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Abstract

Unsaturated flow of soils in unsaturated soils is an important problem in geotechnical
and geo-environmental engineering. Richards’ equation is often used to model this
phenomenon in porous media. Obtaining appropriate solution to this equation there-
fore provides better means to studying the infiltration into unsaturated soils. Available5

methods for the solution of Richards’ equation mostly fall in the category of numerical
methods, often having restrictions for practical cases. In this research, two analyti-
cal methods known as Homotopy Perturbation Method (HPM) and Variational Iteration
Method (VIM) have been successfully utilized for solving Richards’ equation. Results
obtained from the two methods mentioned show a remarkably high precision in the10

obtained solution, compared with the existing exact solutions available.

1 Introduction

Modeling water flow through porous media presents an important problem of practical
interest for geotechnical and geo-environmental engineering, as well as many other
areas of science and engineering. Study of this phenomenon requires proper formula-15

tion of the governing equations and constitutive relations involved. Currently, equations
used for describing fluid flow through porous media are based mainly on semi-empirical
equations first derived by Buckingham (1907) and Richards (1931). Despite limitations
and drawbacks, Richards’ equation is still the most widely used equation for model-
ing unsaturated flow of water through soil (porous media) (Hoffmann, 2003). Due to20

the importance and wide applications of the problem, many researches have been de-
voted in the past to proper assessment of different forms of Richards’ equation. Both
analytical and numerical solutions have been investigated in the literature. Analytical
solutions to Richards’ equation are rather scarce and are generally limited to only spe-
cial cases (Ju and Kung, 1997; Arampatzis et al., 2001). This is mainly due to the25

dependence of hydraulic conductivity and diffusivity – two important parameters in the
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equation – on moisture content, combined with the non-trivial forcing conditions that
are often encountered in engineering practice (Ju and Kung, 1997; Arampatzis et al.,
2001; Kavetski et al., 2002). As a result, application of many numerical methods to
the solution of Richards’ equation with various engineering applications has been in-
vestigated in the literature. Finite element and finite difference methods have been5

adopted by several researchers (Clement et al., 1994; Baca et al., 1997; Bergamaschi
and Putti, 1999; Milly, 1985). Mass lumping was employed in these studies to im-
prove stability. Time stepping schemes such as the Douglas-Jones-predictor-corrector
method, Runge-Kutta method and backward difference formulae should also be men-
tioned in this context (Kavetski et al., 2001a; Miller et al., 2005). Tabuada et al. (1995)10

used an implicit method and presented equations governing two-dimensional irrigation
of water into unsaturated soil based on Richards’ equation. The Gauss-Seidel method
was then effectively used to solve the resulting equations. Ross (2003) introduced an
efficient non-iterative solution for Richards’ equation using soil property descriptions as
proposed by Brooks and Corey (1964). In his method, Ross used a space and time dis-15

cretization scheme in order to derive a tridiagonal set of linear equations which were
then solved non-iteratively. Varado et al. (2006) later conducted a thorough assess-
ment of the method proposed by Ross and concluded that the model provides robust
and accurate solutions as compared with available analytical solutions (Basha, 1999).
Several other iterative solutions have also been cited in the literature. One such study20

is that of Farthing et al. (2003) which used the well-known pseudo-transient continua-
tion approach to solve the nonlinear transient water infiltration problem, as well as the
steady-state response as governed Richards’ equation. Other commonly used itera-
tive schemes include the Picard iteration scheme (Chounet et al., 1999; Forsyth et al.,
1995), the Newton and inexact Newton schemes (Jones and Woodward, 2001; Kavet-25

ski et al., 2001b; Kees and Miller, 2002) and hybrid Newton-Picard methods. Huang
et al. (1996) considered the modified Picard iteration schemes and presented several
convergence criteria as to evaluate the efficiency of the various iterative methods. In
geo-environmental applications, Bunsri et al. (2008) solved Richards’ equation accom-
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panied by advective-dispersive solute transport equations by the Galerkin technique.
Witelski (1997) used perturbation methods to study the interaction of wetting fronts
with impervious boundaries in layered soils governed by Richards’ equation. Through
comparison with numerical solutions, Witelski concluded that perturbation methods are
able to yield highly accurate solutions to Richards’ equation (Witelski, 1997).5

