent the10

prior densities of the parameters, and p(ỹ|x1,x2,σconst) is just Likelihood 1, given in
Eq. (10). Similar expressions for the posterior density are obtained for Likelihood 2
and 3.

For computational reasons, it is often not the prior, likelihood, and posterior that is
used in practice, but rather its natural logarithm. This is because the prior, likelihood,15

and posterior may take on values larger or smaller than the largest or smallest number
that can be represented by a double-precision floating-point format. This is especially
true if the joint likelihood of a large number of observations is calculated, as it was the
case in the present study. The log-prior, log-likelihood, and log-posterior was there-
fore used in all calculations, and it is these numbers that are reported here as model20

diagnostics.

2.5 Prior densities

In order to apply Bayes’ theorem, the prior densities of the parameters need to be
defined. As a prior of the VGM parameters we chose a truncated multivariate normal
distribution p(x1) ∼ T N (µx1

,Σx1
,ax1

,bx1
), where µx denotes the mean vector of the25

VGM parameters, Σx is the corresponding covariance matrix, and ax1
and bx1

represent
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the upper and lower bounds, respectively. The mean vector and covariance matrix was
derived in Scharnagl et al. (2011) using the ROSETTA pedotransfer function (Schaap
et al., 2001). Here, we make use of the full covariance matrix (Prior 3 in Scharnagl et al.,
2011), which also contains information about the correlation structure of x1. In addition,
we used the lower and upper bounds on the VGM parameters reported in Scharnagl5

et al. (2011) and listed in Table 1 to truncate the Gaussian distribution. The use of the
truncated multivariate normal distribution resulted in slightly faster convergence of the
Markov chains (Sect. 2.6) to the region of the parameter space with highest posterior
density compared to using the conventional multivariate normal distribution as a prior.

The priors of the remaining parameters were given by a uniform distribution, which10

assigns a constant probability density within a specified interval and zero else. This
so-called noninformative prior reflects our knowledge about these parameters before
the inference process. In case of the pressure head at the lower boundary, the uniform
prior can formally be written as p(x2) ∼ U(ax2

,bx2
), where ax2

and bx2
denote the cor-

responding lower and upper bound of that parameter, respectively. Similar expressions15

can be given for the unknown parameters in the likelihood model. The boundaries for
all these parameters are also listed in Table 1.

We used a log10-transformation for parameters α, n, and Ks in the VGM model
(Scharnagl et al., 2011). The kurtosis parameter in Likelihood 2 and 3 was transformed
to 1/ν following the suggestion of Lange et al. (1989). These transformations aim at20

reducing nonlinear correlations of the estimated parameters, which helps to improve
the performance of the MCMC scheme.

2.6 Markov chain Monte Carlo simulation

The posterior distribution in Eq. (22) cannot be calculated by analytical means. Instead,
we used MCMC simulation (e.g. Brooks, 1998) to generate samples from the poste-25

rior distribution. We used the Differential-Evolution-Markov-chain (DE-MC) framework
(ter Braak, 2006; ter Braak and Vrugt, 2008) to run the MCMC simulations. The algo-
rithm we applied generates candidate points from an archive of past states (DE-MC(Z),
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ter Braak and Vrugt, 2008) and decides upon their acceptance by the Metropolis rule
Metropolis et al. (1953). We did two minor changes to the standard DE-MC(Z) scheme,
which aimed at improving the performance of this MCMC scheme. Without these mod-
ifications, the exploration of the parameter space by the various Markov chains run
in parallel was quite poor if Likelihood 2 or 3 was used. In fact, standard DE-MC(Z)5

even failed to locate the region of the parameter space with highest posterior density in
some of the test runs. The two modifications improved the performance in these cases
substantially. The two modifications are as follows:

1. We implemented a block updating scheme, similar to what was used in ter Braak
(2006). The idea behind block updating is that the convergence to a stationary10

distribution can sometimes be increased substantially if only a subset of the es-
timated parameters is updated in a single step. This general finding motivated
Vrugt et al. (2009a) to implement a self-adaptive randomized updating scheme
into DE-MC, resulting in the DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm. This updating strategy did not work well in our application, presumably15

because it ignores the correlation structure of the VGM parameters induced by
the informative prior of these parameters. Instead of the randomized subspace
sampling used in DREAM, we therefore used a block updating scheme, as fol-
lows. For the first 2000 steps in each of the parallel chains, each parameter block
was updated with probability 0.8. The VGM parameters were considered a block,20

whereas the remaining parameters were considered a block each. This simple
block updating scheme increased the exploration capabilities of the Markov chains
and the convergence to a stationary distribution substantially. The block updating
was restricted to the initial phase of the MCMC simulation because it is not par-
ticularly efficient any more once the chains have approached to the stationary25

distribution.

