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Abstract

In this research, we propose recurrent neural networks (RNNs) to build a relationship
between rainfalls and water level patterns of an urban sewerage system based on his-
torical torrential rain/storm events. The RNN allows a signal to propagate in backward
direction which gives this network a dynamic memory to effectively deal with time-5

varying systems. The RNN is implemented at both gauged and ungauged sites for 5-,
10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN
is capable of learning the nonlinear sewerage system and producing satisfactory pre-
dictions at the gauged sites. Concerning the ungauged sites, there are no historical
data of water level to support prediction. In order to overcome such problem, a set10

of synthetic data, generated from a storm water management model (SWMM) under
cautious verification process of applicability based on the data from nearby gauging
stations, are introduced as the learning target to the training procedure of the RNN
and moreover evaluating the performance of the RNN at the ungauged sites. The re-
sults demonstrate that the potential role of the SWMM coupled with nearby rainfall and15

water level information can be of great use in enhancing the capability of the RNN at
the ungauged sites. Hence we can conclude that the RNN is an effective and suitable
model for successfully predicting the water levels at both gauged and ungauged sites
in urban sewerage systems.

1 Introduction20

The growth of urbanization has paralleled the growth of the global economy over the
last decades. Owing to the rapid development of metropolitan areas, the natural hydro-
logical mechanisms have been changed, such as the reduction of the infiltration and the
concentration response time in a catchment, which leads to unexpected inundations
and failures in operating pumping stations. Taiwan is prone to such circumstances.25

Taiwan is located in the northwestern Pacific Ocean where the activities of subtropical
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air currents happen frequently. Due to the irregular timing and location of precipitations
and the increase of impervious areas, the flood hydrographs during typhoon seasons
result in large peak flows with fast-rising limbs which usually cause serious disasters in
Taiwan. For example, on 17 September 2001, Typhoon Nari struck northern Taiwan ac-
companied with heavy rainfalls, more than 500 mm/day, which caused 27 deaths. The5

flood inundated 4151 building basements that brought on countless economic losses.
A surface inundation will occur as the surface runoff volume is larger than the de-

signed capacity of a storm drainage system. The operation of a pumping station highly
depends on the measurement of water level. The risks of inundations may be reduced
if accurate water level prediction information can be provided. With such prediction10

information, a peak flow can be mitigated by pumping out the inner water prior to the
approach to a peak flow. Despite of the massive researches that have been invested
in simulating the water levels of sewerage systems in storm events, the time-delay and
the magnitude of a peak flow still can not be estimated precisely and a comprehensive
solution of the assessment of sewerage systems does not seem to be on hand, either.15

In present practice, the assessments of the water level variations in sewerage systems
during storm events count on conceptual models mainly. To implement these concep-
tual models, it requires data generated from sewerage systems, e.g. storage volume,
pumping capacity, contribution areas, and so on, and hydraulic loads such as precipi-
tations and flows, etc. The conceptual models can only provide simulation results on20

the basis of given rainfall conditions and are not commonly used as real-time operation
tools. For quantifying the influences of water level variations in sewerage systems and
increasing the operation ability of pumping stations, this research focuses on develop-
ing real-time models to produce accurate multi-step-ahead water level predictions for
urban sewerage systems by utilizing recurrent neural networks (RNNs).25

The artificial neural network (ANN) has evolved as a branch of artificial intelligence
and has been regarded as an efficient tool for the learning of any nonlinear input-
output systems. Therefore, the ANN is described as a data processing system that
composed of many nonlinear interconnected artificial neurons. The main benefit of
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adapting ANNs are that they can effectively extract significant features and trends from
complex data structures even if the underlying physics is either unknown or difficult to
recognize. In the field of hydrology, various research results that were produced by
the ANNs have reported the improvements in the performances of simulations such as
rainfall forecasting (Chiang and Chang, 2009; Chiang et al., 2007a; Hung et al., 2009;5

Nasseri et al., 2008), reservoir operation (Chandramouli and Deka, 2005; Chang and
Chang, 2001; Chaves and Chang, 2008), stream flow forecasting (Akhtar et al., 2009;
Chang and Chang, 2006; Chiang et al., 2007b; Maity and Kumar, 2008; Sudheer et
al., 2008; Toth, 2009), and applications in urban drainage systems (Bruen and Yang,
2006; Loke et al., 1997).10

