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Abstract

Discharge in rivers is commonly estimated by the use of a rating curve constructed
from pairs of measured water elevations and discharges at a specific location. The
Bayesian approach has been successfully applied to estimate discharge rating curves
that are based on the standard power-law. In this paper the standard power-law model5

is extended by adding a B-spline function. The extended model is compared to the
standard power-law model by applying the models to discharge data sets from sixty
one different rivers. In addition four rivers are analyzed in detail to demonstrate the
benefit of the extended model. The models are compared using two measures, the
Deviance Information Criterion (DIC) and Bayes factor. The former provides robust10

comparison of fit adjusting for the different complexity of the models and the latter
measures the evidence of one model against the other. The extended model captures
deviations in the data from the standard power-law but reduces to the standard power-
law when that model is adequate. The extended model provides substantially better fit
than the standard power-law model for about 30% of the rivers and performs better for15

60% of the rivers when extrapolating large discharge values.

1 Introduction

Discharge in rivers is commonly calculated by mapping water surface elevations, mea-
sured at a specific location in the river, to discharge by means of a rating curve. The
rating curve is usually an equation that describes a curve that is fitted through data20

points of measured water surface elevation against measured discharge at a loca-
tion where downstream hydraulic control assures a stable, sensitive and monotonic
relationship between water surface elevation and discharge (Mosley and McKerchar,
1993; ISO, 1983). This methodology is applied as direct measurements of discharge
are expensive compared to measurements of water surface elevation that are relatively25

straightforward and inexpensive undertaking and often well suited for automation. The
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sources of uncertainty in the discharge obtained by a rating curve methodology are
several, both due to uncertainty in river discharge measurements and uncertainty in
the rating curve (Pelletier, 1988; Clarke, 1999; Moyeed and Clarke, 2005; Di Baldas-
sarre and Montanari, 2009). In many instances, such as in engineering design, there is
a great interest in an accurate estimate of large discharges as in many cases property5

and even human life can depend on obtaining reliable estimate of extreme discharges.
This is true of many types of infrastructures, such as transportation structures, roads
and bridges, or flooding of houses in urban areas due to overtopping of levees. Accu-
rate prediction of large discharge, where in general the least data is available as it is
hard to obtained reliable data during extreme events, usually involves an extrapolation10

of the rating curve beyond largest measured data points. In this paper, a methodology
for improved extrapolation of the rating curve for large discharges is proposed, based
on the Bayesian approach and B-spline functions.

Based on hydraulic principles, the relationship between discharge and water level is
given by the standard power-law15

q=a(w−c)b (1)

(Lambie, 1978; Mosley and McKerchar, 1993) where q is discharge, w is water level,
a is a positive scaling parameter, b is a positive shape parameter and c is the water
level when the discharge is zero. These parameters are usually estimated from paired
measurements of water level and discharge.20

The Bayesian approach has been successfully applied to discharge rating curves
(Moyeed and Clarke, 2005; Reitan and Petersen-Øverleir, 2008b; Arnason, 2005). In
the Bayesian approach all unknown parameters are treated as random variables. Prior
information about unknown parameters based on previously collected data and/or sci-
entific knowledge can be combined with new data for parametric inference. For exam-25

ple, the fact that the parameter b in Eq. (1) takes the values 1.5 and 2.5 for rectangular
and v-shaped sections, respectively, is an example of prior knowledge that can be used
to form the prior distribution for one of the unknown parameters. Combination of the
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prior distributions and the model for the data results in the posterior distribution which
can be used to obtain point estimates and interval estimates of the parameters. Ice-
landic Meteorological Office (IMO) runs a water level measuring system which collects
water level data continuously from rivers in Iceland, while the discharge is only mea-
sured a few times a year due to high cost. IMO has applied the Bayesian approach5

successfully to data on discharge and water level for discharge rating curve estimation
as presented in Arnason (2005), which is based on the model introduced in Petersen-
Øverleir (2004). This model will be referred to as Model 1. Model 1 is not sufficient for
about 30% of the data sets at IMO which calls for modifications (see Sect. 6). The com-
mon practice would be to use multi-segment discharge rating curves (Petersen-Øverleir10

and Reitan, 2005; Reitan and Petersen-Øverleir, 2008a). Reitan and Petersen-Øverleir
(2008a) present a Bayesian approach to multi-segment discharge rating curves which
results in stable estimation while non-Bayesian methods can have problems with sta-
bility (Petersen-Øverleir and Reitan, 2005). Other methods like Takagi–Sugeno fuzzy
inference system which is a nonparametric estimation method, have been applied to15