2. Roberts and Rosenthal (2001) suggested that acceptance rates between 0.15
and 0.5 can generally be considered efficient, with an optimal value being 0.23.
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Within standard DE-MC, the jumping distance of a proposal is scaled such that
optimal acceptance rates are obtained when sampling from Gaussian and Stu-
dent posteriors (Roberts and Rosenthal, 2001; ter Braak, 2006). Here, we intro-
duce a factor r (dimensionless) that reduces this reference scaling of the jumping
distance. The reasoning for this reduction is that efficient sampling from poste-5

rior distributions that differ from the multivariate Gaussian or Student distribution
generally require smaller jumps than those taken by the reference scaling used in
the standard DE-MC scheme. In the present study, the reduction factor was set to
r = 1.0 in the case of Likelihood 1, that is, no reduction, and r = 0.5 in the cases of
Likelihood 2 and 3. With these settings, acceptance rates near the optimal value10

of 0.23 were obtained in all three cases.

Apart from these two changes to the DE-MC(Z) scheme, we used standard settings
for the algorithmic parameters reported by ter Braak (2006) and ran five chains in
parallel. Convergence of the Markov chains to the stationary distribution was monitored
using the interval diagnostic of Brooks and Gelman (1998). After convergence, we ran15

each of the five chains for another 10 000 steps. Parameter inference was based on
5000 samples selected from this final sampling stage by thinning the chains, that is,
by retaining every 10th sample. The calculation of the uncertainty bounds of the model
prediction is described in Schoups and Vrugt (2010), and is therefore not repeated
herein.20

3 Results

Figure 2 shows the results of inverse modelling of the time series of in situ soil water
content observations using Likelihood 1 together with precipitation and potential evapo-
ration fluxes that define the upper boundary condition in HYDRUS-1-D. The parameter
estimates that belong to the prediction with maximum posterior density are listed in25

Table 1. This table also lists the corresponding mean error, root mean square error,
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model efficiency (Nash and Sutcliffe, 1970), as well as the log-prior, log-likelihood, and
log-posterior, which serve as model diagnostics to rate the goodness of the model
prediction. Based on visual inspection of Fig. 2, the ordinary least-squares approach
implemented in the first likelihood model results in a good overall description of the ob-
servational data. This impression is also corroborated by the various model diagnostics5

listed in Table 2.
To check the assumptions of homoscedastic, independent, and Gaussian distributed

standardised residuals εi used in ordinary least-squares, we made use of three diag-
nostic plots. Figure 3a depicts the standardised residuals plotted against the simulated
soil water content. This diagnostic plot indicates that the residuals are heteroscedastic.10

The SD of the residuals increases with increasing values of the predicted soil water
content. Figure 3b shows the autocorrelation function of the residuals. This diagnostic
plot shows that the residuals are strongly autocorrelated. The autocorrelation of the
residuals at lag 1, representing a time interval of 3 h, is close to one. The autocor-
relation decreases rather slowly with increasing lag in an approximately exponential15

manner, which points to an autoregressive process of first order (e.g. Box et al., 2008).
At lag 60, corresponding to a temporal separation of 7.5 days, the autocorrelation is
still significant, as indicated by the theoretical 95 % uncertainty bounds for a time se-
ries of uncorrelated random variables. Figure 3c depicts a quantile–quantile plot of
the standardised residuals. This diagnostic plot indicates that the actual distribution20

