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Abstract

The use of Artificial Intelligence methods is becoming increasingly common in the
modeling and forecasting of hydrological and water resource processes. In this study,
applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural
Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed5

Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and
the Seyhan catchment, located in the south of Turkey, is chosen as a case study. To-
tally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe
(1818) on Seyhan River between the years 1986 and 2000. The data set are divided
into three subgroups, training, testing and verification. The training and testing data10

set include totally 5114 daily river flow data and the number of verification data points
is 731. The river flow forecasting models having various input structures are trained
and tested to investigate the applicability of ANFIS and ANN methods. The results of
ANFIS, GRNN and FFNN models for both training and testing are evaluated and the
best fit forecasting model structure and method is determined according to criteria of15

performance evaluation. The best fit model is also trained and tested by traditional
statistical methods and the performances of all models are compared in order to get
more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified
by verification data set including 731 daily river flow data at the time period 1998–2000
and the results of models are compared. The results demonstrate that ANFIS model is20

superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully
applied and provide high accuracy and reliability for daily River flow forecasting.

1 Introduction

In last decades, the forecasting and modeling of river flow in hydrological processes is
quite important to deliver the sustainable use and effective planning and management25

of the water resources. In order to estimate hydrological processes such as precipi-
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tation, runoff and change of water level by using existing methods, some parameters
such as the physical properties of the watershed and river network and observed detail
data are necessary. In the literature, there have been many approaches such as, Box
and Jenkins (1970) methods of autoregressive (AR), auto-regressive moving average
(ARMA), auto-regressive integrated moving average (ARIMA), autoregressive, moving5

average with exogenous inputs (ARMAX), generally used for modeling of river flow.
Some of the earliest examples of the AR type of stream flow forecast models include
Thomas and Fiering (1962) and Yevjevich (1963). These approaches have employed
conventional methods of the time series forecasting and modeling (Owen et al., 2001;
BuHamra et al., 2003; Zhang, 2003; Mohammadi et al., 2006; Arena et al., 2006;10

Komornik et al., 2006; Toth et al., 2000). Artificial neural networks (ANN) have been
recently accepted as an efficient alternative tool for modeling of complex hydrologic
system to the conventional methods and widely used for prediction. Some specific
applications of ANN to hydrology include modeling rainfall-runoff process (Sajikumar
et al., 1999), river flow forecasting (Dibike et al., 2001; Chang et al., 2002; Sudheer15

and Jain; 2004; Dawson et al., 2002), sediment transport prediction (Fırat and Güngör,
2004), and sediment concentration estimation (Nagy et al., 2002). The ASCE Task
Committee reports (2000) did a comprehensive review of the applications of ANN in
hydrological forecasting context. Jain and Kumar (2007) proposed a new hybrid time
series neural network model that is capable of exploiting the strengths of traditional20

approaches and ANN. Tingsanchali and Gautam (2000) applied ANN and stochastic
hydrologic models to forecast the flood in two river basins in Thailand. GRNN method
have also been used for many specific studies (Cigizoglu and Alp, 2006; Kim et al.,
2004; Ramadhas et al., 2006; Celikoglu and Cigizoglu, 2007; Celikoglu, 2006). On
the other hand, fuzzy logic method was first developed to explain the human thinking25

and decision system by Zadeh (1965). Several studies have been carried out using
fuzzy logic in hydrology and water resources planning (Chang et al., 2001; Liong et
al., 2000; Mahabir et al., 2000; Nayak et al., 2004a; Şen and Altunkaynak, 2006). Re-
cently, Adaptive Neuro-fuzzy inference system (ANFIS), which consists of the ANN and
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fuzzy logic methods, have been used for several application such as, database man-
agement, system design and planning/forecasting of the water resources (Chen et al.,
2006; Chang et al., 2006; Nayak et al., 2004b; Fırat and Güngör, 2007; Firat, 2007).