In viewing the network topologies and the structures of the ANNs used in the field
of hydrology, we can distinguish them into two different generic neural network types:
feedforward and feedback networks. The topology of the feedforward ANN consists of a
set of neurons connected by the links in a number of layers. The feedforward networks
implanted fixed-weights which map the input space to the output space, so that the15

state of any neuron is solely determined by the input-output pattern excluding the initial
and the past states of the neuron. That is to say, the feedforward networks are not
dynamic. The corresponding advantage is that a feedfoward network can be built easily
by a simple optimization algorithm. For such reason, this type of network architecture
is the most popular in use today. Nonetheless, the static feedforward neural network20

also has several drawbacks for some applications. As for the feedback architecture,
it differentiates itself from the feedforward one by possessing at least one feedback
link. The presence of a feedback link has a profound impact on the learning capability
of the RNN and on its performance (Coulibaly and Baldwin, 2005). Because of the
feedback link, the status of its neuron depends not only on the current input signal,25

but also on the previous states of the neuron. The chief advantage of the dynamic
feedback neural network is that it can effectively decrease the input dimension of the
network and therefore improve the training efficiency (Chang et al., 2002; Chiang et
al., 2004). In this research, we propose a RNN for water level predictions in sewerage
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systems. There are two main features of the RNN; (1) its nonlinear properties make
the prediction of a complex nonlinear dynamic system feasible, and (2) its temporal
recurrent processing properties make the implementation easier.

Due to the limited number of water level gauging stations in a sewerage system,
the data and predictions of water levels at ungauged sites become an important issue5

of flood prevention. One of the advantages of predicting water levels at ungauged
sites is to reduce the expensive engineering and maintenance costs. In view of this,
the storm water management model (SWMM), a well-known tool for modeling urban
water circulations, is introduced in this research. A SWMM is an urban runoff model
designed for simulating the quantity and quality of flows associated with urban surface10

runoffs and combined with sewer overflow phenomena (Huber and Dickinson, 1988).
A SWMM could provide hydrographs at any manhole and give conceptual flood depths
by water levels, and therefore was adapted for simulating and generating data of water
levels at an ungauged site. Its synthetic data, under certain verification process of
applicability based on the data from nearby gauging stations, were further used as the15

learning targets to the training procedure of the RNN-based hydrological models and
also used for evaluating and verifying the performance of the RNNs.

In this research, we briefly illustrate both RNN and SWMM methods at first. And
next, the study area and the structure of water level prediction models are presented.
Results obtained from both gauged and ungauged sites are analyzed in the subsequent20

sections, and conclusions are drawn in the end.

2 Methodology

2.1 Recurrent neural network (RNN)

Many types of artificial neural networks have been developed in the last few decades,
which mostly belong to feedforward operations, so-called static neural networks, in25

spite of different architectures of these networks. The static feedforward neural network
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can achieve satisfactory analytical outcomes if sufficient data are available (Chiang et
al., 2004). Nevertheless, in consideration of the temporal or short-term dynamic prop-
erty, the static neural network has difficulty in recognizing and predicting the reality.
The definition of a RNN, so-called dynamic neural network, is that at least one feed-
back link should be added to the static neural network. The RNN allows signals to5

propagate in both forward and backward directions, which offers the network dynamic
memories. Besides, the information at the current time-step with a feedback operation
can yield a time-delay unit that provides internal input information at the next time-
step. In other words, the recurrent neural networks are able to capture the true hidden
dynamic memories of nonlinear systems. The RNN has been proved to be a power-10

ful method for handling complicated systems such as nonlinear time-varying systems
(Coulibaly and Baldwin, 2005; Coulibaly and Evora, 2007; Kumar et al., 2004; Mishra
and Desai, 2006; Razavi and Karamouz, 2007; Yazdani et al., 2009).