of the standardised residuals differs from that of a Gaussian distribution. The actual
distribution appears to be bimodal and also differs in its tailing behaviour from that of
a Gaussian distribution. In summary, the three diagnostic plots show that neither of the
three assumptions used in the formulation of Likelihood 1 is fulfilled. In this case, good
statistical practice requires that the likelihood model is revised and that the inference25

process is repeated with the revised likelihood function.
The results for Likelihood 2, which allows for heteroscedastic, autocorrelated, and

non-Gaussian distributed residuals, are presented in Fig. 4. The predicted soil water
content deviates substantially and consistently from the observations. Clearly, the pa-
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rameter estimates obtained with this likelihood model are rather meaningless. They vi-
olate the fundamental assumption of zero expectation of the residuals given in Eq. (7).
Essentially the same results were obtained by Wöhling and Vrugt (2011), who also
used the classical AR(1) scheme in their case study. We explain this repeated failure
with the fact that the classical AR(1) scheme introduces bias in the expected value5

of the residuals, as shown in Eq. (13). Figure 4 shows that the decorrelated and re-
standardised residuals η

i
are on average very close to zero even though the standard-

ised residuals εi deviate substantially from this value. This is reflected by a large mean
error and root mean square error of the prediction listed in Table 2. As briefly discussed
in Sect. 2.3, the bias of the classical AR(1) scheme increases with increasing values10

of the autocorrelation coefficient φ. Indeed, the estimated autocorrelation coefficient φ
obtained with Likelihood 2 is very close to the upper bound of this parameter (Table 1).
For φ→ 1, the AR(1) process becomes instationary, which is clearly not a meaningful
result in a parameter inference setting.

In contrast, the modified AR(1) scheme used in Likelihood 3 does not suffer from the15

deficiency of the classical scheme, as shown in Eq. (21). The results obtained with this
likelihood model are depicted in Fig. 5. The prediction gives a good overall description
of the observations, which by visual inspection appears to be as good as the prediction
obtained with Likelihood 1. Using the modified AR(1) scheme implemented in Likeli-
hood 3, both the standardised residuals εi and the decorrelated and restandardised20

residuals εi have an expectation close to zero and a SD close to one. This result is
obtained with an estimated autocorrelation coefficient φ that does not touch the up-
per bound of this parameter and has a significant smaller value then that obtained
with Likelihood 2 (Table 1). The mean error and root mean square error of the model
predicted soil water content are slightly larger for Likelihood 3 compared to values ob-25

tained with Likelihood 1 (Table 2), while the model efficiency indicates an equally good
performance of both models. From a statistical point of view, however, the superiority of
the parameter estimates obtained with Likelihood 3 over the ones obtained with Like-
lihood 1 becomes evident when comparing the corresponding posterior densities. The
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log-likelihood as well as the log-posterior obtained with Likelihood 3 are substantially
larger than the corresponding values obtained with Likelihood 1 (Table 2). The larger
log-likelihood value already indicates that Likelihood 3 better describes the statistical
features of the residuals.

Figure 6 illustrates the standardization of the residuals using the PCHIP approach5

and also shows the diagnostic plots used to check the underlying assumptions of the
likelihood model. In Fig. 6a, the raw residuals εi are plotted as a function of the pre-
dicted soil water content. It becomes visible here that the variance of the raw resid-
uals varies as function of the predicted soil water content, that is, that the εi are het-
eroscedastic. However, what becomes also clear from this figure is that the expectation10

of the raw residuals also varies as a function of the predicted soil water content. The
soil hydrological model systematically overestimates larger observations, which is an
obvious expression of bias of the process model. The results of the PCHIP approach to
estimate the SD of the raw residuals as a function of the predicted soil water content is
shown in Fig. 6b. The corresponding standardised residuals εi are depicted in Fig. 6c.15

The standardised residuals appear to be homoscedastic, even though the systematic
deviation of the expectation of εi persists. We explain this by the fact that the PCHIP
approach partially compensates for model bias by assigning larger SDs to the more
biased residuals.