The main purpose of this study is to investigate the applicability and capability of
ANFIS and ANN methods for modeling of daily river flow. To verify the application of5

this approach, the Seyhan catchment located in the south part of Turkey is chosen
as the case study area. The River Seyhan is one of the most important water re-
sources in Turkey. The River Seyhan flow change depends on various impacts such as
climatic and hydro-meteorological variables of the basin, water usage for agricultural
and hydroelectric energy. The models for modeling of river flow with having various10

input structures are developed and applied to the forecasting of the flows of the River
Seyhan.

2 Adaptive Neural Fuzzy Inference System (ANFIS)

The fuzzy logic approach is based on the linguistic uncertainly expression rather than
numerical uncertainty. Since Zadeh (1965) proposed the fuzzy logic approach to de-15

scribe complicated systems, it has become popular and has been successfully used
in various engineering problems, (Chen et al., 2006; Chang et al., 2001; Liong et al.,
2000; Mahabir et al., 2000; Nayak et al., 2004a; Firat, 2007; Nayak et al., 2004b; Şen,
2001). Fuzzy inference system is a rule based system consists of three conceptual
components. These are: (1) a rule-base, containing fuzzy if-then rules, (2) a data-20

base, defining the membership function and (3) an inference system, combining the
fuzzy rules and produces the system results (Şen, 2001). The first phase of fuzzy logic
modeling is the determination of membership functions of input – output variables, the
second phase is the construction of fuzzy rules and the last phase is the determination
of output characteristics, output membership function and system results (Fırat and25

Güngör, 2007). A general structure of fuzzy system is demonstrated in Fig. 1.
ANFIS consisting of the combination of the ANN and the fuzzy logic has been shown
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to be powerful in modeling numerous processes such as rainfall-runoff modeling and
real-time reservoir operation (Chen et al., 2006; Chang et al., 2006; Fırat and Güngör,
2007). ANFIS uses the learning ability of ANN to define the input-output relationship
and construct the fuzzy rules by determining the input structure. The system results
were obtained by thinking and reasoning capability of the fuzzy logic. The hybrid-5

learning algorithm and subtractive function are used to determine the input structure.
The detailed algorithm and mathematical background of these algorithms can be found
in Jang et al. (1997). There are two types of fuzzy inference systems, Sugeno-Takagi
inference system and Mamdani inference system, in literature. In this study, Sugeno
Takagi inference system is used for modeling of daily river flow. The most important10

difference between these systems is the definition of the consequent parameter. The
consequence parameter in Sugeno inference system is a linear equation, called “first-
order Sugeno inference system”, or constant coefficient, “zero-order Sugeno inference
system (Jang et al., 1997). It is assumed that the fuzzy inference system includes two
inputs, x and y, and one output, z. For the first-order Sugeno inference system, typical15

two rules can be expressed as;

Rule 1 : IF x is A1 and y is B1 THEN f1=p1 ∗ x+q1 ∗ y+r1

Rule 2 : IF x is A2 and y is B2 THEN f2=p2 ∗ x+q2 ∗ y+r2

where, x and yare the crisp inputs to the node i , Ai and Bi are the linguistic labels as
low, medium, high, etc., which are characterized by convenient membership functions20

and finally, pi , qi and ri are the consequence parameters. The structure of this fuzzy
inference system is shown in Fig. 2.

Input notes (Layer 1): Each node in this layer generates membership grades of the
crisp inputs which belong to each of convenient fuzzy sets by using the membership
functions. Each node’s output O1

i is calculated by:25

O1
i =µAi

(x) for i=1, 2 ; O1
i =µBi−2

(y) for i=3, 4 (1)
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where µAi
and µBi

are the membership functions for Ai and Bi fuzzy sets, respectively.
Various membership functions can be applied to determine the membership grades. In
this study, the Gauss membership function is used, as;

O1
i =µAi

(x)=e
−(x−c)2

2σ2 (2)

where, the premise parameters change the shape of membership function from 1 to 0.5