In this research, we propose a three-layer RNN with internal time-delay feedback
loops in both hidden and output layers, see Fig. 1. The transfer function of both hidden15

and output layers is of sigmoid type which can be applied to nonlinear transformation.
Each input neuron is connected to a hidden neuron, where each hidden neuron has
its corresponding time-delay unit, i.e. the number of hidden neurons is equal to that of
time-delay units. Basically, a feedback link allows its time-delay unit to store the output
information of this hidden neuron as an additional input to all hidden neurons at next20

time-step, refer to Figure 5 for details. Then, the RNN has an inherent dynamic memory
given by the feedback connections of the time-delay units, and its output depends not
only on the current input information but also on the previous states of the network. In
this research, the RNN makes use of the gradient descent method for calibrating the
parameters via minimizing the forecasting errors.25

As shown in Fig. 1, the output of neuron J in the hidden layer is computed as

yJ (t+1)= f

 I∑
i=1

wJiXi (t)+
J∑

j=1

wJjyj (t)

 (1)
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where f (.) denotes the transfer function, yj (t) denotes the output of the hidden neuron J
at time t, wJi denotes the connection weight from the input neuron i to the hidden layer
neuron J , Xi (t) denotes the input, and wJj denotes the time-delay feedback weight
from the hidden neuron j to the hidden neuron J .

The output of neuron K in the output layer at time t+1 is calculated by5

Q̂K (t+1)= f

 J∑
j=1

wKjyj (t+1)+
K∑

k=1

wKkQ̂K (t)

 (2)

where wKj represents the connection weight from the hidden unit j to the output unit
K , and wKk represents the time-delay feedback weight from the output unit k to the
output unit K

The associated weight of each parameter in the RNN can be figured out by the10

following formula through the chain rule with partial derivatives.

Wnew =Wold−η
∂Etotal

∂W
(3)

where η denotes the learning rate. Etotal represents the objective function

Etotal =
N∑
t=1

E (t)=
1
2

N∑
t=1

K∑
k=1

[Qk(t)−Q̂k(t)]2 (4)

where Qk(t) represents the value of the learning target to neuron k at time t; and Q̂K (t)15

is the network output of neuron k at time t.

2.2 Storm water management model (SWMM)

The SWMM is a comprehensive hydrological simulation model that is commonly ap-
plied to designing the quality and quantity models of runoffs in urban areas (Acker-
man and Schiff, 2003; Baffaut and Delleur, 1990; Borah and Bera, 2003; Denault et20
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al., 2006; Maharjan et al., 2009; Tsihrintzis and Hamid, 1998). As understood, even
though the RNN can easily build a water level prediction model at the gauged sites,
the difficulty in predicting the water levels at an ungauged site is due to its unavail-
ability of real observations for the training and evaluation of a RNN. Fortunately, the
SWMM can be an appropriate tool to overcome such difficulty by its simulation abil-5

ity. In principle, the SWMM is capable of simulating the quantity and quality of runoffs
within a drainage basin, and thus is chosen to simulate the water levels of sewerage
systems at ungauged sites. Hence, the major reason for applying a SWMM to this
research is to generate synthetic data of the water levels from a specific manhole at
an ungauged site. To simulate a flow, the SWMM uses the Saint-Venant equations for10

a gradually varied, turbulent, and unsteady flow. The Saint-Venant equations repre-
sent the principles of conservation of momentum and conservation of mass. A SWMM
contains four functional program blocks that can simulate different components of a
hydrological circulation. Two of them are managed herein: the RUNOFF and the EX-
TRAN blocks (Huber and Dickinson, 1988). The RUNOFF block performs hydrological15

computations according to the theory of nonlinear reservoirs, and the RUNOFF outputs
are then taken as inputs to the EXTRAN block which is designed to route the flows in
a sewerage system by using numerical methods.

Next, the SWMM parameters recruited in this research comprise ten factors which
are catchment length/width ratio, catchment slope, maximum infiltration, minimum in-20

filtration, impervious area Manning’s roughness coefficient, pervious area Manning’s
roughness coefficient, impervious area detention storage, pervious area detention stor-
age, % of impervious area of catchment, and decay rate of infiltration curve. The main
reason for not using the suggested parameters listed in the table of the SWMM manual
or the parameters presented in previous research papers is that, empirically, these pa-25

rameters may not fit in with the analysis of the storm events occurred in Taiwan. These
parameters are further calibrated by use of the historical observation values of rainfalls
and runoffs. A detailed discussion is illustrated in next sections.
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3 Applications