The three assumptions of homoscedasticity, independence, and skewed Student dis-20

tribution of the decorrelated and restandardised residuals η
i

that underlie Likelihood 3

are checked in the three diagnostic plots shown in Fig. 6d to f. These plots show that
the three underlying assumptions are approximately fulfilled in the case of Likelihood 3.
The decorrelated and restandardised residuals η

i
used in this likelihood model appear

to be approximately homoscedastic, independent, and skewed Student distributed.25

From a statistical point of view, the parameter estimates obtained with Likelihood 3
can therefore be considered statistically valid. It is also noteworthy that the estimated
values of the kurtosis parameter ν and the skewness parameter κ indicate that the
actual distribution of the residuals deviates substantially from that of a Gaussian dis-
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tribution. The parameter estimates given in Table 1 show that the actual distribution is
much more heavy tailed than the Gaussian distribution and that it is slightly left-skewed.

In the following, we compare the estimated soil hydrological parameters and the
resulting soil hydraulic functions obtained with Likelihood 1 and 3. Figure 7 depicts
pairwise scatter plots of the posterior samples obtained with these two likelihood mod-5

els together with the prior 95 % uncertainty regions. The figure illustrates that all model
parameter were identified uniquely. Although some of the soil hydrological parameters
correlated strongly, all parameter estimates generally showed little variance. Another
important result of this comparison was that the parameter estimates obtained with
Likelihood 1 and 3 differ systematically. The pairwise scatter plots show almost no10

overlap of the two posterior samples. It is noteworthy that the shape of the posterior
sample obtained with Likelihood 3 deviates somewhat from that of a multivariate normal
distribution. Even this slight deviation, however, adversely affected the performance of
the MCMC scheme and gave reason for the use of a reduced reference scaling of the
jumping distance described in Sect. 2.6. The uniqueness of the estimated parame-15

ters was not restricted to the hydrological parameters, but was also observed for the
parameters of the likelihood model. The posterior samples for these parameters gener-
ally showed little variance and no strong correlations with any of the other parameters,
neither with those of the likelihood model nor with those of the soil hydrological model
(not shown).20

The soil hydraulic properties computed from the posterior samples obtained with
Likelihood 1 and 3 are depicted in Fig. 8. In this figure, we display the 95 % poste-
rior uncertainty bounds for the water retention and hydraulic conductivity function to-
gether with the corresponding 95 % prior uncertainty bounds. The posterior uncertainty
bounds are generally very tight, reflecting the high precision of the soil hydraulic pa-25

rameters which is illustrated in Fig. 7. In general, the posterior uncertainty bounds are
tightest in the intermediate soil water content range, which corresponds to the range of
actual soil water content observations. This is also where the soil hydraulic functions
obtained with the two likelihood models match each other most.
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4 Discussion

The application of Likelihood 1, which makes use of the ordinary least-squares as-
sumptions, resulted in parameter estimates that are invalid from a statistical point of
view because the residuals violate all underlying assumptions of this likelihood model.
Neglecting autocorrelation in the residuals means to overestimate the information con-5

tent of the data and therefore leads to an underestimation of parameter uncertainty.
This becomes evident in the parameter sample from the posterior shown in Fig. 7:
the variance of the posterior obtained with Likelihood 1 is generally smaller than that
obtained with Likelihood 3. If residuals are correlated, the amount of information pro-
vided by each observation is smaller than in the case of uncorrelated observations. In10

fact, using a likelihood model which neglects autocorrelation essentially implies to treat
the soil hydrological model as if it was perfect. This is overoptimistic because environ-
mental models are – almost by definition – at best good approximations of real-world
processes: they cannot be perfect.

We showed that the classical AR(1) scheme implemented in Likelihood 2 resulted15

in unrealistic parameter estimates and, correspondingly, to biased model predictions.
This corroborates the results reported by Wöhling and Vrugt (2011), who used the
classical AR(1) scheme in a soil hydrological application. We showed analytically that
the AR(1) scheme introduces bias, which explains the failure of this autoregressive
model in the present study as well as in the application of Wöhling and Vrugt (2011).20

Obviously, inverse modelling of in situ soil water dynamics seems to be much more sus-
ceptible to the bias problem induced by the classical AR(1) scheme than, for example,
inverse problems in catchment hydrology, where it has been applied successfully many
times (e.g. Sorooshian and Dracup, 1980; Bates and Campbell, 2001). We conjecture
that this is because the systematic misfit between observations and model predictions25

depicted in Fig. 4 can easily be compensated for by an estimated value of the au-
tocorrelation coefficient that is larger than actually necessary. In a recent study, Evin
et al. (2014) showed that the results obtained with the classical AR(1) model applied
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to inverse modelling of stream flow can be nonrobust, indicated by strong correlations
between parameters in the hydrological model and the likelihood model. We suspect
that the reason for this nonrobustness might also be explained, at least partially, with
the bias that is introduced by the classical AR(1) scheme.