Each method mentioned above encounters Richards’ equation in a certain way. Of-
ten, assumptions are made and empirical models are implemented in order to over-
come difficulties in solving the equation due to high interdependence of some of the
parameters involved. Analytical solutions often fit under classical perturbation meth-
ods (Kevorkian and Cole, 1996; Nayfeh, 1973; Nayfeh and Mook, 1979). However,10

as with other analytical techniques, certain limitations restrict the wide application of
perturbation methods, most important of which is the dependence of these methods
on the existence of a small parameter in the equation. Disappointingly, the majority
of nonlinear problems have no small parameter at all. Even in cases where a small
parameter does exist, the determination of such a parameter doesn’t seem to follow15

any strict rule, and is rather problem-specific. Furthermore, the approximate solutions
solved by the perturbation methods are valid, in most cases, only for the small values
of the parameters. It is obvious that all these limitations come from the small parameter
assumption. In the present study, two powerful analytical methods Homotopy Perturba-
tion Method (HPM) (He, 2003, 1999a, 2006a, 2000; Barari et al., 2008a,b; Ghotbi et al.,20

2008a,b) and Variational Iteration Method (VIM) (He, 1997, 1999b, 2006b; Sweilam and
Khader, 2007; Momani and Abuasad, 2006; Barari et al., 2008c) have been employed
to solve the problem of one-dimensional infiltration of water in unsaturated soil gov-
erned by Richards’ equation. HPM is actually a coupling of the perturbation method
and Homotopy Method, which has eliminated limitations of the traditional perturbation25

methods. HPM requires no small parameters in the equations and can readily elim-
inate the limitations of the traditional perturbation techniques. He (He, 1997, 1999b,
2006b) proposed a variational iteration method (VIM) based on the use of restricted
variations and correction functionals which has found a wide application for the so-
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lution of nonlinear ordinary and partial differential equations. This method does not
require the presence of small parameters in the differential equation, and provides the
solution (or an approximation to it) as a sequence of iterates. The method does not
require that the nonlinearities be differentiable with respect to the dependent variable
and its derivatives.5

In the next sections, Richards’ equation and the relative models involved are intro-
duced, followed by a thorough explanation of the analytical methods used to solve the
equation. Illustrative examples are also given in order to demonstrate the effectiveness
of the method in solving Richards’ equation. The examples considered, despite involv-
ing relatively simple one-dimensional cases, represent a nonlinear problem. Despite10

the major advances of science in the field of solving differential equations, it is still very
difficult to solve such nonlinear problems either numerically or analytically. He and Lee
(2009) attributes this shortcoming to the fact that various discredited methods and nu-
merical simulations apply iteration techniques to find numerical solutions of nonlinear
problems, and since nearly all iterative methods are sensitive to initial solutions, it is15

very difficult to obtain converged results in cases of strong nonlinearity.

2 Richards’ equation

The basic theories describing fluid flow through porous media were first introduced by
Buckingham (1907) who realized that water flow in unsaturated soil is highly dependent
on water content. Buckingham introduced the concept of “conductivity”, dependent on20

water content, which is today known as unsaturated hydraulic conductivity (after Rol-
ston, 2007). This equation is usually referred to as Buckingham law (Narasimhan,
2005). Buckingham also went on to define moisture diffusivity which is the product
of the unsaturated hydraulic conductivity and the slope of the soil-water characteristic
curve. Nearly two decades later, Richards (1931) applied the continuity equation to25

Buckingham’s law – which itself is an extension of Darcy’s law – and obtained a gen-
eral partial differential equation describing water flow in unsaturated, non-swelling soils
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with the matric potential as the single dependent variable (Philip, 1974). There are
generally three main forms of Richards’ equation present in the literature namely the
mixed formulation, the h-based formulation and the θ-based formulation, where h is
the weight-based pressure potential and θ is the volumetric water content.

