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Abstract

In many climate impact studies hydrological models are forced with meteorological forc-
ing data without an attempt to assess the quality of these forcing data. The objective
of this study is to compare downscaled ERA15 (ECMWF-reanalysis data) precipitation
and temperature with observed precipitation and temperature and apply a bias cor-5

rection to these forcing variables. The bias-corrected precipitation and temperature
data will be used in another study as input for the Variable Infiltration Capacity (VIC)
model. Observations were available for 134 sub-basins throughout the Rhine basin at
a temporal resolution of one day from the International Commission for the Hydrology
of the Rhine basin (CHR). Precipitation is corrected by fitting the mean and coefficient10

of variation (CV) of the observations. Temperature is corrected by fitting the mean and
standard deviation of the observations. It seems that the uncorrected ERA15 is too
warm and too wet for most of the Rhine basin. The bias correction leads to satisfactory
results, precipitation and temperature differences decreased significantly. Corrections
were largest during summer for both precipitation and temperature, and for September15

and October for precipitation only. Besides the statistics the correction method was
intended to correct for, it is also found to improve the correlations for the fraction of wet
days and lag-1 autocorrelations between ERA15 and the observations.

1 Introduction

Hydrological models have become an important tool for predicting streamflow gener-20

ation in river basins around the world. Many hydrologists use hydrological models
for climate impact studies, e.g. de Wit et al. (2007) investigated the impact of cli-
mate change by applying the HBV (Bergström and Forsman, 1973; Lindström et al.,
1997) model to the Meuse basin, Kleinn et al. (2005) investigated the impact of climate
change to the Rhine basin, by forcing the WaSiM-ETH model with regional climate25

model (RCM) output and Hurkmans et al. (2009) investigated the impact of climate
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change on streamflow dynamics of the Rhine basin by forcing the Variable Infiltration
Capacity (VIC) model (Liang et al., 1994) with different climate scenarios. A distinction
can be made between lumped and spatially distributed hydrological models. Lumped
models are often capable of simulating historical streamflows quite well, because they
are easy to calibrate. It is, however, questionable if the resulting calibration parameters5

will still be valid for a changing climate. Examples of lumped water balance models
for the Rhine include HBV (Bergström and Forsman, 1973; Lindström et al., 1997),
Rhineflow (Kwadijk, 1993) and STREAM (Aerts et al., 1999, 2006). Examples of spa-
tially distributed models include the Variable Infiltration Capacity (VIC) model (Liang
et al., 1994), TOPMODEL (Beven and Kirkby, 1979) and SHE (Abbott et al., 1986).10

Water balance models often use emperical or statistical methods to estimate potential
evaporation on the basis of temperature. Spatially distributed models, like e.g. VIC
(Variable Infiltration Capacity model) (Liang et al., 1994), on the other hand, derive
evapotranspiration from coupled water and energy balance simulations, and are able
to utilize additional information provided by RCM output, such as solar radiation, wind15

speed and specific humidity (Hurkmans et al., 2008). The original purpose of spatially
distributed models was to represent the land surface in (regional) climate models and
numerical weather prediction models (Hurkmans et al., 2008).

Nowadays, modelers are aware of the uncertainty involved in modeling, and the
necessity to quantify the model output reliability (Beven, 1989). Spatially distributed20

models are often forced with regional climate model output (e.g., REMO Jacob, 2001),
because observations are scarce on the spatial and temporal resolution at which these
spatially distributed models are run. However, in many of these climate impact studies
(e.g., Middelkoop et al., 2001), the hydrological model is forced with RCM data, with-
out an attempt to assess the quality of the RCM data. Obviously, the reliability of the25

spatially distributed model output is strongly dependent on the quality of the climate
forcing data. Christensen et al. (2008) state that one inherent source of uncertainty
comes from the RCM’s inability to simulate present-day climate conditions accurately.
Therefore it is of major importance that RCM output is validated with historical obser-
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vations, before calibrating the hydrological model with the RCM data. Applying a bias
correction to the RCM data often seems necessary to match the RCM data with the ob-
servations (Shabalova et al., 2003; Kleinn et al., 2005; Leander and Buishand, 2007).
It is hoped that the model skill scores under present day conditions are carried over to
future climate conditions.5

