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Abstract

As the satellite microwave remote sensed brightness temperature is sensitive to land
surface soil moisture (SM) and SM is a basic output variable in model simulation, it is
of great significance to use the brightness temperature data to improve SM numerical
simulation. In this paper, the theory developed by Yan et al. (2004) about the relation-5

ship between satellite microwave remote sensing polarization index and SM was used
to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Ra-
diometer – Earth Observing System) brightness temperature data. With consideration
of land surface soil texture, surface roughness, vegetation optical thickness, and the
AMSR-E monthly SM products, the regional daily land surface SM was estimated over10

the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM
is lower than the ground measurements and the NCEP (American National Centers
for Environmental Prediction) reanalysis data at the Maqu Station (33.85◦ N, 102.57◦ E)
and the Tanglha Station (33.07◦ N, 91.94◦ E), but its regional distribution is reasonable
and somewhat better than that from the daily AMSR-E SM product, and its temporal15

variation shows a quick response to the ground daily precipitations. Furthermore, in
order to improve the simulating ability of the WRF (Weather Research and Forecast-
ing) model to land surface SM, the estimated SM was assimilated into the Noah land
surface model by the Newtonian relaxation (NR) method. The results indicate that, by
fine tuning of the quality factor in NR method, the simulated SM values are improved20

most in desert area, followed by grassland, shrub and grass mixed zone. At temporal
scale, Root Mean Square Error (RMSE) values between simulated and observed SM
are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and
the Tanglha Station, respectively.
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1 Introduction

Soil moisture (SM) is an important factor in global water and energy cycles. It controls
the partition between the sensible and latent heat fluxes (Prigent et al., 2005) and
the redistribution of rainfall into infiltration, surface runoff and evaporation on the earth
surface (Delworth and Manabe, 1988; Vinnikov and Yeserkepova, 1991; Wagner et al.,5

2003), and thus influences the climate change by land-atmosphere interaction in the
near surface layer (Clark and Arritt, 1995; Gallus and Segal, 2000; Lanicci et al., 1987).
As a result, it is crucial to get an accurate SM field to improve the simulations in the
land surface model or the weather/climate model which couples a land surface model.

Traditionally, there are two ways to get SM data. First, some operational networks of10

in situ soil moisture sensors have been established and maintained to provide long-
term soil moisture measurements, such as the Soil Climate Analysis Network and
the Oklahoma Mesonet, etc. These networks provide valuable distributed point mea-
surements but are insufficient to characterize the spatial and temporal variability of
SM at large scales (Njoku et al., 2003). Second, the numerical model products com-15

bined with ground observations form the low-resolution reanalysis SM datasets, such
as the reanalysis datasets from American National Centers for Environmental Predic-
tion (NCEP) or European Centre for Medium-range Weather Forecast (ECMWF), etc.
These datasets usually have low spatial resolution and can be used as model back-
ground fields.20

Nowadays, the satellite remote sensing observations provide an integrated global
SM monitoring capability and work as an effective way to overcome the shortages of
the traditional ways. Compared to the early developed optical remote sensors, which
are sensitive to land surface reflectance and land surface temperature, the newly devel-
oped satellite microwave sensors show a great advantage in estimate of land surface25

SM. As a fact, the dielectric constants of water and dry soil are 80 and 3, respec-
tively, different SM values make the dielectric constant of soil vary, and hence change
the emissivity of soil (Hallikainen et al., 1985). Furthermore, the satellite passive mi-
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crowave radiometers can work in all weather conditions regardless the cloud condi-
tion. It also can penetrate vegetation and surface topsoil to some extent. With the
launch of Scanning Multichannel Microwave Radiometer (SMMR) aboard Seasat and
Nimbus-7 in 1978 and later other microwave radiometers, such as Special Sensor Mi-
crowave/Imager (SSM/I) and Tropical Rainfall Measuring Mission/Microwave Imager5

(TRMM/TMI), the satellite microwave remote sensing radiometers have greatly accel-
erated the process of SM retrieval at regional scale (Gao et al., 2006; Vinnikov et al.,
1999; Wen et al., 2005). Especially, the AMSR-E (Advanced Microwave Scanning Ra-
diometer – Earth Observation System) aboard the Aqua satellite launched on 4 May
2002 measures radiation at six frequencies in the range 6.9–89 GHz, all dual polarized.10