The residuals obtained with Likelihood 3 clearly satisfied all assumptions of this likeli-5

hood model and furthermore demonstrate that Likelihood 3 solves the bias-problem in-
herent to Likelihood 2. Since the log-likelihood and log-posterior values for Likelihood 3
were substantially larger than those obtained with Likelihood 1 (Table 2), we consider
this likelihood function and the parameter estimates obtained with it as clearly superior
and statistically valid. The model predictions obtained with Likelihood 3 slightly vio-10

late the zero-expectation assumption, which becomes apparent from the non-constant
expectation of the residuals shown in Fig. 6a. This model bias can in principle be ac-
counted for in the formulation of the likelihood model by introducing a term for bias
correction, which can for example be estimated as a function of the predicted soil wa-
ter content (e.g. Kennedy and O’Hagan, 2001; Erdal et al., 2012). From our point of15

view, however, such an approach would not be meaningful in the present application.
This is because the bias correction would be valid only for the depth within the soil
profile where the observations were taken, but it remains unclear how this bias cor-
rection affects the predicted soil water contents at other depths within the profile and
the fluxes to adjacent compartments within the water cycle. This is a fundamental dif-20

ference between the Bayesian approach adopted in this study and other statistical
approaches that are designed to account for model bias, such as particle filtering (e.g.
Montzka et al., 2011; Vrugt et al., 2013). Within the the present statistical framework,
we think that the model bias can therefore only be meaningfully corrected for by a thor-
ough revision of the process model, the assumption of a homogeneous profile, the25

parametrisation of the soil hydraulic properties, and the inclusion of hysteresis.
Likelihood 3, which allows for heteroscedastic, autocorrelated, and non-Gaussian

residuals, may be equally useful in other soil hydrological applications. In general, au-
tocorrelation of the residuals becomes increasingly apparent if observations are taken
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at a sufficiently high temporal frequency, which is typically the case for automated mea-
surement setups either in the field or in the laboratory. For example, autocorrelation of
the residuals is particularly pronounced in inverse modelling of multi-step outflow ex-
periments (e.g. Diamantopoulos et al., 2012), evaporation experiments (e.g. Dettmann
et al., 2014), or lysimeter data (e.g. Schelle et al., 2012). Based on the findings of the5

present study, we conjecture that a likelihood model that allows for heteroscedastic,
autocorrelated, and non-Gaussian residuals would also prove useful in these applica-
tions. The main advantages are a more accurate quantification of the model parameters
and their uncertainty. In the case of multiple time series used for parameter inference,
Likelihood 3 must be extended to the multivariate case by using a first-order vector10

autoregressive (VAR(1)) model (e.g. Box et al., 2008). In contrast to the AR(1) model
treated in this study, the VAR(1) model additionally accounts for the cross-correlation
between the multiple, parallel time series of observations.

5 Summary and conclusions

In this case study, we estimated the soil hydraulic properties of a homogeneous, bare15

soil profile from in situ observations of soil water content taken at a single location near
the soil surface. This type of observational data often contain too little information to
warrant accurate and precise estimates of all of the parameters in the soil hydrological
model. We posed the inverse problem in a formal Bayesian approach, which allowed
us to use prior information of the soil hydraulic parameters in terms of an informative20

prior distribution for these parameters. The prior distribution was taken from Scharnagl
et al. (2011). We then applied three likelihood models, which differ in their underlying
assumptions about the salient statistical features of the time series of residuals.

The first likelihood model corresponds to the ordinary least-squares approach, which
is the de facto standard in inverse modelling of soil hydrological processes. However,25

the results obtained with Likelihood 1 showed that the underlying assumptions of this
likelihood model of homoscedastic, independent, and Gaussian residuals were all vio-
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lated. From a statistical point of view, the parameter estimates obtained with this first
likelihood model can therefore be considered invalid.