Rule nodes (Layer 2): In this layer, the AND/OR operator is applied to get one output
that represents the results of the antecedent for a fuzzy rule, that is, firing strength.
The outputs of the second layer, called firing strengths O2

i , are the products of the
corresponding degrees obtained from the layer 1, named as w as follows;

O2
i =wi=µAi (x)µBi (y), i=1,2 (3)10

Average nodes (Layer 3): Main target is to compute the ratio of firing strength of each
i th rule to the sum firing strength of all rules. The firing strength in this layer is normal-
ized as;

O3
i =w̄i=

wi∑
i
wi

i=1,2 (4)

Consequent nodes (Layer 4): The contribution of i th rule towards the total output or15

the model output and/or the function defined is calculated by Eq. (5);

O4
i =w̄i fi=w̄i (pix + qiy + ri ) i=1,2 (5)

where, w̄i is the i th node output from the previous layer as demonstrated in the third
layer. {pi , qi , ri} is the parameter set in the consequence function and also the coeffi-
cients of linear combination in Sugeno inference system.20

Output nodes (Layer 5): This layer is called as the output nodes in which the single
node computes the overall output by summing all incoming signals and is also the last
step of the ANFIS. The output of the system is calculated as;

f (x, y)=
w1(x, y)f1(x, y)+w2(x, y)f2(x, y)

w1(x, y)+w2(x, y)
=
w1f1+w2f2
w1+w2

(6)
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Q5
i =f (x, y)=

∑
i

w̄i .fi=w̄i f1+w̄i f2=

∑
i
wi fi∑

i
wi

(7)

The objective is to train adaptive networks for having convenient unknown functions
given by training data and finding the proper value of the input and output parameters.
For this aim, ANFIS applies the hybrid-learning algorithm, consists of the combina-
tion of the“gradient descent” and “the least-square” methods. The gradient descent5

method is used to assign the nonlinear input parameters, as the least-squares method
is employed to identify the linear output parameters (pi , qi , ri ). The “subtractive fuzzy
clustering” function, offering the effective result by less rules, is applied to solve the
problem in ANFIS modeling (Nayak et al., 2004b).

3 Artificial Neural Networks10

An ANN, can be defined as a system or mathematical model consisting of many non-
linear artificial neurons running in parallel which can be generated as one or multiple
layered. In this study Generalized Regression Neural Networks (GRNN) and Feed
Forward Neural Networks (FFNN) are used for modeling of daily river flow.

3.1 Feed Forward Neural Networks (FFNN)15

A FFNN consists of at least three layers, input, output and hidden layer. The number
of hidden layers and neurons are determined by trial and error method. The schematic
diagram of a FFNN is shown in Fig. 3. Each neuron in a layer receives weighted
inputs from a previous layer and transmits its output to neurons in the next layer. The
summation of weighted input signals are calculated by Eq. (8) and this summation is20

transferred by a nonlinear activation function given in Eq. (9). The results of network
are compared with the actual observation results and the network error is calculated
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with Eq. (10). The training process continues until this error reaches an acceptable
value.

Ynet=
N∑
i=1

Yi .wi+w0 (8)

Yout=f (Ynet)=
1

1+e−Y net
(9)

Jr=
1
2
.

k∑
i=1

(Yobs − Yout)
2 (10)5

Yout is the response of neural network system, f (Ynet) is the nonlinear activation function,
Ynet is the summation of weighted inputs, Yi is the neuron input, wi is weight coefficient
of each neuron input, w0 is bias, Jr is the error between observed value and network
result, Yobs is the observation output value. In this study, the back propagation learning
algorithm, the supervised learning and sigmoid activation function are used in training10

and testing of models.