Since Richards’ equation is a general combination of Darcy’s law and the continu-5

ity equation as previously mentioned, the two relations must first be written in order
to derive Richards’ equation. Herein, one-dimensional infiltration of water in vertical
direction of unsaturated soil is considered, for which Darcy’s law and the continuity
equation are given by Eqs. (1) and (2) respectively:

q = −K ∂H
∂z

= −K
∂(h + z)

∂z
= −K

(
∂h
∂z

+ 1
)

(1)10

and

∂θ
∂t

= −∂q
∂z

(2)

where K is hydraulic conductivity, H is head equivalent of hydraulic potential, q is flux
density and t is time. The mixed form of Richards’ equation is obtained by substituting
Eq. (1) in Eq. (2):15

∂θ
∂t

=
∂
∂z

[
K
(
∂h
∂z

+ 1
)]

. (3)

Equation (3) has two independent variables: the soil water content, θ, and pore water
pressure head, h. Obtaining solutions to this equation therefore requires constitutive
relations to describe the interdependence among pressure, saturation and hydraulic
conductivity. However, it is possible to eliminate either θ or h by adopting the concept20

of differential water capacity, defined as the derivative of the soil water retention curve:

C(h) =
dθ
dh

(4)
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The h-based formulation of Richards’ equation is thus obtained by replacing Eq. (4) in
Eq. (3):

C(h) × ∂h
∂t

=
∂
∂z

(
K
∂h
∂z

)
+

∂K
∂z

. (5)

This is a fundamental equation in geotechnical and geo-environmental engineering
and is used for modeling flow of water through unsaturated soils. For instance, the two-5

dimensional form of the equation can be used to model seepage in the unsaturated
zone above water table in an earth dam.

Introducing a new term D, pore water diffusivity, defined as the ratio of the hydraulic
conductivity to the differential water capacity, the θ-based form of Richards’ equation
may be obtained. D can therefor be written as:10

D =
K
C

=
K
dθ
dh

= K
dh
dθ

. (6)

It should be noted that both D and K are highly dependent on water content. Com-
bining Eq. (6) with Eq. (3) gives Richards’ equation as:

∂θ
∂t

=
∂
∂z

(
D
∂θ
∂z

)
+

∂K
∂z

. (7)

In order to solve Eq. (7), one must first properly address the task of estimating D15

and K , both of which are dependent on water content. Several models have been sug-
gested for determining these parameters. The Van Genuchten model (Van Genuchten,
1980) and Brooks and Corey’s model (Brooks and Corey, 1964; Corey, 1994) are the
more commonly used models. The Van Genuchten model uses mathematical rela-
tions to relate soil water pressure head with water content and unsaturated hydraulic20

conductivity, through a concept called “relative saturation rate”. This model matches
experimental data but its functional form is rather complicated and it is therefore diffi-
cult to implement it in most analytical solution schemes. Brooks and Corey’s model on
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the other hand has a more precise definition and is therefore adopted in the present
research. This model uses the following relations to define hydraulic conductivity and
water diffusivity:

D(θ) =
Ks

αλ (θs − θr)

(
θ − θr

θs − θr

)2+ 1
λ

(8)

K (θ) = Ks

(
θ − θr

θs − θr

)3+ 2
λ

. (9)5

Where D(θ) and K (θ) represent diffusivity and conductivity, respectively, Ks is sat-
urated conductivity, θr is residual water content, θs is saturated water content and α
and λ are experimentally determined parameters. Brooks and Corey determined λ as
pore-size distribution index (Brooks and Corey, 1964). A soil with uniform pore-size
possesses a large λ while a soil with varying pore-size has small λ value. Theoretically,10

the former can reach infinity and the latter can tend towards zero. Further manipula-
tion of Brooks and Corey’s model yields the following equations (Witelski, 1997; Corey,
1986; Witelski, 2005):

D(θ) = D0 (n + 1)θn n ≥ 0 (10)