The objective of this study is to compare observed precipitation and temperature
data with downscaled ERA15 data, investigate if there exists a certain bias between
the latter two, and finally apply a bias correction to correct for this bias. The downscaled
ERA15 data consists of ERA15 extended with operational re-analysis data to have a
total period of 17 years (ECMWF re-analysis1, 1979–1995). Several studies have been10

performed in which a bias correction method was applied to RCM data. For example,
Hay et al. (2002) applied a gamma transform to correct RegCM2 precipitation data and
Leander and Buishand (2007) applied a power law transform, which corrects for the co-
efficient of variation (CV) and mean of the precipitation values. Hay et al. (2002) found
that the corrected precipitation data did not contain the day-to-day variability which was15

present in the observed data set. For this reason we have chosen to apply the method
developed by Leander and Buishand (2007) in this study, because for calibration pur-
poses we think it is important that the day-to-day variability of precipitation remains
preserved.

The importance of this study for ongoing research (e.g., Hurkmans et al., 2009) is20

to use the bias-corrected downscaled ERA15 data for calibrating the VIC model and
use the calibrated VIC model for climate impact studies. We hope the results of this
bias correction study will facilitate other hydrologists in their search for a suitable bias
correction method. The bias correction method employed in this study can easily be
applied to other river basis if there is enough forcing and observational data available.25

Climate impact studies could be evaluated by applying a bias correction to future cli-
mate scenarios and a climate scenario of the 20th century and compare the latter two.
The Max Planck Institute for Meteorology, for example, has developed three climate

1http://www.ecmwf.int
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scenarios for the entire 21st century and a climate run for the second half of the 20th
century. These scenarios were created by forcing their ECHAM5 GCM with IPCC car-
bon emission scenarios (A1B, A2 and B1; IPCC, 2000) and finally downscale them with
REMO (Jacob, 2001).

Section 2 describes the area of interest for this study. This study uses data from a5

meteorological model. The meteorological forcing data and observed data are subject
of Sect. 3. Section 4 explains the method used to correct for the bias. The results of
the analyses are described in Sect. 5.

2 Study area

The Rhine basin is one of the largest river basins in western Europe. The river Rhine10

originates in the canton of Graubünden in the Swiss Alps and it drains portions of
Switzerland, Germany, France, Austria and the Netherlands before draining into the
North Sea. Approaching the Dutch border, the Rhine has an annual mean discharge
of 2395 m3 s−1 and an average width of 400 m. Because of the various bifurcations in
the lower Rhine, only the part upstream of Lobith (the point where the river crosses the15

German-Dutch border) is considered in this study. The area of the Rhine upstream of
Lobith is about 185 000 km2 (Hurkmans et al., 2008). Figure 1 represents the Rhine
basin upstream of Lobith.

3 Models and data

The downscaled and bias corrected ERA15 data is used as input for calibrating the20

spatially distributed macro-scale hydrological model VIC (Variable Infiltration Capacity;
Liang et al., 1994). With the calibrated VIC model we want to assess the effect of
climate change on streamflow generation for the Rhine basin. The calibration of VIC
and the impact of climate change on streamflow generation are not covered in this
paper but are reported in Hurkmans et al. (2009).25
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The bias correction is determined for downscaled ERA15 reanalysis data for the
period 1979–1995. ERA15 contains reanalyses of multi-decadal series of past obser-
vations, and it has become an important and widely utilized resource for the study of
atmospheric and oceanic processes and predictability. ERA15 was downscaled in two
steps at the Max Plack Institute for Meteorology in Hamburg, Germany, to a resolution5

of 0.088◦, using their Regional Climate Model (RCM) REMO (Jacob, 2001). To run the
VIC model, several forcing parameters are necessary (i.e., precipitation, temperature,
radiation, humidity, wind speed and air pressure). The bias correction is determined
for precipitation and temperature only, because no observations were available at the
appropriate resolution for the remaining parameters. Therefore these parameters are10

left uncorrected. The downscaled ERA15 data set will be refered to as ERA15d in the
remainder of this paper.