3.2 Generalized Regression Neural Networks

A Generalized Regression Neural Networks (GRNN) is a variation of the radial basis
neural networks, which is based on kernel regression networks (Cigizoglu and Alp,
2006). A GRNN doesn’t require an iterative training procedure as back propagation15

networks. A GRNN consists of four layers: input layer, pattern layer, summation layer
and output layer as shown in Fig. 4.

The number of input units in input layer depends on the total number of the obser-
vation parameters. The first layer is connected to the pattern layer and in this layer
each neuron presents a training pattern and its output. The pattern layer is connected20

to the summation layer. The summation layer has two different types of summation,
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which are a single division unit and summation units. The summation and output layer
together perform a normalization of output set. In training of network, radial basis and
linear activation functions are used in hidden and output layers. Each pattern layer unit
is connected to the two neurons in the summation layer, S and D summation neurons.
S-summation neuron computes the sum of weighted responses of the pattern layer.5

On the other hand, D summation neuron is used to calculate unweighted outputs of
pattern neurons. The output layer merely divides the output of each S-summation neu-
ron by that of each D-summation neuron, yielding the predicted value to an unknown
input vector x as (Kim et al., 2004);

Y ′
i =

n∑
i=1

yi .exp [−D(x, xi )]

n∑
i=1

exp [−D(x, xi )]
(11)10

D(x, xi )=
m∑

k=1

(
xi − xik

σ

)2

(12)

yi is the weight connection between the i th neuron in the pattern layer and the S-
summation neuron, n is the number of the training patterns, D is the Gaussian function,
m is the number of elements of an input vector, xk and xik are the j th element of x
and xi , respectively, σ is the spread parameter, whose optimal value is determined15

experimentally.

4 Study area and available data

In this study, the applicability and capability of ANFIS and ANN methods, GRNN and
FFNN, is investigated in forecasting and modeling of daily river flow. To illustrate the
applicability of the ANFIS and ANN methods, The Seyhan River, located in the south of20
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Turkey, is chosen as case study area. It has been operated for irrigation, hydropower
generation, domestic use and recreation facilities. The Seyhan River and its drainage
basin are shown in Fig. 5.

5 River flow forecasting by Artificial Intelligence Techniques

5.1 Input variables5

The river flow process in any cross section of river system can be characterized as
the function of various variables such as, spatial and temporal distribution of rainfall,
catchment and river physical characteristics. The relationship of between river flow and
influential variables can be expressed by;

Q(t) = f (X (t)) + εt (13)10

where, Q(t) denotes the river flow in any cross section of river system, X (t) is the
input vector, which consists of many variables such as spatial and temporal distribution
of rainfall, catchment and river physical characteristics at various time lags, εt is the
random error. In the river flow modeling and forecasting, these parameters affects the
performance of the forecasting model because input vector includes the number of15

antecedent values of these variables. Owing to the complexity of this process, most
conventional approaches are often unable to provide sufficiently accurate and reliable
results. There is one River flow gauging station, Seyhan River Üçtepe (1818), equipped
with automatic daily flow recorders, on Seyhan River as shown in Fig. 5. Totally 4383
daily river flow data were obtained from river flow station of Üçtepe (1818) on Seyhan20

River for the time period 1986–2000 and Fig. 6 shows the time series data of daily river
flow.

The minimum value; xmin, maximum value; xmax, mean; x̄, standard deviation; sx,
variation coefficient cvx, skewness coefficient; csx, for total observed data sets are
given in Table 1.25
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5.2 Model structure

One of the most important steps in developing a satisfactory forecasting model is the
selection of the input variables. Hence, cross- correlations between input and output
variables are calculated in order to apply the methods for modeling. Different combi-
nations of the antecedent flows of river flow gauge station are used to construct the5

appropriate input structure. The structures of forecasting models are shown in Table 2.
Where; Qt represents the River flow at time (t), Q(t−1),. . .Q(t−n) are the river flow

respectively at times (t−1) . . . (t−n). It is evident that the training data sets should
cover all the characters of the problem in order to get effective estimation. The ob-
served data were divided into three parts: training data set, testing data set and verifi-10

cation data set. The verification data set consisted of the last two years (at time period
1998–2000). The training and testing data set include the daily river flow record at time
period 1986–1998 years and the time periods of training/ testing are shown in Table 3.