K (θ) = K0θ
k k ≥ 1 (11)15

where K0, D0 and k are constants representing soil properties such as pore-size dis-
tribution, particle size, etc. In this representation of D and K , θ is scaled between 0
and 1 and diffusivity is normalized so that for all values of m, ∫D(θ)dθ=1 (after Nasseri
et al., 2008). Equation (11) suggests that conductivity may have linear, parabolic, cubic,
etc. variation with water content, associated with k values of 1, 2, 3, etc., respectively.20

Several analytical and numerical solutions to Richards’ equation exist based on
Brooks and Corey’s representation of D and K . Replacing n=0 and k=2 in Eqs.
(10) and (11) yields the classic Burgers’ equation extensively studied by many re-
searchers (Basha, 2002; Broadbridge and Rogers, 1990; Whitman, 1974). The gen-
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eralized Burgers’ equation is also obtained for general values of k and n (Whitman,
1974).

As seen previously, the two independent variables in Eq. (7) are time and depth.
By applying the traveling wave technique (Wazwaz, 2005; He, 1997; Elwakil et al.,
2004), instead of time and depth, a new variable which is a linear combination of them5

is found. Tangent-hyperbolic function is commonly applied to solve these transform
equations (Soliman, 2006; Abdou and Soliman, 2006). Therefore the general form of
Burgers’ equation in order of (n,1) is obtained as (Wazwaz, 2005):

∂θ
∂t

+ αθn∂θ
∂z

− ∂2θ
∂z2

= 0 . (12)

The exact solution to Eq. (12) can be found to be:10

θ(z, t) =
(γ

2
+

γ
2

tanh([A1(z − A2t)])
1/n
)

A1 =
−αn + n|α|

4(1 + n)
γ (n 6= 0) (13)

A2 =
γα

1 + n
γ is an arbitrary coefficient which is selected as 1 here, following Nasseri et al. (2008).
In this study, nonlinear infiltration of water in unsaturated soil has been studied using15

Richards’ equation and by employing Brooks and Corey’s model to represent hydraulic
conductivity and diffusivity. The problems discussed herein may be generalized to any
combination of (k, n), having different physical interpretations. However, as Witelski
(1997) mentioned, the case of k = n+1 provides certain analytical simplifications, and
will therefore be considered here. The conductivity function has been selected in two20

independent example cases as θ2/2 and θ3/3 which corresponds to parabolic and
cubic variation of conductivity with k=2 and k=3, respectively. The linear variation of
conductivity, i.e., k=1 represents a linear problem and has already been thoroughly
studied by Witelski (1997). The respective n values of one and two are associated
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with the above chosen conductivities. The values considered represent fine-textured
to medium-textured soils. The resulting form of Richards’ equation will therefore be:

∂θ
∂t

= K0
∂
∂z

(
θn+1

)
+ D0

∂2

∂z2

(
θn+1

)
. (14)

Witelski (1997) reasoned that nonlinear variations of conductivity means that steady-
profile traveling wave solutions will exist in the solutions that move with constant speed5

and balance conductive transport and dispersal. The profiles do not vary with time,
unlike the linear problem which has a diffusive nature.

Homotopy perturbation method (HPM) (He, 2006a, 2000; Barari et al., 2008a,b;
Ghotbi et al., 2008a,b) and variational iteration method (VIM) (He, 1997, 1999b, 2006b;
Sweilam and Khader, 2007; Momani and Abuasad, 2006; Barari et al., 2008c) de-10

scribed below have been used to solve Eq. (12). HPM and VIM are first introduced
briefly, and are then implemented in order to solve Richards’ equation as described by
Eq. (7) and supported by Eqs. (10) and (11).

3 Basic idea of He’s homotopy perturbation method (HPM)

Simply put, solving a nonlinear problem by means of HPM begins with a trial-function15

of the same order of the original problem with some unknown parameters, followed by
constructing a linear differential equation whose solution is the chosen trial-function.
The next step is to construct such a homotopy that when the homotopy parameter
p=0, it becomes the above constructed linear equation; and when p=1, it turns out to
be the original nonlinear equation. The changing process of p from zero to unity is just20

that of the trial-function (initial solution) to the exact solution. To approximately solve
the problem, the solution is expanded into a series of p, just like that of the classical
perturbation method. Generally, one iteration is enough, but the solution is always
obtained with three steps at most.
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To illustrate the basic ideas of HPM, we consider the following nonlinear differential
equation:

A(u) − f (r) = 0, r ∈ Ω, (15)

with the boundary conditions of

B
(
u,

∂u
∂n

)
= 0, r ∈ Γ, (16)5

where A, B, f (r) and Γ are a general differential operator, a boundary operator, a known
analytical function and the boundary of the domain Ω, respectively.