The second likelihood model makes use of the classical AR(1) scheme to account
for autocorrelated residuals, allows for heteroscedasticity, and supports heavily-tailed,
non-Gaussian distributions of the residuals. To describe the heteroscedastic nature of5

the residuals, we devised a flexible model for the relationship between model predicted
soil water content and the SD of the residuals that uses cubic Hermite interpolation. De-
viations from a Gaussian distribution were modelled with a skewed Student distribution.
A theoretical analysis of this parameter inference scheme and the results obtained with
Likelihood 2 demonstrated that the classical AR(1) model introduces bias into the infer-10

ence process. Due to this bias, the results obtained with Likelihood 2 were essentially
meaningless, which corroborates the findings of Wöhling and Vrugt (2011) obtained in
a similar soil hydrological study and using the same classical AR(1) scheme.

In the third likelihood model, we introduced a modified AR(1) scheme, which does
not suffer from the bias problem induced by the classical scheme. With this likelihood15

model, we obtained parameter estimates that differed significantly from those obtained
with Likelihood 1, which implements the ordinary least-squares assumptions. Further-
more, parameter uncertainty was higher as compared to Likelihood 1 because the
decreased information content of the calibration data caused by autocorrelation was
accounted for. Since the residuals obtained with Likelihood 3 fulfilled the underlying sta-20

tistical assumptions, and because Likelihood 3 lead to a much larger log-posterior than
Likelihood 1, we concluded that the parameter estimates obtained with Likelihood 3 are
statistically valid, and therefore, superior to the ones obtained with Likelihood 1.

The results of this study demonstrate that the ordinary least-squares approach may
lead to statistically invalid estimates of the soil hydraulic parameters, because the un-25

derlying assumptions about the statistical features of the time series of residuals are
not fulfilled. The current practice in inverse modelling of soil hydrological processes
should therefore be revised. We introduced a new, highly flexible likelihood model that
accounts for autocorrelated, heteroscedastic, and non-Gaussian residuals, which per-
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formed very well in the present test study. Based on our findings, we advocate the use
and further extension of the new likelihood model in inverse modelling of soil hydrolog-
ical processes.
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Table 1. Estimated parameters in the soil hydrological and likelihood model, respectively, as
well as parameter estimates with maximum posterior density obtained using the three different
likelihood models.

parameter estimates
with maximum posterior density

lower upper likelihood likelihood likelihood
parameter unit transformation bound bound model 1 model 2 model 3

soil θr cm3 cm−3 – 0.043 0.091 0.051 0.061 0.053
hydrological θs cm3 cm−3 – 0.409 0.481 0.461 0.460 0.436
model α cm−1 log10(α) 0.0028 0.0085 0.0045 0.0051 0.0037

n – log10(n) 1.51 1.85 1.77 1.70 1.77
Ks cm h−1 log10(Ks) 0.006 0.832 0.534 0.254 0.091
L – – −5.49 6.27 4.20 1.76 3.67
hLB cm – −250 −50 −170 −51 −178

likelihood σconst cm3 cm−3 – 0.000 0.025 0.0121
model σa cm3 cm−3 – 0.000 0.050 0.0183 0.0092

σb cm3 cm−3 – 0.000 0.050 0.0190 0.0131
σc cm3 cm−3 – 0.000 0.050 0.0316 0.0218
σd cm3 cm−3 – 0.000 0.050 0.0498 0.0360
φ – – 0.000 1.000 0.996 0.957
ν – 1/ν 2.000 ∞ 3.32 2.89
κ – – 0.500 2.000 1.27 0.85
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Table 2. Summary statistics of model residuals and the values of the prior, likelihood and pos-
terior computed for the parameter estimates with maximum posterior density. Results are given
for the three different likelihood models.

likelihood likelihood likelihood
model diagnostic model 1 model 2 model 3

mean error −0.0001 −0.0738 −0.0012
root mean square error 0.0121 0.0754 0.0132
model efficiency 0.74 0.01 0.74
log-prior 23 28 27
log-likelihood 3891 5880 5761
log-posterior 3914 5908 5788
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Figure 1. Illustration of the skewed Student distribution. In (a), the skewness parameter is
kept constant (κ = 1) while the kurtosis parameter is varied. In (b), the skewness parameter is
varied while the kurtosis parameter is kept constant (ν = 5). To allow for a direct comparison,
the corresponding Gaussian distribution is also shown. All distributions have an expectation of
zero and a SD of one.