discharge rating curves (Lohani et al., 2006).
The power-law is derived from a theoretical basis and serves as an appropriate

model in most cases. However, in some natural settings deviations from this form
arise. For example, the river bed can change from a v-shape to a rectangular shape as
the water level increases. Changes of this type are likely to occur gradually as opposed20

to occurring at a single point with a sharp change or a jump around the breaking points
(Petersen-Øverleir and Reitan, 2005). This motivates the use of a smooth function to
describe deviation from the power-law instead of using one or more segmentations. A
new model, that is an extension of Model 1 is proposed. This model, referred to as
Model 2, captures the main trend in discharge as a function of water level through the25

power-law part, a(w −c)b. To model the remaining variability, a B-splines function is
added which allows for more flexibility than in Model 1. The B-spline part is set equal
to zero above a specified water level so the fitted curve is only based on the power-law
above this value and the power-law alone is used to extrapolate discharge for large
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water level. The power-law part of Model 2 plays a similar role as the curve in the
segment for the highest water level values in a segmented rating curve model.

The proposed method is similar to Lohani et al. (2006) since both methods rely on
the nonparametric approach to estimation. However, it has a few advantages over
Lohani et al. (2006) approach. It gives measures of uncertainty in parameters and fit.5

The complexity and the fit of the model can be evaluated and compared with another
Bayesian model with a model criterion. This model criteria penalizes for the number of
effective parameters which is a measure of model complexity in the Bayesian setting
against the fit of the model. An important advantage of the model introduced here
over Lohani et al. (2006) approach is that it has a structure that allows for prediction of10

discharge above the largest observed water level.
In Sect. 2, a description of the 61 discharge and water level data sets is given.

Section 3 gives a brief overview of the quantities listed in the section’s title, in Sect. 4,
the two statistical models for discharge and water level measurements are introduced.
In Sect. 5, a description of the prior distributions and posterior distribution is given. The15

two models are applied to these data sets in Sect. 6 and a comparison between the
models is made. Finally, in the last Sect. 7 are drawn.

2 Data

The data which are analyzed in this paper were collected by the IMO water level mea-
suring system and are from 61 different rivers in Iceland. For each river, time series20

of water level measurement are available. The time series give information about the
range of the water level for each river. Detailed analyses are performed for four rivers.
They are Norðurá in Borgarfjörður by Stekk, Jökulsá á Fjöllum by Grímsstaðir, Jökulsá
á Dal by Brú and Skjálfandafljöt by Aldeyjarfoss. The rivers were chosen such that
Model 1 will fit reasonably well in one case (Jökulsá á Fjöllum), in two cases Model 125

is insufficient (Norðurá and Skjálfandafljót) and in one case where Model 1 is obviously
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performing poorly (Jökulsá á Dal). The data sets contain pairs of discharge measure-
ments (q), in m3/s, and water level measurements (w) in m.

3 Deviance information criterion and Bayes factor

To evaluate quantitatively the quality of a fit of a model to a data set, a criterion called
the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) may be employed.5

The deviance information criterion is defined as

DIC=Davg+pD,

where pD = Davg −Dθ̂. The quantity pD is the effective number of parameters and
measures the complexity of the model. The quantities Davg and Dθ̂ are based on the
likelihood function which arises from the proposed probability model of the data. Both10

Davg and Dθ̂ measure the fit of the model to the data. As the complexity of the model
(pD) increases the fit of the model as measured by Davg becomes smaller. Hence, DIC
weights the fit of the model against the complexity of the model. It is also noted that
the prior distributions restrict the unknown parameters with the effect that the effective
number of parameters becomes less than the actual number of parameters. The actual15

numbers of parameters in Model 1 and Model 2 are five and L+8, respectively, where
L is the number of B-spline kernels as is discussed in following section. DIC is used to
compare two or more models which are applied to the same data in terms of their fit. In
such a comparison the model with the lowest DIC is considered as the first candidate
out of the evaluated models. The candidate model needs to be evaluated further in20

terms of goodness of fit. For details on DIC, Davg, Dθ̂ and pD, see Spiegelhalter et al.
(2002) and Gelman et al. (2004). In this paper, if DIC of Model 2 is smaller than DIC of
Model 1 by ten or more, then Model 2 is deemed as significantly better than Model 1.
The decision of selecting ten as a cut-off value is supported by calculations of Bayes
factor (see Sect. 6).25