Generally speaking the operator A can be divided into a linear part L and a nonlinear
part N(u). Equation (15) can therefore, be rewritten as:

L(u) + N(u) − f (r) = 0, (17)10

By the Homotopy technique, we construct a homotopy v(r, p):Ω×[0,1]→R, which sat-
isfies:

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f (r)] = 0, (18)

p ∈ [0,1], r ∈ Ω,

or15

H(v, p) = L(v) − L(u0) + pL(u0) + p[N(v) − f (r)] = 0, (19)

where p∈[0,1] is an embedding parameter, while u0 is an initial approximation of Eq.
(15), which satisfies the boundary conditions. Obviously, from Eqs. (18) and (19) we
will have:

H(v,0) = L(v) − L(u0) = 0, (20)20

H(v,1) = A(v) − f (r) = 0. (21)
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The changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r). In
topology, this is called deformation, while L(v)−L(u0) and A(v)−f (r) are called homo-
topy.

According to the HPM, we can first use the embedding parameter p as a “small
parameter”, and assume that the solution of Eqs. (18) and (19) can be written as5

a power series in p:

v = v0 + pv1 + p2v2 + · · · (22)

Setting p=1 yields in the approximate solution of Eq. (18) to:

u = lim
p→1

v = v0 + v1 + v2 + · · · (23)

The combination of the perturbation method and the homotopy method is called the10

HPM, which eliminates the drawbacks of the traditional perturbation methods while
keeping all its advantage.

The series (23) is convergent for most cases. However, the convergent rate depends
on the nonlinear operator A(v). Moreover, He (1999a) made the following suggestions:

1. The second derivative of N(v) with respect to v must be small because the parameter may15

be relatively large, i.e. p→1.

2. The norm of L−1 ∂N
∂v must be smaller than one so that the series converges.

4 Basic idea of variational iteration method (VIM)

To clarify the basic ideas of VIM, we consider the following differential equation:

Lu + Nu = g(t), (24)20

where L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous
term.
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According to VIM, we can write down a correction functional as follows:

un+1(t) = un(t) +
∫ t
0
λ(Lun(τ) + Nũn(τ) − g(τ))dτ (25)

Where λ is a general lagrangian multiplier which can be identified optimally via the vari-
ational theory. The subscript n indicates the n-th approximation and un is considered
as a restricted variation, i.e. δũn=0.5

5 Implementation of HPM to solve Richards’ equation

5.1 Case 1: if n=1

To solve Richard equation when n=1 by means of HPM, we consider the following
process after separating the linear and nonlinear parts of the equation.

A homotopy can be constructed as follows:10

H(v, p) = (1 − p)
(
∂
∂t

v(z, t) − ∂
∂t

u0(z, t)
)
+

p

(
∂
∂t

v(z, t) + v(z, t)
∂
∂z

v(z, t) − ∂2

∂z2
v(z, t)

)
. (26)

Substituting v=v0+pv1+... in to Eq. (26) and rearranging the resultant equation based
on powers of p-terms, one has:

p0 :
∂
∂t

v0(z, t) = 0, (27)15

p1 :
∂
∂t

v1(z, t) + v0(z, t)
∂
∂z

v0(z, t) − ∂2

∂z2
v0(z, t) = 0, (28)

p2 :
∂
∂t

v2(z, t) − ∂2

∂x2
v1(z, t) + v1(z, t)

∂
∂z

v0(z, t) + v0(z, t)
∂
∂z

v1(z, t) = 0, (29)
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With the following conditions:

v0(z,0) = 0.5 − 0.5 tanh(0.25z)

vi (z,0) = 0 i = 1,2, . . . (30)