3.1 Study area and data

Taiwan is located in the subtropical jet stream monsoon district of northern Pacific
Ocean. Taipei City is situated in the Taipei Basin of northern Taiwan and is surrounded
by the Danshui River, whose narrow estuary makes it difficult to discharge water effec-5

tively from the city. A highly intensive rainfall during a storm or a typhoon could easily
cause flooding. The flood control strategy covers two actions; (1) to build embankments
along the river sides, and (2) to set pumping stations at the main drains to discharge
the rain water from the city. Pumping stations are the principal hydraulic facilities for
the sluices of floods in highly developed cities, and therefore play important roles in10

mitigating the floods in metropolitan areas. Accurate predictions of water levels in ur-
ban drainage systems are necessary and important for successful operations of the
pumping stations. The study area for this research is the Yu-Cheng catchment, located
in southeastern Taipei as shown in Fig. 2, which is taken for a detailed investigation of
water levels for prediction purpose. The Yu-Cheng pumping station was set up in 198715

to drain or pump the inner water into the Keelung River. The pumping station contains
seven massive pumps and has the total capacity to 184.1 cm s, which was the most ad-
vanced and largest in Asia in the 1980s. The Yu-Cheng catchment with an area about
1645 ha owns the biggest drainage system in Taipei City. There are five rain gauging
stations, denoted blue circles in Fig. 2, and ten water level gauging stations, denoted20

red triangles in Fig. 2, in this region.
In this research, the RNN-based model was constructed for precise predictions of

water levels at the gauging stations. The outlet of the sewerage system is the water
level gauging station, Station YC10, and therefore Station YC10 is selected as the ob-
jective for a water level prediction. The real-time water level monitoring of the sewerage25

systems has been operated by the Hydraulic Engineering Office of Taipei City Govern-
ment for the past few years. The historical data used in this research contained the pre-
cipitations and water level information recorded from 2002 to 2006. The precipitation

2325

observation values collected in this research were used to calculate the mean areal
precipitation based on the Thiessen polygon method in order to effectively reduce the
input dimension of the RNN. After data preprocessing, a total of 2055 records of data,
extracted from 14 typhoon or storm events, with a resolution of 5 min were collected,
see Table 1. These data were divided into three parts; (1) data associated with eight5

events were arranged to train the RNN parameters, (2) data associated with the other
three events were dedicated to validate the RNN, and (3) data associated with the
remaining three events were for the testing procedure of the RNN.

3.2 Water level prediction model

In this research, the RNNs were built for the water level predictions at both gauged10

and ungauged sites in a sewerage system. For predicting the water level of Station
YC10, the input information to the RNN-based hydrological model mostly came from
the upstream water levels and the mean areal precipitations. In addition to the mean
areal precipitation information, the variation of the water level at the upstream gauging
station may also affect the water level at Station YC10 if the upstream gauging station15

is highly correlated to Station YC10. On the basis of the main drains of the watershed,
the drainage system of the Yu-Cheng catchment can be roughly partitioned into three
sub-drainage systems. The outlets of these three sub-drainage systems are Stations
YC4, YC9, and YC11. Since the observations were performed irregularly at the Sta-
tion YC9, the water level information at this station was not considered in this research.20

Therefore, the input variables for the water level prediction at Station YC10 were the
mean areal precipitations and the water level information of Stations YC4, YC10, and
YC11. The learning target of the RNN model can be referred to the water level ob-
servations of YC10. Four identical RNN structures, each with a single output, were
designed for 5-, 10-, 15-, and 20-min-ahead water level predictions. The time step is25

set as 5 minutes because the time of concentration in this drainage system is very
short and the operational time step of Yu-Cheng pumping station is 5 min.