2752



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Bayes factors can be used to calculate the posterior probability for each of two or
more proposed models conditioned on the data. The following notation is used. In
case of two models for the data y, the i -th model is denoted by Mi , pi (y|θ i ) is the data
model, θ i are the model parameters, pi (θ i ) is the prior for θ i , Θi is the parameter
space and P (Mi ) is the prior probability of model i , i =1,2. The posterior probability of5

Model 1 is given by

P (M1|y)=
P (M1)

∫
Θ1
p1(y|θ1)p1(θ1)dθ1∑

j=1,2P (Mj )
∫
Θj
pj (y|θ j )pj (θ j )dθ j

=
(

1+
P (M2)

P (M1)
× 1
B12

)−1

where B12 is Bayes factor for the comparison of models M1 and M2 (Kass and Raftery,
1995), given by

B12 =

∫
Θ1
p1(y|θ1)p1(θ1)dθ1∫

Θ2
p2(y|θ2)p2(θ2)dθ2

.10

Kass and Raftery (1995) presented a table to categorize the evidence against a null
model (based on a table from Jeffreys, 1961). Here, the null model and the alternative
model would be Model 1 and Model 2, respectively. If the Bayes factor values, which
mark the categories, are transformed to P (M2|y) (rounding the numbers from Kass and
Raftery (1995) slightly) then the categories presented in Table 1 arise.15

Here the evidence against Model 1 is preferred to be strong or decisive (P (M2|y)>
0.90) along with a DIC difference of ten or more, favoring Model 2, for the selection of
Model 2 over Model 1. The prior probabilities are selected as P (Mi )=0.5, i =1,2.

One way to compute B12 is by evaluating the integrals
∫
Θi
pi (y|θ i )pi (θ i )dθ i , i =1,2,

with the formula20 1
T

T∑
t=1

1

pi
(
y|θ (t)

i

)


−1
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where θ
(t)
i is the t-th posterior sample of θ i . See Robert (2007) for details.

4 Models

A Bayesian model for discharge rating curves based on the standard power-law is given
by

qi =a(wi −c)b+εi , i =1,...,n,5

where n is the number of observations for a given site, (wi ,qi ) denotes the i -th pair of
observations and εi is a mean zero measurement error such that

εi ∼N(0,η2(wi −c)2bψ ),

where a, b and c are as in Eq. (1), the parameter ψ controls how the error variance
behaves as a function of the expected value of q, and η2 is a scaling parameter for the10

variance. In essence this is the same model as the one presented by Petersen-Øverleir
(2004) and it is currently used at IMO. The parameter a is a function of ϕ and b, that
is,

a=exp(α0+α1b+ϕ) (2)

where α0 = 4.9468 and α1 =−0.7674. This reparametrization is motivated by correla-15

tion between estimates of ln(a) and b, denoted by ln(â) and b̂, which are based on data
from IMO, and the values for α0 and α1 are selected such that the correlation between
ln(â) and ln(â)−α0−α1b̂ is zero (Arnason, 2005).

A new model referred to as Model 2 is proposed. The form of this model is given by

qi =E(q(wi ))+εi , i =1,...,n,20

where εi is an error term such that

εi ∼N
(

0,η2(wi −c2)2b2

)
, i =1,...,n, (3)
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and η2, b2 and c2 are unknown parameters. The observed discharge is always positive
so qi is normally distributed under the constraint qi > 0. The variance of Model 2 was
chosen to be essentially the same as the variance in Model 1. Note that b2 and c2
play a similar role as ψb and c in the variance of Model 1. However, the variance of
Model 2 does not include parameters of the mean function. This is done to simplify the5

conditional distributions of the Gibbs sampler and obtain more stable simulation from
the posterior distribution. The expected value of q(w) is given by

E(q(w))=


a(w−c)b, w >wupp

a(w−c)b+
∑L
l=1λlGl (w), wlow <w ≤wupp

a(w−c)b+λ1, w0 ≤w ≤wlow

(4)

where λL = 0, and the parameter space of a, b, c and λ is such that E(q(w))≥ 0. Note
that E(q(w)) is not defined for w <w0. The coefficient λL is set equal to zero to ensure10

continuity at wupp. The terms Gl (w) are such that

Gl (w)=Bl

(
w−wlow

wupp−wlow

)
, wlow ≤w ≤wupp,

for l = 1,...,L. The terms Bl (z), l = 1,...,L, are cubic B-splines (Wasserman, 2006)
which have support on the interval z ∈ [0,1], wlow and wupp are the lower and upper
points, respectively, of the interval influenced by the B-splines. For a given river the15

quantities wmin and wmax are the smallest and the largest observed water level, re-
spectively, within the pairs (wi ,qi ), i = 1,...,n. Based on time series for a particular
river, the smallest water level ever observed is found and is denoted by w0.