Observations of precipitation and temperature were made available by the Interna-
tional Commission for the Hydrology of the Rhine basin (CHR) (Sprokkereef, 2001).
They provide daily values of precipitation and temperature for 134 sub-basins (Fig. 2)15

throughout the Rhine basin for the period 1961–1995. These observations are based
on several measurement locations in each of the sub-basins. Combining the period
1979–1995 of ERA15d with the period 1961–1995 of the observations results in the
overlapping period 1979–1995 (17 years) for detecting the bias.

4 Method20

4.1 Introduction

With the bias correction we try to match the most important statistics (CV, mean and
standard deviation on a scale of 65 days) of the ERA15d data with those of the CHR
observations. The bias correction applied in this study is based on that proposed by
Leander and Buishand (2007) for a Meuse basin study. They found that a relatively sim-25

ple non-linear correction, adjusting both the biases in the mean and variability, leads
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to a better reproduction of observed extreme daily and multi-day precipitation amounts
than the commonly used linear scaling correction. This method of bias correction does
not correct for the fraction of wet and dry days and lag-1 autocorrelation. The bias cor-
rection of temperature was found to be more straightforward than that of precipitation,
involving shifting and scaling to adjust the mean and variance, respectively. In this sec-5

tion, the method used to calculate the bias correction for precipitation and temperature
will be described in detail.

4.2 Precipitation

Because the bias in precipitation and temperature was found to vary spatially, bias
corrections were carried out for each of the 134 subbasins individually. Leander and10

Buishand (2007) used a power transformation, which corrects the CV (Coefficient of
Variation) as well as the mean. In this nonlinear correction each daily precipitation
amount P is transformed to a corrected P ∗ using:

P ∗ = aP b (1)

The effect of sampling variability is reduced by determing the parameters a and b15

for every five-day period of the year, including data from all years available, in a win-
dow including 30 days before and after the considered five-day period (Leander and
Buishand, 2007). The determination of the b parameter is done iteratively. It was
determined such that the CV of the corrected daily precipitation matches the CV of
the observed daily precipitation. In this way, the CV is only a function of parameter b20

according to:

CV(P ) = function(b) (2)

in which P is the precipitation in a block of 65 days times 17 years. With the determined
parameter b, the transformed daily precipitation values are calculated using:

P ∗ = P b (3)25
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Then the parameter a is determined such that the mean of the transformed daily values
corresponds with the observed mean. The resulting parameter a depends on b. The
parameter b depends only on the CV and is independent of the value of parameter a.
At the end, each block of 5 days has its own a and b parameter, which are the same
for each year. The bias correction for the ERA15d data set needs to be calculated for5

the period 1979–1995, which has a total length of 17 years. Figure 3 illustrates the
division of a year into 73 blocks of 5 days. For every 5-day block, a different set of a
and b parameters is determined using the method described above. The top panel of
Fig. 3 represents the daily precipitation throughout the year. The bottom panel zooms
in to the first 65 days of the year resulting in 13 blocks of 5 days each. Parameters of10

block 7 are calculated using 30 days before and 30 days after the considered block,
and taking into account all years for which the bias correction is applied. This results
in 1105 (=17×65) values for the calculation of the CV and the mean.