The training and testing experiments with ANFIS and ANN methods are carried out
considering various input layer structures with data set given in Fig. 6. The perfor-15

mances of the models both training and testing data are evaluated and compared ac-
cording to Correlation Coefficient (CORR), Efficiency (E) and Root Mean Square Error
(RMSE).

CORR =

N∑
i=1

(QD −QD).(QY −QY )√
N∑
i=1

(QD −QD)2.(QY −QY )2

(14)

E =
E1 − E2

E1
E1 =

N∑
t=1

QD −QD)2, E2 =
N∑
t=1

(QY−QD)2 (15)20
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RMSE =

[
N∑
i=1

(QD −QY )2

N

]0.5

(16)

where, QY is the forecasted river flow, QD is the field observation of river flow, QY is the
average of the forecasted river flows, QD is the average of the observation river flow.
The correlation coefficient is a commonly used statistic and provides information on the
strength of linear relationship between the observed and the computed values. The5

efficiency (E) is one of the widely employed statistics to evaluate model performance.
The values of CORR and E close to 1.0 indicate good model performance. RMSE
evaluates the residual between measured and forecasted sediment yield. Theoretically,
if this criterion equals zero then model represents the perfect fit, which is not possible
at all.10

5.2.1 ANFIS model

In this study firstly, the seven models having various input variables are trained and
tested by ANFIS method and the performances of models for river flow forecasting
models are compared and evaluated based on training and testing performances. The
best fit model structure is determined according to criteria of performance evaluation.15

The performances of the ANFIS models are shown in Fig. 7.
As can be seen in Fig. 7, the ANFIS models are evaluated based on their perfor-

mance in testing sets. The models have shown significant variations in the criteria of
the performance evaluation given in Fig. 5. It shows that the lowest value of the RMSE
and the highest values of the RMSE and CORR are R-I M2 ANFIS model. R-I M220

ANFIS model, which consists of two antecedent flows in input, has shown the highest
efficiency, correlation and the minimum RMSE and R-I M2 was selected as the best-fit
model for modeling of river flow in the Seyhan catchment. The performance of the
R-I M2 ANFIS model is shown in Table 4.

It appears that the ANFIS model is accurate and the value of RMSE is small enough,25
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and correlation coefficients and efficiencies are very close to unity. The results of the
ANFIS model are compared with the observed flows in order to evaluate the perfor-
mance of the training/testing of the model. Figure 8 shows the scatter diagrams of the
estimated values of the training/testing of the ANFIS models and observed values.

The results of the ANFIS model demonstrate that the ANFIS can be successfully5

applied to establish accurate and reliable time series forecasting models. In order to
get a true and effective evaluation of the performance of ANFIS method, the models
were also trained and tested by GRNN and FFNN methods.

5.2.2 ANN models

In this study, secondly, the GRNN and FFNN methods are used for modeling of daily10

river flow. In the training and testing of ANN models, the same data set is used and
performances of models are also evaluated and compared based on given above cri-
teria. The performances of the GRNN models are given for both training and testing
data sets in Fig. 9.

As can be seen in Fig. 9, the results of all GRNN models trained were compared15

and evaluated according to their performances in training and testing sets. The values
of the E and CORR of R-I M2 GRNN model are higher than those of other models. In
addition the value of R-I M2 GRNN model is also lower than that of other models. As
a result, R-I M2 GRNN model is selected as the best fit forecasting model according
to criteria of performance evaluation. In order to get a true and effective evaluation,20

the best fit model structure having two input variables has also been trained and tested
by FFNN. The FFNN model having two input variables was trained and tested using
the same non-transformed data set. The error backpragation algorithm and sigmoid
activation function was used for the training and testing of FFNN model. The number
of hidden layers and numbers of hidden neurons in hidden layer, the learning rate, the25