Compared to the SSM/I, AMSR-E’s 6.9 GHz and 10.6 GHz channels have much longer
wavelengths, which have better penetration ability and are more sensitive to the change
of dielectric constant of soil. Simonetta et al. (2006) estimated the SM from AMSR-E
observations by applying a simple radiation transfer model. McCabe et al. (2005a, b)
also estimated the SM from AMSR-E by a single frequency channel radiation transfer15

model and then discussed the impact of vegetation on SM calculation.
In order to apply the SM estimated from satellite remote sensing into the numerical

simulations, it is common to use the data assimilation method. Firstly, the estimated SM
includes some errors resulting from some uncertainties, such as the soil type, surface
roughness and vegetation coverage, etc. It is also limited by satellite scanning time.20

Therefore, the data can not be applied as the model background fields solely. Secondly,
the SM information can be easily reached by simulations of land surface models, but it
is too sensitive to the model structure and model parameters. Wei (1995) pointed out
that the operational SM product can be estimated by combining both satellite SM and
numerical simulated SM. With the process of assimilation, the consequent SM datasets25

have higher spatial-time resolution and smaller errors than those solely using satellite
data or numerical simulations. Huang et al. (2007) confirmed that the assimilation
procedure could improve the SM estimation significantly. In general, the commonly
used methods of assimilation are four-dimensional variational method, Kalman filter
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method, and ensemble Kalman filter method, etc. They could yield good precision,
however, they need a longer computation time than the general interpolation methods.

To retrieval the SM from satellite brightness temperature data and to assimilate this
SM into numerical simulations are two key procedures for using satellite brightness
temperature data to improve model simulation of SM, and they are generally done sep-5

arately in previous researches. In this paper, the regional SM datasets are estimated
from AMSR-E based on the relationship between satellite microwave remote sensing
polarization index and SM proposed by Yan et al. (2004). Next, the estimated SM is
assimilated into the Noah land surface model in the WRF (Weather Research and Fore-
casting) model through the four-dimensional Newtonian relaxation (NR) method (Hoke10

and Anthes, 1976). With considering all these aspects, the objective of this paper is
to provide a simple approach to apply satellite microwave remote sensed brightness
temperature data into the WRF model for improving the regional simulation of SM.

Firstly, brief descriptions about the geophysical and meteorological characteristics
of study area and the satellite remote sensing data are given in Sect. 2 after the in-15

troduction in this investigation. Secondly, an algorithm developed by Yan et al. (2004)
is introduced for SM estimates from the AMSR-E. And then, a four-dimensional NR
method for assimilating SM into the Noah land surface model is designed. In Sect. 4,
the regional estimated SM values are validated by using ground measurements. The
inter-comparings among the simulated SM values with assimilation procedure, non-20

assimilation procedure and directly insertion procedure which directly replace the
model background field of SM with the estimated SM datasets are presented in Sect. 5.
The main conclusions and discussions are made in the last section.

2 Descriptions of the study area and the datasets

An eastern part of the Qinghai-Tibet Plateau which has high average altitude and typ-25

ical continental plateau climate is selected as the study area (Fig. 1a). Its harsh envi-
ronment keeps human activity away and results in few of ground meteorology obser-
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vations. It is known that the thermal dynamics of this plateau has significant impact on
the Eastern Asian monsoon and global weather/climate system (Wu et al., 2005). If the
satellite remote sensing data are used in land surface SM simulation in this area, the
mechanism research of thermal dynamics effect on weather/climate variability in such
an inaccessible but important area will be improved.5

Figure 1b shows the land use classification of the study area which is the domain
of WRF simulation in this investigation. There are Qaidam basin desert and Kumtag
desert on the northwest, Tengger desert on the northeast, and shrub and grass mixed
areas surround the deserts. On the southeast part, it is mostly grassland with several
lakes sparsely distributed. Among these lakes, Lake Qinghai, Lake Gyaring and Lake10

Ngoring are the bigger three.
The ground measurement datasets deployed in this study are taken at two sites. The

first one is an ECH2O SM meter installed at the Maqu (33.85◦ N, 102.57◦ E), where is
the water source region of the Yellow River, no precipitation observations are avail-
able at this site. The second site is located at the Tanglha (33.07◦ N, 91.94◦ E), which15

is a boundary layer meteorology observation station near the Qinghai-Tibet railway.
There are precipitation observations at this site. Both sites have 5 cm depth SM mea-
surements. These observation datasets will be used to validate the estimated SM from
AMSR-E and the simulated SM from WRF model.