With the effective initial approximation for v0 from the conditions (30) and solutions of
Eqs. (27–29) may be written as follows:5

v0(z, t) = 0.5 − 0.5 tanh(0.25z), (31)

v1(z, t) =
1
16

t − 1
16

t tanh(0.25z)2, (32)

v2(z, t) = − 1
128

t2 tanh(0.25z)
(
−1 + tanh(0.25z)2

)
, (33)

In the same manner, the rest of components were obtained using the Maple package.
According to the HPM, we can conclude that:10

θ(z, t) = lim v(z, t) = v0(z, t) + v1(z, t) + . . . , (34)

p → 1

Therefore, substituting the values of v0(z, t), v1(z, t), v2(z, t) from Eqs. (31–33) in to
Eq. (34) yields:

θ(z, t) = 0.5 − 0.5 tanh(0.25z) +
1

16
t − 1

16
t tanh(0.25z)2 − 1

128
t2 tanh(0.25z)15 (

−1 + tanh(0.25z)2
)
, (35)

5.2 Case 2: if n=2

To solve Richard equation if n=2 by means of HPM, we consider the following process
after separating the linear and nonlinear parts of the equation.
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A homotopy can be constructed as follows:

H(v, p) = (1 − p)
(
∂
∂t

v(z, t) − ∂
∂t

u0(z, t)
)
+

p

(
∂
∂t

v(z, t) + v(z, t)2 ∂
∂z

v(z, t) − ∂2

∂z2
v(z, t)

)
, (36)

Substituting v=v0+pv1+. . . in to Eq. (36) and rearranging the resultant equation based
on powers of p-terms, one has:5

p0 :
∂
∂t

v0(z, t) = 0, (37)

p1 :
∂
∂t

v1(z, t) + v0(z, t)2 ∂
∂z

v0(z, t) − ∂2

∂z2
v0(z, t) = 0, (38)

p2 : − ∂2

∂z2
v1(z, t) +

∂
∂t

v2(z, t) + 2v0(z, t)v1(z, t)
∂
∂z

v0(z, t)

+v0(z, t)2 ∂
∂z

v1(z, t) = 0, (39)

With the following conditions:10

v0(z,0) = (0.5 − 0.5 tanh(0.3333333z))0.5

vi (z,0) = 0 i = 1,2, . . . (40)

With the effective initial approximation for v0 from the conditions (40) and solutions of
Eqs. (37–39) may be written as follows:

v0(z, t) = (0.5 − 0.5 tanh(0.3333333z))0.5, (41)15

v1(z, t) =

9t

463 tanh (0.33333z)3 −
308 641 821 tanh (0.33333z)2 −
463 tanh (0.33333z) + 308 641 821


50 000 000 000

√
2 − 2 (0.33333z)

, (42)
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v2(z, t) =
1

0.4 × 1024
√

2 − 2 tanh (0.33333z)
×


t2



6.4819 × 1015 tanh (0.33333z)5 +
8.3336 × 1015 tanh (0.33333z)4 −
1.8518 × 1021 tanh (0.33333z)3 +
6.1727 × 1020 tanh (0.33333z)2 +
1.8518 × 1021 tanh (0.33333z)1 −
6.172820




. (43)

In the same manner, the rest of components were obtained using the Maple package.
According to the HPM, we can conclude that:

θ(z, t) = lim v(z, t) = v0(z, t) + v1(z, t) + . . . ,5

p → 1 . (44)

Therefore, substituting the values of v0(z, t), v1(z, t), v2(z, t) from Eqs. (41–43) in to
Eq. (44) yields:

θ(z, t) = (0.5 − 0.5 tanh(0.3333333z))0.5 +

9t

463 tanh (0.33333z)3 −
308 641 821 tanh (0.33333z)2 −
463 tanh (0.33333z) + 308 641 821


50 000 000 000

√
2 − 2 (0.33333z)

+
1

0.4 × 1024
√

2 − 2 tanh (0.33333z)
×10
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t2