coefficient of momentum and epochs were selected by trial and error method during
the training. Figure 10 shows the variation of the E, CORR and RMSE criteria with the
number of the hidden neurons in hidden layer for testing data sets.
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As can be seen in Fig. 10, the FNN model, which has five hidden neurons in hidden
layer, has shown the best fit performance. The training parameters of the FFNN model
such as, the learning rate (0.02), the coefficient of momentum (0.7) and epochs (2000)
were selected by trial and error method during the training. The performances of R-
I M2 GRNN and R-I M2 FFNN models are given for both training and testing sets in5

Table 5, Figs. 11 and 12.
Comparing the performances of GRNN and FFNN forecasting models, it can be

seen that the value of the RMSE of the GRNN model is lower than FFNN model. In
addition, the values of E and CORR of the GRNN model are also higher than FFNN
model. It may be noted that a trial and error procedure has to be performed for FFNN10

model to develop the best network structure, while such a procedure is not required in
developing a GRNN model. The results suggest that the GRNN method is superior to
the FFNN method in the modeling and forecasting of the river flow.

5.2.3 Auto-regressive model

In the traditional analysis techniques, the data set must be divided to periodical com-15

ponent, trend component, internal dependent component and independent (random)
components. Trend is the evidence of the increase or decrease of process parame-
ters (mean and standard deviation) by time. It is understood that there is a periodical
component when the parameters of the process show variation in a determined period.
BOX-COX transformation was applied to the data to converge the data to normal dis-20

tribution. The periodicity of the daily means and standard deviations were calculated
by using Fourier series to arrange the periodicity in the data.

DNY (t) =
DY (t) − DY

σDY
(17)

where DNY (t) is the normalized time series variable, DY (t) is the original time series
variable, DY is the mean of the original time series data and σDY is the standard devi-25

ation of the original time series data. AR (2) model, which includes input variables of
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R-I M2 model, is used to compare the responses of the R-I M2 ANFIS, ANN models.
The structure of AR model can be expressed by following Eq. (18);

Q(t) =
N∑
i=1

αiQ(t − i ) + ε(t) (18)

where, Q(t) is the daily river flow, Q(t−i ) is the river flow at (t−i ) time, α is the auto-
regressive parameter to be determined (i ) is an index representing the order of AR5

model and ε(t) is the random error. Once the estimates of the traditional time series
model coefficients have been obtained using the training data set, the model can be
validated by computing the performance statistics during both training and testing data
sets.

5.2.4 Verification of forecasting models10

The best fit R-I M2 ANFIS, GRNN and FFNN models are verified by verification data
set including totally 731 daily river flow values at the time period 1998–2000 years.
The performances of all methods for both testing and verification data sets are given in
Table 6.

Comparing verification performances of ANFIS, GRNN and FFNN models, the value15

of RMSE of ANFIS model is lower than those of GRNN and FFNN model. On the other
hand, the values of E and CORR of ANFIS model are also higher than those of GRNN
and FFNN models. The results suggest that the ANFIS method is superior to the ANN
methods in the modeling and forecasting of river flow. The comp Once the estimates
of the traditional time series model coefficients have been obtained using the training20

data set, the model can be validated by computing the performance statistics during
both training and testing data sets. Comparison of the verification results of models
are demonstrated in Fig. 13.
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6 Conclusions