The satellite brightness temperature data deployed in this investigation are the20

AMSR-E L2A re-sampled product which spatial resolution is 12 km (the detail informa-
tion about this product is available on http://nsidc.org/data/amsre/index.html). AMSR-E
radiometer scans the study area 2 times per day, and the ascending orbital observa-
tions covered July 2008 at about 14:00 Beijing Standard Time (BST) are only used in
this research.25

The land surface model used in SM simulation is the Noah land surface model based
on the one developed in the Oregon State University (Chen and Dudhia, 2001) and
coupled into the WRF model. The Noah land surface model calculates the SM values
in four layers of 10 cm, 30 cm, 60 cm and 100 cm. After year 2005, the NCEP 1◦×1◦
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reanalysis dataset consists of four SM layers, 0–10 cm, 10–40 cm, 40–100 cm and
100–200 cm. Because the NCEP SM values are not interpolated to the depth of soil
layers for the Noah land surface model and are usually used as model background
fields directly in simulations, the SM estimated from the AMSR-E will be also used
directly in the simulations of top layer SM in the Noah land surface model.5

3 Methodology

3.1 Soil moisture estimates from satellite microwave remote sensing data

Because of the large difference between the dielectric constants of dry soil and water
as mentioned previously, the soil emissivity mainly depends on the SM. The complex
dielectric constant ε of soil can be represented as (Hallikainen et al., 1985)10

ε = (a0 + a1S + a2C) + (b0 + b1S + b2C)mv + (c0 + c1S + c2C)m2
v , (1)

where S and C are sand and clay components of the soil layer, respectively, which are
the physical property of soil layer, mv is volumetric SM, and a0, a1, a2, b0, b1, b2, c0,
c1 and c2 are empirical coefficients listed in Table 1.

Assuming a smooth soil surface and omitting bulk scattering, the microwave reflec-15

tion indexes of horizontal and vertical components of the soil surface (rH , rV ) can be
calculated with the Fresnel equation (Jackson et al., 2002; Ulaby et al., 1981)

rH =

∣∣∣∣∣u cosθ −
√
uε − sin2 θ

u cosθ +
√
uε − sin2 θ

∣∣∣∣∣
2

, (2)

rV =

∣∣∣∣∣ε cosθ −
√
uε − sin2 θ

ε cosθ +
√
uε − sin2 θ

∣∣∣∣∣
2

, (3)
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where θ is the incidence angle, u is the relative magnetic susceptibility, which is 1.0 for
non-magnetic materials.

When the land surface roughness is taken into account, the microwave reflection
indexes of the horizontal and vertical components (RH , RV ) will be modified as

RH = [(1 −Q)rV +QrH ]e−h, (4)5

RV = [(1 −Q)rH +QrV ]e−h, (5)

where Q and h are the polarization ratio and the surface roughness parameter, respec-
tively. In general, 0≤Q<0.5, Q=0.174 is taken in this investigation (Njoku and Chan,
2006).

The vector radiative transfer (VRT) equation for a uniform atmospheric layer and land10

surface with vegetation can be written as (Jin, 1998)

TBP = (1 − RP )e−τTs + (1 − e−τ)(1 + RP e
τ)Ta, (6)

where TBP is brightness temperature, p is either vertical (V ) or horizontal (H) polariza-
tion, τ is the total opacity of atmospheric layer and vegetation layer, RP is the polarized
reflection index from Eq. (4) and/or Eq. (5), Ta and Ts are the average physical tempera-15

tures of the uniform atmospheric layer and land surface, respectively. As Ta is generally
smaller than Ts, it can be rewritten as Ta=(1−δT )Ts with 0≤δT≤1, δT is called as the
air temperature parameter. In Eq. (6), the reflection of the top layer vegetation and the
scattering of the vegetation layer are ignored.