2326



Moreover, in consideration of the historical inundation events recorded by the Hy-
draulic Engineering Office of Taipei City Government, we selected an ungauged site,
located between Stations YC4 and YC8, and marked it with a blue square as shown in
Fig. 3. In other words, this selected ungauged site is prone to inundation. Each number
displayed in Fig. 3 indicated a manhole related to a drain. Before the construction of a5

water level prediction model at an ungauged site, it should be confirmed if the quality
of the synthetic data of the water levels is appropriate or not. That is to say, the errors
may propagate to the RNN if there are large biases in the synthetic data generated by
the SWMM. Hence, it is necessary to verify the applicability of a SWMM to the con-
ditions of an urban sewerage system. In this research, the parameters of the SWMM10

were calibrated first on the historical gauge measurements basis. Then, the flows sim-
ulated by the SWMM corresponding to Station YC4 and Station YC8 were evaluated.
Figure 4a showed the rainfall hyetograph of an event randomly selected from datasets,
whereas Fig. 4b and c showed the hydrographs of the SWMM output values versus the
observation values at Stations YC4 and YC8, accordingly. It clearly indicated that the15

water levels estimated by the SWMM well captured the main trends of observations at
both stations. The accuracies of the simulated flows at Stations YC4 and YC8 were
0.96 and 0.98 each in terms of the correlation coefficient (CC). Results displayed in
Fig. 4 confirmed a high reliability of the SWMM simulations. Therefore, the SWMM
is appropriate for generating the water level values at an ungauged site. Even if the20

SWMM is able to produce an accurate set of water level values, the outputs, however,
are not predictions but simulations.

For predicting the water level at the selected ungauged site, the input variables of
a RNN consists of the precipitations and the water level information of the nearby up-
stream and downstream stations; namely, the mean areal precipitations and water level25

observation values at Stations YC4 and YC8. It should be noticed that the learning tar-
get values to the RNN is replaced by the synthetic data, assumed as the observation
values, of water levels generated from the SWMM at the ungauged site. The RNN
network structure is expressed in Fig. 5. The best of this technique is this model can
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produce the water level predictions at any specific location no matter whether water
level measurements are available or not. It means this water level prediction model
can be extended to any ungauged sites if the observation values of its nearby rainfalls
and water levels are available. The RNN learned from both external, Stations YC4,
YC8, and P, and internal, the feedback links, input information and further optimized its5

parameters in accordance with the errors calculated from related outputs and synthetic
data. The number of hidden neurons was set to three through trial-and-error proce-
dures, and the training procedure has not been interrupted until the stop criterion was
reached.

Three error statistics are chosen to assess the consistency between the water level10

monitoring records and the RNN-based predictions; that is, the correlation coefficient
(CC), coefficient of efficiency (CE), and normalized root-mean-square error (NRMSE).
All of these indices are widely used to estimate the fitness to the hydrological mod-
els in hydrological applications, and moreover to facilitate the comparison of different
estimated/predicted results. The three criteria are defined as follows:15

CC=

N∑
i=1

(
Q(i )−Q

)(
Q̂(i )−Q̂

)
√

N∑
i=1

(
Q(i )−Q

)2 N∑
i=1

(
Q̂(i )−Q̂

)2
(5)

CE=1−

N∑
i=1

(Q(i )−Q̂)2

N∑
i=1

(Q(i )−Q)2

(6)

NRMSE=
1
σ

√√√√√ N∑
i=1

(Q̂(i )−Q(i ))2

N
(7)
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where Q̂ is the forecasted water level (m) and Q is the observed water level (m); Q and

Q̂ are the means of the water levels associated with observation values and forecast
values, respectively. σ is the standard deviation of the observation values.

4 Results and discussion

4.1 Performance of water level predictions at the Gauging Station YC105

Table 2 shows the results obtained from the RNN for the water level predictions at Sta-
tion YC10. The results implied that the model was well trained with a consistent perfor-
mance and therefore produced precise testing results for multi-step-ahead forecasts.
The testing performances of the water level predictions of 5-, 10-, 15-, and 20-min-
ahead are rather good. We feel confident that the RNN-based water level prediction10

model is capable of capturing the major trends of observations with accuracy higher
than 0.97 of correlation coefficient, see Table 2. In terms of coefficient of efficiency
(CE), the consistency between the water level observation values and the prediction
values indicates that the RNN has the ability to predict highly nonlinear and variable
systems, such as urban drainage/sewerage systems. Figure 6 illustrates the scattering15

plots of the RNN outputs in both validation and testing sets versus the observations
for 5 to 20-min-ahead predictions. The results clearly prove that the RNN can be well
trained for learning any input-output relations.