6.4819 × 1015 tanh (0.33333z)5 +
8.3336 × 1015 tanh (0.33333z)4 −
1.8518 × 1021 tanh (0.33333z)3 +
6.1727 × 1020 tanh (0.33333z)2 +
1.8518 × 1021 tanh (0.33333z)1 −
6.172820




. (45)

The obtained solution has been drawn in Figs. 1 and 2 for n=1 and n=2, respec-
tively, along with the results of VIM from the following section, as well as the exact
solution available. It is noteworthy from the figures that the plotted values of θ(z, t)
include negative z-values as well as positive values, whereas Richards’ equation usu-5

ally has significant physical meaning for positive z-values. However, since there are
some solutions given for infinite conditions in Richard’s equation in the literature, i.e.,
for −∞<z<+∞ (especially for linear variations of k), solutions for negative values of z
have also been presented in the figures.

6 Implementation of VIM to solve Richards’ equation10

6.1 Case 1: n=1

To solve the Eq. (12) by means of VIM, one can construct the following correction
functional:

θn+1(z, t) = θn(z, t) +
∫ t
0
λ∗
(

∂
∂τ

θn(z, τ) + θn(z, τ)
∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (46)

Its stationary conditions can be obtained as follows:15

λ′∗ |τ=t = 0,

1 + λ∗ |τ=t = 0, (47)
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We obtain the lagrangian multiplier:

λ∗ = −1 (48)

As a result, we obtain the following iteration formula:

θn+1(z, t) = θn(z, t) −∫ t
0

(
∂
∂τ

θn(z, τ) + θn(z, τ)
∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (49)5

Now we start with an arbitrary initial approximation that satisfies the initial condition:

θ0(z, t) = 0.5 − 0.5 tanh(0.25z) . (50)

Using the above variational formula (49), we have:

θ1(z, t) = θ0(z, t) −∫ t
0

(
∂
∂τ

θ0(z, τ) + θ0(z, τ)
∂
∂z

θ0(z, τ) − ∂2

∂z2
θ0(z, τ)

)
dτ (51)10

Substituting Eq. (50) in to Eq. (51) and after simplifications, we have:

θ1(z, t) =
0.0625(8 cosh(0.25z)2 − 8 sinh(0.25z) cosh(0.25z) + t)

cosh(0.25z)2
(52)

6.2 Case 2: if n=2

To solve the Richards’ equation by means of VIM, once again the following correction
functional may be constructed:15

θn+1(z, t) = θn(z, t) +
∫ t
0
λ∗
(

∂
∂τ

θn(z, τ) + θn(z, τ)2 ∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (53)
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Its stationary conditions can be obtained as follows:

λ′∗ |τ=t = 0,

1 + λ∗ |τ=t = 0, (54)

We obtain the lagrangian multiplier:

λ∗ = −1 (55)5

As a result, we obtain the following iteration formula:

θn+1(z, t) = θn(z, t) −∫ t
0

(
∂
∂τ

θn(z, τ) + θn(z, τ)2 ∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (56)

Now we start with an arbitrary initial approximation that satisfies the initial condition:

θ0(z, t) = (0.5 − 0.5 tanh(0.3333z))0.5 . (57)10

Using the above variational formula (56), we have:

θ1(z, t) = θ0(z, t) −∫ t
0

(
∂
∂τ

θ0(z, τ) + θ0(z, τ)2 ∂
∂z

θ0(z, τ) − ∂2

∂z2
θ0(z, τ)

)
dτ (58)

Substituting Eq. (57) in to Eq. (58) and after simplifications, we have:

θ1(z, t) = − 1

(2 − 2 tanh(0.3333z))
3
2

×15 1.6 × 10−11


−1.25 × 1011 + 2.5 × 1011 tanh(0.3333z)−
1.25 × 1011 tanh(0.3333z)2 − 6.9444 × 109

t + 6.9444 × 109t tanh(0.3333z) + 6.9444
×109t tanh(0.3333z)2 − 6.9444 × 109t
tanh(0.3333z)3 + 4t tanh(0.3333z)4