It is commonly use the microwave polarization difference index (MPDI) to charac-20

terize the brightness temperature difference between vertical and horizontal channels.
From Eq. (6), the MPDI can be rewritten as

MPDI=
TBV−TBH
TBV + TBH

=
(RH−RV )e−2τ[1 + δT (eτ−1)]

2−(RH + RV )e−2τ−δT (1−eτ)[2 + (RH + RV )e−τ]
. (7)
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By pluging Eqs. (4) and (5) into (7), the MPDI can be simplified as

MPDI ≈
(RH + RV )(1−2Q)(1 + δT )

2e2τeh(1−δT )−(RH−RV )
. (8)

The MPDI expressed in Eq. (8) clearly reveals its dependence on the SM, the surface
roughness parameter h, the atmospheric and vegetation opacity τ and the air temper-
ature parameter δT . For example, the increasing of either h, τ, Q, or (1−δT ) dimin-5

ishes the difference of surface polarization radiations and hence decreases MPDI. On
the other hand, the increasing of the SM boosts (RH+RV ) much more than (RH−RV ),
therefore it yields a bigger radiation difference and MPDI value. As seen in previous
equations, (RH+RV ) and (RH−RV ) are functions of mv and will be noted as R+ and R−
for simplicity.10

Statistically, parameters τ, Q, h, and δT of the same region in the same month should
change little, so the variation of the MPDI will embody the change of the SM (Yan and
Jin, 2004). With Eq. (8), there is

MPDI

〈MPDI〉
≈

2e2τeh(1 − δT ) − R+(〈mv 〉)
2e2τeh(1 − δT ) − R+(mv )

≡
a − R+(〈mv 〉)
a − R+(mv )

, (9)

where a=2e2τeh(1−δT ), 〈MPDI〉 is the monthly average of MPDI and 〈mv 〉 is the15

monthly average of mv . Given a, 〈MPDI〉 and 〈mv 〉, the R+(mv ) can be derived from the
current observation of MPDI, and then the mv can be found out by iteration.

As for the parameter a, Yan et al. (2004) treated it as constant, which is solved from
two sets of known MPDI and mv at different time. In our case, it is impossible to have
two observations of any one grid point in advance. Therefore τ and h are calculated20

based on previous algorithms (Meesters et al., 2005; Wang et al., 2006) in this paper.
The above scheme takes into account of the impact of soil type, surface roughness,

and vegetation optical thickness in SM estimates. However, a key prerequisite is know-
ing the monthly average SM (〈mv 〉), which is not an easy task considering that there
are only very limited records available for the whole Qinghai-Tibet Plateau. In order to25
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provide the monthly average SM for each grid point in the simulation area, we use the
AMSR-E global monthly SM product (resolution 1◦×1◦) as the 〈mv 〉, and re-sampling
it and the AMSR-E brightness temperature data to the 10 km resolution of the model
grids for further processing.

3.2 Newtonian relaxation assimilation scheme5

The SM estimated from AMSR-E is assimilated into the Noah land surface model cou-
pled in the WRF model by the Newtonian relaxation (NR) assimilation scheme in this
investigation. The idea of this method is with adding a fake tendency term, proportional
to the difference between a simulated value and the observed value, into one or several
prediction (or forecast) equations to make the simulated value close to real observation10

and make all variables balanced by model dynamical framework in the entire nudging
time. This nudging method can effectively damp the inertia-gravity wave generated by
new data insertion. The NR result can be used as an initial field of forecast to improve
the accuracy of prediction. Furthermore, multiple time observations can be inserted
into this initial field optimization process, and this will raise the effective resolution of15

observations (Hoke and Anthes, 1976; Kistler, 1974).
The SM in the Noah land surface model is simulated through the application of the

diffusivity form of Richards equation, which can be formulated as follows:

∂mv

∂t
=

∂
∂z

(
D(mv )

∂mv

∂z

)
+

∂K (mv )

∂z
+ S(mv ), (10)

where K (m/s) is the hydraulic conductivity, D(m2/s) is the soil water diffusivity,20

S(m3/m3 s) is representative for sinks and sources (i.e. rainfall, dew, evaporation and
transpiration), t(s) represents the time, and mv is the soil moisture. The non-linear
K−mv and D−mv relationship are defined by the formulation of Cosby et al. (1984) for
9 different soil types.