4.3 Temperature

For correcting the daily temperature a different technique is used. The correction of15

temperature only involves shifting and scaling to adjust the mean and variance (Lean-
der and Buishand, 2007). For each sub-basin, the corrected daily temperature T ∗ was
obtained as:

T ∗ = T o +
σ(To)

σ(Tm)
(Tu − T o) + (T o − Tm) (4)

where Tu is the uncorrected daily temperature from ERA15d, To is the observed daily20

average temperature from the CHR data set and Tm is the corresponding basin average
temperature obtained from ERA15d. In this equation an overbar denotes the average
over the considered period and σ the standard deviation. This method was not appro-
priate for precipitation because it might cause negative values. Again both statistics
were determined for each 5-day block of the year separately, using the same 65-day25

windows as for the bias correction of daily precipitation.
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5 Results

5.1 Introduction

In the following sections the data are analyzed spatially and temporally. We analyse
how well the important statistics (CV, standard deviation and mean) of the corrected
ERA15d data match those of the observations after the bias correction has been ap-5

plied. Extended analyses are done on the behaviour of extremes, fraction of wet days
and lag-1 autocorrelations. This is done for precipitation and temperature seperately.
The sensitivity of the determined a and b parameters is investigated by using boot-
strapping.

5.2 Precipitation10

5.2.1 Spatial precipitation difference

The average precipitation is corrected to match the average precipitation for each win-
dow of 65 days times 17 years. It would also be of interest if the daily average pre-
cipitation over the entire period has improved as well. For calibration purposes it is
important that the spatial differences between ERA15d and the observations are as15

small as possible. Therefore the average daily precipitation over the period 1979–1995
has been calculated for each sub-basin seperately. The difference in average daily pre-
cipitation between the observations and the uncorrected and corrected ERA15d data is
shown in Fig. 4. A positive difference means that ERA15d is wetter than the observed
precipitation value for that specific sub-basin. As can be seen from Fig. 4, the differ-20

ence between the uncorrected ERA15d and the observations varies between −2 and
+2 mm d−1. The uncorrected ERA15d precipitation is too wet for most of the Rhine
basin, especially in the Alps and in areas close to where the river Rhine is located.
From the right panel of Fig. 4 it can be concluded that the bias correction leads to
satisfactory results. Differences between the corrected ERA15d and the observations25
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have decreased significantly. The spatial variation in the spread of yearly precipitation
differences per sub-basin, is quantified by the root-mean-square-error (RMSE) of the
yearly averaged daily precipitation (Fig. 5). The RMSE of the bias-corrected precipi-
tation has decreased significantly for the entire Rhine basin, especially for the Black
Forest and some sub-basins in the Alps. It can be concluded that the spread in yearly5

precipitation differences has decreased considerably.

5.2.2 Temporal precipitation difference

The Rhine basin is subject to a stong seasonal pattern in which wet winters and dry
summers are quite common. This aspect is important for the correct timing of flood
peaks. Therefore we are interested in how well the bias-corrected ERA15d precipi-10

tation performs temporally. We already noticed that the daily average over the entire
period has improved significantly (Fig. 4). However, it is certainly possible that the av-
erage monthly precipitation sums of the corrected ERA15d data differ from those of
the observations, but that the average ERA15d precipitation over the entire period is
unbiased. Figure 6 represents the average monthly precipitation sums for the obser-15

vations and the uncorrected and corrected ERA15d data. Averages are calculated as
weighted (based on sub-basin size) averages over the period 1979–1995. Large dif-
ferences between the observations and the uncorrected ERA15d can be seen during
May, June, July, September and October. However, the bias correction seems to cor-
rect for this bias reasonably well. It has some difficulties in correcting the precipitation20

during September and October. This suggests that the employed method, is less ca-
pable of correcting the precipitation sum if the observed precipitation is increasing from
one month to the next, while the ERA15d precipitation is decreasing from one month
to the next.