 (59)
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and so on. In the same way the rest of the components of the iteration formula can
be obtained. Figures 1 and 2 show the results obtained from VIM and HPM along
with the exact solution, revealing a high level of agreement between the three results
shown. It should be noted that Richards’ equation has significant physical meaning for
positive z-values. However, since there are some solutions given for infinite conditions5

in Richard’s equation in the literature, i.e., for −∞<z<+∞ (especially for linear varia-
tions of k), solutions for negative values of z have also been presented in the figures.
It is evident from the curves plotted that the exact solution and the obtained solutions
from HPM and VIM almost completely overlay each other and the level of agreement
between the results is therefore excellent.10

7 Concluding remarks

In this study, Analytical solution to Richards’ equation was explored using Homotopy
Perturbation Method (HPM) and Variational Iteration Method (VIM). Richards’ equation
is used for modeling infiltration in unsaturated soils. HPM and VIM have been success-
fully utilized for solving Richards’ equation. Illustrative examples proved the high accu-15

racy of the results obtained using HPM and VIM. Compared to the methods presented
in the literature, the homotopy perturbation method is an asymptotic method in the
sense that no convergence proof is needed for the solutions obtained, i.e. a converged
solution is achieved within three iterations at the most, which means the method is
quite robust in achieving the solution. Although the examples considered for Richards’20

equation herein involved one-dimensional cases, the success of the methods used are
still appraisable, as it should be noted that the equation is still a nonlinear one even in
its one-dimensional form. Following the success observed in one-dimensional cases, it
is now hoped that more complex situations may also be addressed in the future. It can
be concluded that HPM and VIM may be effectively used for solving Richards’ equation25

which covers some important class of problems in geotechnical and geo-environmental
engineering.
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and so on. In the same way the rest of the components of the iteration formula can be obtained. Figs. 

(1) and (2) show the results obtained from VIM and HPM along with the exact solution, revealing a 

high level of agreement between the three results shown. It should be noted that Richards’ equation 

has significant physical meaning for positive z-values. However, since there are some solutions given 

for infinite conditions in Richard’s equation in the literature, i.e., for z−∞ < < +∞ (especially for 

linear variations of k), solutions for negative values of z have also been presented in the figures. It is 

evident from the curves plotted that the exact solution and the obtained solutions from HPM and VIM 

almost completely overlay each other and the level of agreement between the results is therefore 

excellent. 

 

Figure 1: Plot of θ(z) for different values of time (t=0,1,3,5) considering n=1 – solid lines 
represent results from VIM and HPM, while dashed lines depict the exact solution. 

Fig. 1. Plot of θ(z) for different values of time (t=0, 1, 3, 5) considering n=1 – solid lines
represent results from VIM and HPM, while dashed lines depict the exact solution.
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Figure 2: Plot of θ(z) for different values of time (t=0,1,3,5) considering n=2 – solid lines 
represent results from VIM and HPM, while dashed lines depict the exact solution. 

 

7- Concluding remarks 

In this study, Analytical solution to Richards’ equation was explored using Homotopy Perturbation 
Method (HPM) and Variational Iteration Method (VIM). Richards’ equation is used for modeling 
infiltration in unsaturated soils. HPM and VIM have been successfully utilized for solving Richards’ 
equation. Illustrative examples proved the high accuracy of the results obtained using HPM and VIM. 
Compared to the methods presented in the literature, the homotopy perturbation method is an 
asymptotic method in the sense that no convergence proof is needed for the solutions obtained, i.e. a 
converged solution is achieved within three iterations at the most, which means the method is quite 
robust in achieving the solution. Although the examples considered for Richards' equation herein 
involved one-dimensional cases, the success of the methods used are still appraisable, as it should be 
noted that the equation is still a nonlinear one even in its one-dimensional form. Following the success 
observed in one-dimensional cases, it is now hoped that more complex situations may also be 
addressed in the future. It can be concluded that HPM and VIM may be effectively used for solving 
Richards’ equation which covers some important class of problems in geotechnical and geo-
environmental engineering. 
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