2192



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

0.25

0.3

0.35

0.4

θ
(c

m
3

cm
−

3
)

a observed and predicted soil water content

−5

0

5

ε
(−

)

b standardised residuals

120 140 160 180 200 220 240 260 280

day of year

-2

-1

0

1

P
,E

p
o
t

(c
m

da
y−

1
)

c potential evaporation

precipitation

Figure 2. Model prediction of the time series of soil water content observations obtained using
Likelihood 1. In (a), the model prediction with maximum posterior density and the 95 % uncer-
tainty bounds of the prediction are shown together with the observations of soil water content
θ. (b) displays the standardised residuals ε

i
, corresponding to the prediction with maximum

posterior density. (c) shows the precipitation P (negative) and potential evaporation Epot (pos-
itive) fluxes used as input to the HYDRUS-1-D model. For graphical reasons, daily fluxes are
shown here whereas hourly values were used to run the model.

2193

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0.25 0.3 0.35 0.4
θ (cm3 cm−3)

-5

0

5

ε
(-

)

a

0 10 20 30 40 50 60
lag

0

0.5

1

au
to

co
rr

el
at

io
n

b

theoretical quantiles of ε

qu
an

ti
le

s
of

ε

-5 -2.5 0 2.5 5
−5

0

5
c

Figure 3. Diagnostic plots of the standardised residuals ε
i

of the model prediction with max-
imum posterior density using Likelihood 1. In (a), the standardised residuals ε

i
are plotted

over the predicted water content θ. (b) depicts the autocorrelation function with theoretical
95 % uncertainty intervals of a time series of uncorrelated random variables, and (c) shows
a quantile–quantile plot of the standardised residuals.
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Figure 4. Model prediction of the time series of soil water content observations obtained using
Likelihood 2. In (a), the model prediction with maximum posterior density and the 95 % uncer-
tainty bounds of the prediction are shown together with the observations of soil water content
θ. (b) displays the standardised residuals ε

i
, corresponding to the prediction with maximum

posterior density. (c) shows the decorrelated and restandardised residuals η
i
.
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Figure 5. Model prediction of the time series of soil water content observations obtained using
Likelihood 3. In (a), the model prediction with maximum posterior density and the 95 % uncer-
tainty bounds of the prediction are shown together with the observations of soil water content
θ. (b) displays the standardised residuals ε

i
, corresponding to the prediction with maximum

posterior density. (c) shows the decorrelated and restandardised residuals η
i
.
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Figure 6. Performance of the PCHIP approach used for standardization of the residuals and
diagnostic plots of the decorrelated and restandardised residuals corresponding to the model
prediction with maximum posterior density using Likelihood 3. (a) shows the residuals εi as
a function of the predicted soil water content θ. (b) gives the estimated SD as a function of
the predicted soil water content, showing the estimated points σa,...,d and the resulting function
given by the PCHIP. The grey area represents the corresponding 95 % uncertainty. In (c) the
standardised residuals ε

i
are plotted over the predicted water content, while (d) shows the

decorrelated and restandardised residuals η
i
. (e) depicts the autocorrelation function of η

i
with

theoretical 95 % uncertainty intervals of a time series of uncorrelated random variables, and
(f) shows a quantile–quantile plot of η

i
.
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Figure 7. Pairwise scatter plots of the posterior samples of the parameters of the soil hydrolog-
ical model obtained with Likelihood 1 and 3 together with the corresponding 95 % prior uncer-
tainty regions of these parameters. The axes cover the parameter bounds listed in Table 1.
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Figure 8. 95 % posterior uncertainty bounds of (a) the water retention function and (b) the
hydraulic conductivity function obtained with Likelihood 1 and 3. Additionally, the corresponding
95 % prior uncertainty regions are shown as a grey area.
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