As Fig. 6 already suggested, precipitation is corrected from a wet to a drier situa-25

tion for almost the entire year. In September and October the correction is the other
way around, and according to Fig. 6 the described method has some difficulties in
correcting for this shift. Figure 7 represents the ratio of the area-weighted average
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corrected preciptitation over the area-weighted average uncorrected precipitation. The
10th and 90th percentile for the spread in ratios between the various sub-basins are
shown as well. This figure confirms the results as obtained from Fig. 6, namely that
the bias correction method tries to correct from a dry to a wetter situation in September
and October, but that the difference is too large to obtain satisfactory results during5

these months. The spread in ratios between the sub-basins is largest during summer.
However, considering the good obtained results from Fig. 6 during summer, it can be
concluded that the bias correction leads to satisfactory results for this time of year.

5.2.3 Variation and sensitivity of parameters

The determined a and b parameters affect the corrected daily precipitation value. It is10

of major importance how sensitive these parameters are to the chosen period of time.
What would happen with the parameters if we had chosen a shorter, longer or different
time period for determing the parameters? Figure 8 shows a boxplot of the a and b
parameters throughout the year. These boxplots are calculated for each block of 5
days taking into account the values from all sub-basins. Outliers are defined as values15

larger than 1.5 times the interquartile range and are indicated with red crosses. It is
clear that parameter a is smaller than one during almost the entire year. Parameter
a was determined to fit the mean of ERA15d with that of the observations. It can
be concluded that the average precipitation has to be corrected from a wet to a drier
situation for almost the entire year. This correction is especially large during summer,20

as was allready noticed from Fig. 6. However, the spread in the a-parameter is smallest
during summer. This spread is large during winter, which denotes a large variation in
the a-parameter for the various sub-basins. It could be that the uncertainty of the a-
parmeter is large during winter. Outliers indicate sub-basins, especially during the first
280 days of the year, for which the a-parameter is significantly higher or lower than for25

most of the sub-basins. Sub-basin 1 (see Fig. 2) is an outlier during almost the entire
year. Sub-basin 119 (eastern part of Switzerland) has an a-parameter which is smaller
than 1.5 times its interquartile range for the 26th and 27th block. The spread in the
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b-parameter (Fig. 8 bottom panel) is less significant as was the case for parameter a.
Outliers can be found throughout the entire year, except for the first 55 days of the year.
Outliers for a large b-value occur mainly in sub-basin 107. Small outliers for b occur
mainly for sub-basin 1. Parameter b is larger than one during almost the entire year.
The CV has to be corrected the most during summer months.5

To address the uncertainty concerning the determined a and b parameters, we ap-
plied bootstrapping for block 55 and sub-basin 1. This is done because for this block
the spread in both a and b is quite significant and both a and b contain sub-basin 1
as an outlier for this block and we have noticed that sub-basin 1 seems to be a fre-
quently occuring outlier. In our case we took 10 000 random samples of 65 days from10

the 17 years of data available for block 55 and sub-basin 1, and determined for each
sample a new a and b parameter. The results of this analysis are shown in Fig. 9.
It can be concluded that the uncertainty range for parameter a is larger than for pa-
rameter b. Considering the range of the 95% confidence interval, it can be seen that
the width of this interval for parameter a is almost 3 times larger than for parameter b.15

In other words, the largest uncertainty is associated with correcting the mean of the
precipitation values.

5.2.4 Statistics

In Sect. 4 we described the method of the bias correction, that is employed to fit the
mean and CV for the precipitation data. Figure 10 shows several scatter plots for the20

fitting statistics as well as for the fraction of wet days (fwet) and the lag-1 autocorrela-
tions. These statistics are calculated for each of the sub-basins seperately, resulting in
134 data points for each graph. The observed statistics are plotted versus those of the
uncorrected and corrected ERA15d data.

Of course the mean, standard deviation and CV of the observations match those of25

the corrected ERA15d almost perfectly, because those were the fitting criteria. Inter-
estingly, also the correlation between the fraction of wet days in the observations and
in ERA15d has improved significantly for the corrected ERA15d data. Also the lag-1
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autocorrelations of the corrected ERA15d data match those of the observations better
than the uncorrected ERA15d data. These results can be considered as good, be-
cause the method of bias correction applied in this study was only intended to correct
for the CV and mean, not for the fraction of wet days or the lag-1 autocorrelation.