Figure 7 shows the error distribution of RNN outputs in testing phase for 5 to 20-
min-ahead predictions. In the 5- and 10-min-ahead predictions of the model, the bi-20

ases between the outputs and observation values are mostly within 10 cm except for
the connection between a low water level event and a high level event with a slight
underestimation. A similar phenomenon also occurs in the 15- and 20-min-ahead pre-
dictions since the water level measurements rise rapidly from 0.1 m to 1.27 m within
20 min. However, there is no precipitation measured during this period. One possible25

2329

explanation may be the failure of hardware instruments. In summary, the RNN model
proved its ability to make precise predictions of 20-min-ahead water levels and per-
formed well for peak flow predictions.

4.2 Performance of water level predictions at an ungauged site

As mentioned previously, there is a need for building the water level prediction at an5

ungauged site since monitoring the water levels in urban sewerage systems is not yet
very common in Taiwan. In order to conquer the difficulty in predicting the water level
at an ungauged site, we utilized the precipitation and the water level information of
the nearby stations as input and the synthetic data obtained form the SWMM as the
target values, because of the unavailability of real observation values at this site, to10

train the RNN. Table 3 shows the testing results calculated by all criteria at the chosen
ungauged site. For 5- to 20-min-ahead predictions, the values of CC are higher than
0.95, indicating that the RNN can effectively predict the water level hydrographs even
at an ungauged site. Nevertheless, values of CE, falling between 0.74 and 0.83, are
relatively low which implies that the RNN slightly underestimated some peak flows with15

an error percentage under 10%. Figure 8 illustrates the scattering plots of the RNN
outputs versus the SWMM estimations. For the 5-min-ahead prediction, refer to Fig. 8a,
the prediction values are very close to the ideal line which indicates a high accuracy
of the RNN outputs. In the analysis of the 10- to 20-min-ahead prediction values, see
Fig. 8b–d, it is quite obvious that the RNN underestimates some observation values.20

The major reason for producing such underestimation is due to the time-lag problems
which occur in the output process of the RNN. Fortunately, the phenomenon of such
underestimation is not that serious. In summary, the results obtained from RNN are still
acceptable, indicating that the RNN is also applicable to the water level predictions at
ungauged sites by using synthetic data sets generated from a well calibrated SWMM.25

Overall, the study demonstrates that the RNN model is capable of learning the time-
varying processes in urban sewerage systems, and therefore providing precise water
level predictions up to 20-min-ahead. It is interesting to inspect the model performance
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at gauged and ungauged sites. For example, the RNN models produced smaller pre-
dictive error at gauged site but larger predictive error at ungauged site (in terms of
CE and NRMSE) even though the correlation coefficients at both sites are higher than
0.95. This is because the hydrograph of the synthetic data generated by SWMM is not
as smooth as that of observations (see Fig. 4). In other words, the bias produced from5

synthetic data does propagate to RNN model, and therefore resulted in larger predic-
tive error. Besides, the correlation coefficients of the SWMM simulations achieved 0.96
and 0.98 at YC4 and YC8, respectively, which indicates the best performance obtained
at ungauged site will not be higher than 0.98. Our results conform to this limitation (see
Table 3) and demonstrate that the predictive capabilities of RNN models are similar no10

matter where it is.

5 Conclusions

In this research, the recurrent-neural-network-based hydrological models have been
developed to predict the water levels at both gauged and ungauged sites. This tech-
nique was applied to a sewerage system in the biggest urbanized catchment in Taipei15

City. Eight RNN models (four for YC10 gauged site, and four for ungauged site), each
with a single output, were calibrated by using the mean areal precipitations and up-
stream hydrological information, and then built for the multi-step-ahead water level pre-
dictions. The related outputs can provide important prior knowledge and/or information
for the successful operation of pumping stations in an urban sewerage system, and the20

accurate water level predictions should offer an improvement in preventing a city from
inundation.