In this study, applicability and capability of Artificial Intelligence techniques, ANFIS and
ANN, for daily river forecasting was investigated. To illustrate the capability of ANFIS
and ANN methods, Seyhan River, located in the south of Turkey, was chosen as a case
study and estimation models having various input variables were established. The5

performances of the models and observations were compared and evaluated based
on their performance in training and testing sets. The R-I M2 ANFIS model having two
antecedent flow variables was selected as the best fit river forecasting model according
to criteria of performance evaluation. The models were also trained and tested by
GRNN and FFNN methods for the same set of data and results were reported to get10

more accurate and sensitive comparison. Comparing the results of training and testing
of forecasting models, it can be seen that the value of the RMSE of ANFIS model is
lower than those of ANN methods, GRNN and FFNN. The values of the E and CORR
of ANFIS model are higher than those of GRNN and FFNN models. On the other
hand, Comparing verification performances of ANFIS, GRNN and FFNN models, the15

value of RMSE of ANFIS model is also lower than those of GRNN and FFNN model.
In addition, the values of E and CORR of ANFIS model are also higher than those of
GRNN and FFNN models. The results suggest that the ANFIS method is superior to
the ANN methods in the modeling and forecasting of river flow.
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Table 1. The Statistical Parameters for data sets.

Data Set Variable xmin xmax x̄ sx csx

Training/Testing (1987–1998) Q(t) (m3/s) 54.00 912.00 147.93 110.26 2.26
Verification (1998–2000) Q(t) (m3/s) 60.80 712.00 134.52 95.42 2.37
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Table 2. The structure of the models for forecasting of river flow.

Model Input structure Output

R-I M1 Q(t − 1) Q(t)
R-I M2 Q(t − 1)Q(t − 2) Q(t)
R-I M3 Q(t − 1)Q(t − 2)Q(t − 3) Q(t)
R-I M4 Q(t − 1)Q(t − 2)Q(t − 3)Q(t − 4) Q(t)
R-I M5 Q(t − 1)Q(t − 2)Q(t − 3)Q(t − 4)Q(t − 5) Q(t)
R-I M6 Q(t − 1)Q(t − 2)Q(t − 3)Q(t − 4)Q(t − 5)Q(t − 6) Q(t)
R-I M7 Q(t − 1)Q(t − 2)Q(t − 3)Q(t − 4)Q(t − 5)Q(t − 6)Q(t − 7) Q(t)
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Table 3. The structure of the training and testing data sets.

Date of training set Date of testing set Date of verification set

1 Oct 1986–30 Sep 1994 1 Oct 1994–30 Sep 1998 1 Oct 1998–30 Sep 2000
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Table 4. Comparison of the performances of the R-I M2 GRNN and FFNN models.

Model
Testing Data Set Training Data Set

RMSE E CORR RMSE E CORR

R-I M2 ANFIS 26.95 0.941 0.970 29.43 0.945 0.964
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Table 5. Comparison of the performances of the R-I M2 GRNN and FFNN models.

Models
Testing Data Set Training Data Set

RMSE E CORR RMSE E CORR

R-I M2 GRNN 32.076 0.917 0.952 42.520 0.848 0.921
R-I M2 FFNN 43.830 0.845 0.924 48.475 0.803 0.900
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Table 6. Comparison of the performances of the R-I M2 GRNN and FFNN models.

Models
Testing Data Set Verification Data Set

RMSE E CORR RMSE E CORR

R-I M2 ANFIS 26.950 0.941 0.970 33.972 0.873 0.935
R-I M2 GRNN 32.076 0.917 0.952 37.189 0.860 0.928
R-I M2 FFNN 43.830 0.845 0.924 43.595 0.808 0.899
R-I M2 AR(2) 38.420 0.840 0.928 39.344 0.823 0.914
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Fig. 2. The scheme of Adaptive Neuro-Fuzzy Inference System.
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Fig. 5: The Seyhan River and its Drainage Area 
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Fig. 6: The Time Series data of Daily river Flow 

Fig. 5. The Seyhan River and its drainage area.
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Fig. 11: Results of training and testing of R-I M2 GRNN models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Results of training and testing of R-I 2 GRNN models.
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Fig. 12: Results of training and testing of R-I M2 FFNN models 
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Fig. 13: Comparison of the verification results of ANFIS and ANN methods 
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