As mentioned before, we intend to use the bias-corrected ERA15d precipitation for5

the calibration of the VIC model. With that we want to evaluate the impact of climate
change on streamflow generation in the Rhine basin by forcing the VIC model with
several climate scenarios. For climate impact studies it is important that the hydrologi-
cal model is capable of simulating the runoff generated by large multi-day precipitation
events well enough. These large multi-day precipitation events often result in floods.10

Therefore we have selected all 10-day precipitation sums occuring during winter. The
exceedance probabilities for these 10-day precipitation sums have been investigated
in Fig. 11. According to Furrer and Katz (2008) a Generalized Pareto distribution is
capable of fitting high intensity precipitation data. Therefore we have fitted a General-
ized Pareto distribution through the data. The Generalized Pareto distribution function15

is given by:

y = f (x|k, σ, θ) =
(

1
σ

)(
1 + k

(x − θ)
σ

)−1− 1
k

(5)

where k is the shape parameter, σ is the scale parameter and θ is the threshold param-
eter. The parameters are estimated using the maximum likelihood method. Both the
uncorrected and corrected ERA15d data match the observations well for return periods20

larger than 20. However, for return periods smaller than 20 the uncorrected ERA15d
matches the 10-day precipitation sums of the observations better than the corrected
ERA15d does. These differences are however quite small. More important is that the
distribution of the 10-day precipitation sums is not significantly disturbed by applying a
bias correction.25
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5.3 Temperature

5.3.1 Spatial temperature difference

The difference in average daily temperature between the observations and ERA15d
for each sub-basin is shown in Fig. 12. These differences are averaged over the pe-
riod 1979–1995. A positive value corresponds to a higher temperature for the uncor-5

rected ERA15d data set. Differences in average temperature vary between −1.5 and
+3.5◦C for the uncorrected ERA15d data. The average temperature difference is posi-
tive for the largest part of the Rhine basin, which means that the uncorrected ERA15d
is warmer than the observations for that part of the Rhine basin. The right panel of
Fig. 12 shows the differences between both data sets after the correction has been10

applied. It can be concluded that the bias correction for temperature leads to good
results. Differences have decreased significantly to values between −0.4 and +0.4◦C.
Another point of interest is the spatial variation in the spread of yearly temperature dif-
ferences per sub-basin. This is quantified by the RMSE of the yearly averaged daily
temperature (Fig. 13). Although the RMSE for the uncorrected case is not large, there15

is an improvement visible in the RMSE for the bias-corrected ERA15d.

5.3.2 Temporal temperature difference

Average monthly temperatures for the period 1979–1995 are shown in Fig. 14. Av-
erages are calculated as area-weighted averages over the entire Rhine basin. With
the bias correction we hope to capture the seasonal pattern of temperature. It can be20

concluded that the bias correction for temperature leads to satisfactory results. The
bias-corrected ERA15d temperature matches the observed temperature almost per-
fectly for each month. Corrections are largest during the summer months and smallest
during winter. This is mainly caused by the difference in mean temperature as shown
later in Fig. 15.25

5390



5.3.3 Standard deviation and mean

As mentioned in Sect. 4 the correction of temperature is more straightforward than
for precipitation. It only involves correcting for the mean and the standard deviation.
Therefore it is interesting to know how the ratio of the ERA15d standard deviation over
the observed standard deviation for temperature varies during the year. The spread5

in ratios for all sub-basins, before the correction is applied, is represented in the box-
plot of Fig. 15 (top panel). A seasonal pattern can be distinguished from this figure.
From January on, there is an upward trend until the start of summer, which suggests
an increasing variation in temperature for ERA15d when approaching summer. Dur-
ing summer this ratio again approaches one, suggesting an almost similar standard10

deviation for the observed and ERA15d temperature. Around mid-summer this ratio
is increasing again, resulting in a larger spread in temperature for ERA15d during this
period. The area-weighted average ratio of 1.05 suggests that the average spread in
temperature for ERA15d is larger than that for the observations.