The RNN-based hydrological models can precisely estimate the observation values
at the catchment outlet. For the prediction at the gauged site, Station YC10, the RNN
produced excellent water level outputs for 5- up to 20-min-ahead predictions. As far as25

the statistical criteria are concerned, the values of both CC and CE are higher than 0.97
in testing phase, indicating that the RNN is very suitable to model the nonlinear and
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time-varying mechanisms of an urban sewerage system. For the prediction at the un-
gauged site, the SWMM was used for computing storm sewer flow and generating data
at the selected manhole. Based on the evaluation of the SWMM’s applicability to an
urban sewerage system, the synthetic data at an ungauged manhole were generated
for the training of the RNN. These results pointed out that even though the forecasts of5

the RNN slightly underestimated the peak flows, the RNN model effectively captured
the major trends of the water level hydrographs produced by the SWMM. We are cer-
tain that this proposed method can be used in a more flexible way for constructing the
hydrological prediction model at any specific manhole. Likewise, the results can be
of great help to verify the inundation risk and to enhance the efficiency of a pumping10

station in an inundation-prone area if a suitable operational strategy can be made.
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Table 1. Data from storm events for water level predictions.

Configuration Event Amount Rainfall Mean water Standard
accumulation level deviation

(mm) (m) (m)

1

Training

395 90.8 2.10 0.61
2 85 20.9 2.25 0.33
3 68 15.0 2.28 0.26
4 107 33.0 1.44 0.57
5 31 68.4 1.84 0.27
6 256 406.5 5.48 1.26
7 206 156.4 3.20 0.38
8 300 156.1 2.63 0.74

9

Validation

135 123.0 2.32 0.83
10 60 61.8 1.77 0.62
11 43 21.0 1.33 0.15

12

Testing

142 53.2 2.06 0.65
13 176 57.2 2.04 0.55
14 51 25.3 1.46 0.65
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Table 2. Results obtained from the RNN for water level prediction at Station YC10.

Index Lead time

5 min 10 min 15 min 20 min

CC 0.99 0.99 0.99 0.99
Training CE 0.99 0.99 0.98 0.97

NRMSE 0.08 0.08 0.15 0.16

CC 0.99 0.99 0.97 0.97
Validation CE 0.99 0.98 0.95 0.93

NRMSE 0.12 0.16 0.23 0.26

CC 0.99 0.99 0.97 0.97
Testing CE 0.99 0.99 0.97 0.95

NRMSE 0.11 0.11 0.22 0.26
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Table 3. Testing results of the water level prediction at an ungauged site.

CC CE NRMSE

5-min-ahead 0.98 0.83 0.36
10-min-ahead 0.97 0.82 0.42
15-min-ahead 0.97 0.76 0.43
20-min-ahead 0.95 0.74 0.44
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Figure 1 The architecture of the recurrent neural network (RNN) 546 

 547 

Fig. 1. The architecture of the recurrent neural network (RNN).
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Figure 2 The locations of Yu-Cheng catchment and the monitoring stations 550 

 551 

Fig. 2. The locations of Yu-Cheng catchment and the monitoring stations.
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Figure 3 The location of the ungauged site 554 
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Fig. 3. The location of the ungauged site.
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Figure 4 (a) The rainfall hyetograph, (b) the SWMM hydrograph at Station YC4, (c) 557 
the SWMM hydrograph at Station YC8 558 

Fig. 4. (a) The rainfall hyetograph, (b) the SWMM hydrograph at Station YC4, (c) the SWMM
hydrograph at Station YC8.

2341

 559 

Optimization 

Synthetic 
dataset

YC4

YC8

P

Parameters calibration

PredictionE

EvaluationSynthetic 
dataset

EXTRANRUNOFF

Time-delay unit

 560 

Figure 5 The architecture of a RNN to predict the water level at the ungauged station 561 Fig. 5. The architecture of a RNN to predict the water level at the ungauged station.
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Fig. 6. The scattering plots of the RNN outputs versus the observations for (a) 5-, (b) 10-, (c) 15-, and (d) 20-min-
ahead predictions in both validation and testing sets.
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Figure 7 The error distribution of RNN outputs in testing phase for (a) 5-, (b) 10-, (c) 566 
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Fig. 7. The error distribution of RNN outputs in testing phase for (a) 5-, (b) 10-, (c) 15-, and
(d) 20-min-ahead predictions.
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Fig. 8. The scattering plots of the RNN outputs versus the SWMM estimations for (a) 5-,
(b) 10-, (c) 15-, and (d) 20-min-ahead predictions in testing set.
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