By adding a relaxation term on the right hand of Eq. (10), the assimilation equation25
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reads
∂mv

∂t
=

∂
∂z

(
D(mv )

∂mv

∂z

)
+

∂K (mv )

∂z
+ S(mv ) + Gω(x, y,1, t)ε(x, y,1)(mo

v −mv ), (11)

where G denotes the strength of the relaxation, which determines the relative value of
the assimilation term with respect to all other physical forcing terms in Eq. (11). G has
dimension of s−1, and it has to be adjusted accordingly to match the slowest physical5

process in this equation. A prerequisite of G is to satisfy the stability criterion G≤1/∆t,
where ∆t is the nudging time of the analytical field. Generally, the simulation results
are too close to observations and thus breaks the harmonious of the fields if G is too
big, or, the assimilation data plays no role in simulation if G is too small. Empirically, G
varies in range 10−5–10−3 s−1 and is usually set as 10−4 s−1. ω(x, y,1, t) is the four-10

dimensional assimilation weighting function. ε(x, y,1) is the quality factor of analytical
value, which is in range 0–1.0 and relies on the data quality and distribution. m◦

v is the
grid observation value by interpolating observations of neighbor times. In this research,
only the first layer SM is assimilated into the Noah land surface model. More details
setting about G, ω and ε are also explained in Sect. 5. The nudging time for every15

observation data is 6 h in this study.

4 Analysis of the soil moisture estimated from AMSR-E

4.1 Evaluation of the estimated soil moisture

In this section, the estimated SM is validated by using the ground observations on 7
July 2008. In addition, no precipitation event occurred in this area during the study20

period, this circumstance is favorable to link the regional distribution of SM to the land
use classification, and it is also suitable for inter-comparing between SM values from
different sources. In addition, the average SM of monthly AMSR-E SM products of July
in 2000–2007 was taken as the monthly average SM of July 2008, due to lack of the
monthly AMSR-E SM product at that time.25
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Figure 2a presents the regional distribution of the estimated SM which original spa-
tial resolution is about 12 km. The regional distributions of daily AMSR-E SM product
and NCEP SM are also provided (Fig. 2b and Fig. 2c) for inter-comparing purpose.
The estimated SM values in the desert areas are ranged 0.06–0.08 m3/m3 and indi-
cate a good correspondence to the distributions between the estimated SM and the5

land use classification. In shrub and grass mixed areas, the estimated SM values are
ranged 0.04–0.08 m3/m3, which are slightly smaller than actual observations. The esti-
mated SM values are about 0.08–0.22 m3/m3 in the grasslands and reach maximum in
the Songpan grassland (32.00–34.00◦ N, 102.00–104.00◦ E), Sichuan province. A con-
clusion has been drawn that the regional distribution of the SM estimated from AMSR-E10

is acceptable.
Figure 2b presents the regional distribution of the daily AMSR-E SM product which

original spatial resolution is 25 km. The regional distribution pattern of the SM product
is similar to that of the estimated SM in both the general tendency and the numerical
values for each land use classification. The main differences between them are em-15

bodied in the SM distribution of the desert in the northwest and the SM values of the
grassland in the southeast. This product gives SM values ranged 0.06–0.10 m3/m3 for
the northwest desert area, and the distribution of this SM product deviates from the dis-
tribution of desert. In grassland, the SM values are slightly larger than the estimated
SM values and their distributions agree better to the distribution of grassland. How-20

ever, another disadvantage of the product is that the SM retrieval is not available for
the Songpan grassland where there is a large area of high SM values. In general, the
SM differences between the grassland and the desert in the SM product are smaller
than that in the estimated SM.

Figure 2c is the regional distribution of the NCEP SM which original spatial resolution25

is 1◦×1◦. This product is the SM background field in simulation of the Noah land surface
model in this paper. Basically this product represents the characteristic of SM distribu-
tion in both desert and grassland. However, the SM values in desert, 0.10–0.20 m3/m3,
are obviously too high. The SM values in shrub and grass mixed area and grassland
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are 0.20–0.25 m3/m3 and 0.25–0.30 m3/m3, respectively. Compared with the estimated
SM, this product does not provide accurate information in shrub and grass mixed area,
and misses the maximal SM area in the Songpan grassland due to its low resolution,
either.

4.2 Validation of the estimated soil moisture5

Before assimilating the estimated SM into the Noah land surface model for simulation,
the estimated SM is validated by using the 5 cm depth SM data collected in July 2008
at both the Maqu Station and the Tanglha Station. The results are shown in Fig. 3.