The bottom panel of Fig. 15 represents the spread in average temperature differ-15

ences between the ERA15d (Tm) and observed temperature (T o). Differences are
shown for each 5-day block in a boxplot. Especially during summer the difference be-
tween Tm and T o tends to be larger, suggesting a much warmer 17-year average for
ERA15d than for the observations. The 17-year average temperature appears to be
warmer for ERA15d throughout the entire year for almost all sub-basins.20

The overal area-weighted average temperature difference of 0.86◦C suggests that
the average temperature for ERA15d is larger than that for the observations.

5.3.4 Statistics

The most important statistics for the uncorrected and corrected ERA15d temperature
are plotted against those of the observations in Fig. 16 in four scatter plots. The consid-25

ered statistics are the mean, standard deviation, CV and lag-1 autocorrelation. They
are calculated over the entire period 1979–1995, for each sub-basin seperately. As
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mentioned before, the chosen method of bias correction only corrects for the mean
and the standard deviation. This is clearly visible in the plots of the mean, standard
deviation and CV, where the corrected ERA15d statistics are almost similar to those
of the observations. Despite the fact that the correlation coefficients between the lag-
1 autocorrelations for ERA15d and the observations have increased for the corrected5

situation, the points have moved further away from the x=y line. However, considering
the scale of the y-axis this results seems to be of minor importance.

5.4 Relation between precipitation and temperature

The employed bias correction method adjusts precipitation and temperature seper-
ately. It is possible that there exists a certain relation between these variables and that10

this relation is disturbed after applying a bias correction. Dependencies between the
daily precipitation and temperature are shown in Fig. 17 for sub-basin 119 in the Alps.
This sub-basin is chosen because the uncorrected precipitation and temperature for
this sub-basin were significantly different from that of the observations. Results are
shown for the observations and the uncorrected and corrected ERA15d data. The ex-15

tremely low R2 for the correlation between precipitation and temperature indicates the
absence of correlation. From this figure we can conclude that the pattern of points and
correlation coefficient are not drastically disturbed after the bias correction is applied.

6 Conclusions and discussion

In this study a bias correction has been applied to ERA15d data to correct for a bias20

in precipitation and temperature. ERA15d was downscaled at the Max Planck Institute
for Meteorology in Hamburg in two steps (with their REMO model; Jacob, 2001) to a
resolution of 0.088 degrees. Observations for 134 sub-basins at a temporal resolution
of one day were made available by the International Commission for the Hydrology of
the Rhine basin (CHR) (Sprokkereef, 2001). The purpose of this study is to minimize25
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the bias between the observed and ERA15d data to make the data suitable for calibrat-
ing hydrological models, in particular the VIC model. Precipitation is adjusted to fit the
mean and CV of the observations, while temperature is adjusted to fit the mean and
standard deviation of the observations.

The uncorrected ERA15d precipitation was found to be too wet for most of the Rhine5

basin when compared with the observations. Especially areas in the Alps and close to
the Rhine valley were far too wet. The bias correction minimizes the difference between
ERA15d and the observations drastically. Corrections are largest during May, June,
July, September and October. However, the method has some difficulties in correcting
the precipitation during September and October. This suggests it is less capable of10

correcting the precipitation if the observed precipitation is increasing from on month to
the next where ERA15d is decreasing from one month to the next. Bootstrapping re-
sulted in uncertainty ranges considering the determined a and b parameters. It can be
concluded that the 95% confidence intervals for parameter a are almost 3 times larger
than for parameter b. This means that the uncertainty about the mean precipitation15

is larger than for the CV of the preciptiation. The employed method of bias correction
was intended to correct for the mean and CV of the observations only, but it seems
to correct other statistics as well. In particular, the correlation between the fraction of
wet days in the observations and ERA15d has improved significantly for the corrected
ERA15d data. The same is true for the lag-1 autocorrelations, although less significant20

than for the fraction of wet days.
10-day winter precipitation sums were selected and plotted against their return pe-

riods. The occurrence of 10-day winter precipitation events often results in floods and
is therefore important for the calibration of a hydrological model. The bias correction
does not disturb the distribution of these 10-day winter precipitation sums. Only for25

large return periods, the uncorrected 10-day winter precipitation sums match those of
the observed better, but these differences are relatively small.