The land surface type of the Maqu Station is grassland with a 3512 m altitude. As
shown in Fig. 3a, the temporal variations of the estimated SM and the NCEP SM are10

highly coincidence with the SM measured at this ground station. Especially, three
decreasing period of SM in 1–10, 14–20 and 21–30 July are all evidently shown. As for
the data value, NCEP SM is closer to the ground observations than the SM estimated
from AMSR-E. However, the estimated SM provides better evaluation of the low SM
values than that of the NCEP SM. A small amplitude of the NCEP SM, compared to15

the ground measurements, is another disadvantage.
The land surface type of the Tanglha Station is grassland with a 5100 m altitude. As

shown in Fig. 3b, the temporal variations of the estimated SM, the NCEP SM and the
ground observations have similar trend. The NCEP SM provides much higher values
than the ground observations, while the SM estimated from AMSR-E yields lower val-20

ues than the ground observations. Furthermore, the estimated SM has smaller relative
error compared to the NCEP SM. Gruhier (2008) pointed out that, the daily AMSR-E
SM product is not able to capture absolute SM values at current stage, but it provides
reliable information on land surface SM temporal variability, at seasonal and rainy event
scale. By analyzing the precipitation of July in the Tanglha Station, the estimated SM25

presents a good correspondence of SM variation and rainy events. For example, after
rainy events of 14, 24 and 30 July, the estimated SM reveals more clearly increasing
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trend compared to the NCEP SM.
Based on previous comparison, the estimated SM is smaller than the ground obser-

vations. A possible reason is that the monthly average SM resulted from the monthly
AMSR-E SM product at July is not accurate enough though several other factors have
been considered, such as the soil type, surface roughness and vegetation optical thick-5

ness. Therefore, an accurate monthly average SM is essential for the way to better
estimate SM in this investigation. Fortunately, the Soil Moisture and Ocean Salinity
Mission (SMOS, more information in http://smsc.cnes.fr/SMOS/) has been scheduled
for launch on April 2009, which is equipped with L-band (1.4 GHz) passive microwave
radiometer. This radiometer is much sensitivity to the land surface SM and could pro-10

vide more precise monthly SM values.

5 Assimilating the estimated soil moisture to the simulations of WRF

The accuracy of a numerical model simulation or forecasting is influenced not only by
the model matureness, but also by the quality of initial variable fields. In this section,
the NR method is deployed to assimilate the SM estimated from AMSR-E to the Noah15

land surface model in the WRF model, and then the regional and temporal patterns of
simulated SM will be analyzed in this section.

5.1 Regional distribution of the simulated soil moisture

From the analysis in Sect. 4, it is found that the estimated SM and the NCEP SM
have same temporal trend, but have different values in the regional distribution. These20

evident differences are mainly reflected in: (1) NCEP SM values are high in desert
area; (2) AMSR-E derived SM values are low in shrub and grass mixed zone. So, the
quality factor in NR method is simply set according to the land use category, instead
of 1.0 as usually setting. The best way to set the quality factor is to use the statistical
errors between actual SM values and estimated SM values. However, these statistical25
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errors can’t be achieved in a short period for lacking of actual SM measurements in
the Qinghai-Tibet Plateau. So, if the land use category isn’t desert and the estimated
SM less than 0.05 m3/m3, then the quality factor is set to 0.5 at this grid, If the land use
category isn’t desert and the estimated SM is greater than 0.05 m3/m3 and less than
0.1 m3/m3, then the quality factor is set to 0.8 at this grid. The quality factor is set to 1.05

for other cases. The relaxing strength factor is set to 0.00037 s−1 at all grids, and this
setting could bring the best simulation results which are close to ground observations.

In this paper, three nested domains are used in the WRF model for simulating the
SM distribution. Among these three domains, the third one which is the smallest one
has the highest resolution of a 10 km grid spacing. In the third domain, the WRF model10

could provide more detail atmospheric force fields and land use category for the Noah
land surface model, and similarly, the Noah land surface model could produce better
water and heat fields to fed to the WRF model as the bottom boundary conditions.
The estimated SM is assimilated in the third area only. Because there are few ground
observation stations in this study area, it is hard to verify which method could yield15

better SM development, so the estimated SM at 7 July 14:00 BST is selected again to
do assimilation test, and the simulation result can be verified by the land use category.
The entire simulating period spans from 02:00 to 14:00 BST 7 July, when the period of
02:00–08:00 BST is taken as the model spin-up time and the model get harmonious
atmospheric and land surface fields at 08:00 BST, the period of 08:00–14:00 BST is20

model assimilation period.
Figure 4 is the simulated regional distribution of SM in assimilated test and none as-

similated test, it is found that the simulated SM values in assimilated test decrease in
almost the entire study area. The changes of SM values between assimilated test and
none assimilated test in desert area and shrub/grass mixed zone are ranged −0.02–25

(−0.04) m3/m3 and −0.04–(−0.06) m3/m3, respectively. In assimilation test, the sim-
ulated desert SM values in Qaidam basin, which locates in the north Qinghai-Tibet
Plateau, are ranged 0.1–0.15 m3/m3 and have a better agreement with the distribution
of desert area than the result in none assimilated test. This situation also happens in
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the Tengger desert. In the southern Qinghai province (95–97◦ E, 31–33◦ N), simulated
SM values in assimilated test obviously decrease with good corresponding to a small
bare ground tundra zone. In the southwestern Qinghai province (90–93◦ E, 31–34◦ N),
simulated SM values also obviously decrease in small shrub and grass mixed zone.
In addition, the simulated SM values in assimilated test have almost no change if the5

estimated SM values are absence.
In summary, it can be concluded that after assimilating by using the NR method,

the regional distribution of simulated SM is improved most in desert area, followed by
grass, shrub and grass mixed zone.

5.2 Temporal variation of the simulated soil moisture10

In the sense of temporal scale, the objective of the assimilation procedure is to syn-
cretize the variation of estimated SM to the SM background field of numerical model,
and make the simulated SM values approach to ground observations for improving the
long term’s simulating result of numerical model.

In this section, three tests are designed to check the influence of assimilation meth-15

ods for the numerical simulations. The first test uses the Newtonian relaxation method
(NR), the second test uses the direct insertion method (DI), and the third test doesn’t
take any assimilation step (NO), then the simulated results are validated by the data
collected from the Maqu Station and the Tanglha Station, as shown in Fig. 5. The
assimilation and simulation parameters in these three tests are set as that described20

in Sect. 5.1, the simulation period spans 14 days from 14:00 BST on 17 July to 14:00
BST on 31 July, the lateral boundary condition is updated every 6 h, same as the output
frequency of the simulation results. The assimilating period is from 08:00 to 14:00 BST
for NR method each day, and at 14:00 BST for DI method each day. In addition, the
Root Mean Square Error (RMSE) is used to evaluate the simulation results. It defines25
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as follows:

RMSE=

√√√√ 1
N

N∑
t=1

(Obst−Xt)2, (12)

where N is the entire simulation period, Obst is the ground observation at time t, Xt is
the simulated value at same time.

The simulated SM values at the Maqu Station by using these three methods are5

presented in Fig. 5a. The NO result shows few changes of SM throughout the entire
simulation period and can’t reflect the significant changes in actual SM, especially on
21 and 31 July. Although the temporal variation of estimated SM has been assimilated
into the simulation by using DI method, the simulation result is inaccurate due to the
low SM values estimated from AMSR-E, especially on 18–23 July. The temporal vari-10

ation of estimated SM is also revealed in the simulation test by using the NR method,
furthermore, the simulated SM not only reflects significant SM changes on 21 and 31
July, but also has less error than the DI result on 18–23 July. The RMSE values of NO,
DI and NR results at this station are 0.07, 0.06 and 0.04 m3/m3, respectively, and the
NR method is ranked the best estimation among all these three methods.15

The SM simulation results at the Tanglha Station (Fig. 5b) are similar to that at the
Maqu Station. The simulated SM values with NO method are much larger than the
ground observations throughout the entire simulation period. The simulated SM values
with DI method, however, are too small. The NR method could make the simulated SM
values much close to the estimated SM values. Through the fine tuning of relaxation20

factor and quality factor, the evolution of simulated SM is close to that of the ground
observations. The RMSE values of NO, DI and NR results at this station are 0.12,
0.07 and 0.05 m3/m3, respectively. Furthermore, the DI method, compared with the
NR method, produces a larger concussion to the numerical model at temporal scale.

As a conclusion, the best simulating results are achieved by assimilating the esti-25

mated SM with the NR method. It makes the simulated SM tend to the ground ob-
servations step by step and the temporal characteristic of SM be disclosed. This is
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helpful for numerical model to improve the simulating accuracy of SM in rainy events
and seasonal variations.

6 Conclusion and discussion

In this paper, the potential by using satellite microwave bright temperature data to im-
prove the performance of numerical simulations of SM has been analyzed. The SM5

estimated from AMSR-E is assimilated into the Noah land surface model by the NR
method for the first time. The main conclusions are as follows:

1. The regional SM values have been estimated from AMSR-E brightness tempera-
ture data by the Yan et al. (2004)’s theory. The results show that the SM values
estimated by this method are acceptable and the SM distributions are somewhat10

better than that from the AMSR-E daily SM product over the eastern part of the
Qinghai-Tibet Plateau.