The standard deviations for the uncorrected ERA15d temperature tend to be much
larger than for the observations. These differences seem to be largest at the begin-
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ning and end of summer. Considering the spatial distribution of average temperature
differences we see that the uncorrected ERA15d temperature is too warm for most
of the Rhine basin. However, the bias correction method seems to correct for these
differences very well. Differences between the observed and corrected ERA15d tem-
perature are in the order of 0.4◦C. The largest corrections are applied during summer5

months. The means, standard deviations and CVs for the corrected temperature match
those of the observations almost perfectly. This result is expected because that is what
the method of bias correction is based on. Despite the fact that the correlation co-
efficients between the lag-1 autocorrelations for ERA15d and the observations have
increased for the corrected situation, the points have moved further away from the x=y10

line. However, this result seems to be of minor importance.
The bias correction employed does not introduce a spurious correlation between

precipitation and temperature.
This study employed a bias correction for temperature and precipitation data only.

The VIC model, however, needs other meteorological forcing data as well, such as15

surface air pressure, specific humidity, upward solar radiation, net solar radiation, up-
ward thermal radiation, net thermal radiation and wind speed. Unfortunately there were
no observations available for these variables and they were therefore left uncorrected.
For calibration purposes we expect the precipitation and temperature to be the most
important parameters to correct for. More research considering the remaining VIC20

forcing variables is recommended. A final point of attention is the temporal and spatial
resolution at which the bias correction is applied. The bias correction in this study is
determined at a temporal resolution of one day and at the scale of sub-basins. We
intend to run the VIC model at a 3-hourly temporal resolution for grid cells with a size
of 0.05 degrees. More research considering bias corrections at such resolutions is25

recommended.
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Fig. 1. Location and elevations of the Rhine basin upstream of the German border.
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Fig. 2. Location of the 134 sub-basins for which observations are available at a temporal
resolution of 1 day.
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panel: first 65 days of the year resulting in 13 blocks of 5 days each.
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Fig. 4. Difference in average daily precipitation [mm] between the observations and the uncor-
rected (left panel) and corrected (right panel) ERA15d data for the period 1979–1995.

5400



Fig. 5. RMSE of the yearly averaged daily precipitation per sub-basin for the uncorrected (left
panel) and corrected (right panel) for the period 1979–1995.
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Fig. 6. Average monthly precipitation sums [mm] for the observations and the uncorrected
and corrected ERA15d data. Averages are calculated as weighted (based on sub-basin size)
averages over the period 1979–1995 for the entire Rhine basin.
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Fig. 12. Difference in average daily temperature [◦C] between the observations and the uncor-
rected (left panel) and corrected (right panel) ERA15d data for the period 1979–1995.
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Fig. 13. RMSE of the yearly averaged daily temperature per sub-basin for the uncorrected (left
panel) and corrected (right panel) for the period 1979–1995.

5409

J F M A M J J A S O N D
−5

0

5

10

15

20

Month

T
em

pe
ra

tu
re

 [°
C

]

 

 

Observed

Uncorrected

Corrected

Fig. 14. Area-weighted monthly temperature [◦C] over the entire Rhine basin for the pe-
riod 1979–1995. Results are shown for the observations and the uncorrected and corrected
ERA15d.
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Fig. 16. Scatter plots of the statistics of the observed temperature versus the corrected and
uncorrected ERA15d temperature. The statistics are calculated for each sub-basin over the
period 1979–1995. In each subplot the square of the correlation coefficient (R2) and slope of
the linear regression line are plotted. The black line represents the x=y line.
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