2. The temporal variations of the estimated SM are in good agreement with ground
daily precipitations, though the estimated SM values are lower when compared
with the Maqu Station and the Tanglha Station observational data and the NCEP15

reanalysis SM dataset.

3. Compared with the NO or DI method, the NR method shows a great advantage
in simulation of SM variations. At regional scale, the simulated SM values are
improved most in desert area, and then in grass, shrub and grass mixed zone.
At temporal scale, the RMSE values between the simulated SM and the ground20

measured SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the
Maqu Station and the Tanglha Station, respectively.

It is revealed from the above conclusions, a key factor in numerical assimilating sim-
ulations is to improve the accuracy of estimated SM values, that is, a good simulation
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depends on high quality satellite remote sensing data to be assimilated into the land
surface model.

In addition, there is a great concern about the direct insertion of estimated SM into
numerical models. Ookouchi et al. (1984) mentioned that sharp horizontal SM gradi-
ents may generate thermal circulations as strong as sea breezes and thus may trig-5

ger convection. With considering the constraint of satellite scanning region, if the DI
method is deployed to assimilate the estimated SM, this method will easily lead to
sharp horizontal SM gradient between the estimated SM and the simulated SM at the
intersection border. And this sharp horizontal gradient of SM has negative effect for
the WRF model to simulate convection and make the model produce more fake pre-10

cipitations near the intersection border. The NR method could weaken these sharp
horizontal SM gradient through a period of nudging assimilation.

The shortcoming of NR method is that its parameter settings need an experience. It
will be helpful to reduce the errors introduced from the estimated SM by developing bet-
ter assimilate ways or even assimilating the satellite measured brightness temperature15

data directly.
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Table 1. Empirical coefficients of real and imaginary parts of soil dielectric constant at 6.9 GHz.

6.9 GHz a0 a1 a2 b0 b1 b2 c0 c1 c2

Real part 1.993 0.002 0.015 38.086 −0.176 −0.633 10.720 1.256 1.522
Imaginary part −0.123 0.002 0.003 7.502 −0.058 −0.116 2.942 0.452 0.543
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Figure 1. Map of the digital elevation model and the observation sites (a), and the land use 

classification (b) (where, 7 is grassland, 9 is mixed shrubland/grassland, 16 is water body, and 

19 is barren or sparsely vegetated land) in the study area. 

 

 24

Fig. 1. Map of the digital elevation model and the observation sites (a), and the distribution of
land use classification (b) (where, 7 is grassland, 9 is mixed shrubland/grassland, 16 is water
body, and 19 is barren or sparsely vegetated land) in the study area.
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Figure 2. The regional distribution of the AMSR-E derived SM (a), the daily AMSR-E SM 

product (b), and the NCEP SM at a 0-10cm depth (c) at 14:00 BST July 7, 2008. 
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Fig. 2. The regional distributions of the AMSR-E derived SM (a), the daily AMSR-E SM product
(b), and the NCEP SM at a 0–10 cm depth (c) at 14:00 BST 7 July 2008.
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Figure 3. The temporal variation of AMSR-E derived SM, NCEP SM at 0-10cm depth and 

field observations at 5cm depth in the Maqu Station (a) and the Tanglha Station (b). 
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Fig. 3. The temporal variations of the AMSR-E derived SM, the NCEP SM at 0–10 cm depth
and the field observations at 5 cm depth in the Maqu Station (a) and the Tanglha Station (b) at
14:00 BST July 2008.
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Figure 4. The regional distribution of the simulated SM with assimilation (a), 

non-assimilation (b), and their discrepancy (c) at 14:00 BST July 7, 2008. 
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Fig. 4. The regional distributions of the simulated SM with assimilation (a), non-assimilation
(b), and their discrepancy (c) at 14:00 BST 7 July 2008.
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Figure 5. The temporal variability of the ground observations and the simulated SM in the 

Maqu Station (a) and the Tanglha Station (b) from July 17 to 31, 2008. 
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Fig. 5. The evolutions of the ground observations and the simulated SMs in the Maqu Station
(a) and the Tanglha Station (b) from 17 to 31 July, 2008.
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