The quantity wupp should be selected close to wmax as the data points above wupp
have little influence on the B-spline part but mainly influence the power-law curve and20

thus strengthen the estimation of the parameters of the power-law. For values above
wupp the fitted curve is only based on the power-law curve as Eq. (4) indicates. How-
ever, wupp should be smaller than wmax as leaving no data points above wupp will take
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away information from the parameters of the power-law curve, in particular if the am-
plitude of the B-spline part is large. This would also result in less accurate prediction
of discharge above wupp. However, there is always some information on the power-law
parameters in the data points below wupp, especially in the data points that are close
to wupp. This is partly due to the fact that λL is set equal to zero. Selecting wupp much5

smaller than wmax results in less flexibility of the model since the B-spline part is then
effective over a smaller range of water level values. If that is done the power-law alone
is used to fit over a larger range of water level values which may result in a biased fit if
there are substantial deviations from a single power-law curve above the selected wupp.
Hence, when selecting wupp, there is a trade-off between a good fit below wmax and cer-10

tainty in prediction intervals for water level above wmax. Here, a good fit is preferred at
the cost of certainty in prediction. However, wupp is not set equal to wmax but a few data
points are left to direct the power-law curve for values above wupp. In order to evaluate
the appropriate choice of wupp the ability of the model to predict discharge above wmax
was evaluated for three choices of wupp. The quantity wupp was set equal to the sec-15

ond largest (w(n−1)), the third largest (w(n−2)) and the fourth largest (w(n−3)) water level
measurement but these three choices of wupp where deemed to be the ones leading
to good prediction properties and good fit. To evaluate these three choices of wupp all
data sets with fourteen or more pairs of observations were analyzed. In each case, the
three observations with the largest observed water level were omitted in estimation of20

the rating curve and predicted with the fitted rating curve. The sum of squared resid-
uals was used to compare the three choices of wupp in Model 2. Table 2 shows the
percentage of times the three models give the best prediction, the second best predic-
tion and the third best prediction. The choice with wupp equal to the third largest water
level measurement gave predictions that were the best and the second best in most25

cases. Since the differences between the best and the second best prediction were
usually small, wupp is set equal to the third largest water level observation.

The lower end of the effective range of the B-spline, wlow, is set equal to w0 to ensure
that the fitted curve is influenced by the B-spline for all water level values below wupp
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and down to the smallest water level for which discharge is predicted. If wlow would be
set equal to a value greater than wmin the same power-law curve alone would apply
to both large and small water level values and restrict the flexibility of the model. The
choice wlow =w0 will minimize the effect of the data points with the smallest water level
observations on the parameters of the power law. The coefficient corresponding to5

the first B-spline kernel, λ1, is allowed to be non-zero to introduce more flexibility to
the model. Hence at wlow the fitted curve deviates by amount equal to λ1 from the
power-law. The above selection of wlow and wupp leads then to the following ordering:

w0 =wlow ≤wmin <wupp <wmax.

The B-spline parameters in λ= (λ1,...,λL) are unknown (with the constraint that λL =10

0) where L is the number of B-spline kernels. For simplicity reasons the number of
B-splines kernels is fixed (the value of L) and the spacing between the interior knots is
also fixed. Equally spaced B-splines are used to obtain consistent smoothness over the
entire B-spline interval as well as to reduce computational complexity. It is not optimal
to have fixed number of B-spline kernels but a reasonable number can be deduced by15

using DIC as a measure. Based on evaluation of the four discharge data sets shown in
Table 3 it was found that choosing L equal to nine captures the potential improvements
gained by Model 2 compared to Model 1. Table 3 shows that there is a small difference
in the DIC for values of L between seven and fifteen in favor of adding kernels. In the
case of Norðurá with L equal to five the model needs extra kernels to be able to fit the20

data accurately and it needs more than seven kernels to become stable. However, it
is of course possible to select a number different from nine for individual data sets by
optimizing DIC or applying some other criteria.

5 Bayesian inference

The Bayesian approach requires specification of prior distributions for each of the un-25

known parameters. The normal prior distributions selected for ϕ, b, c and ψ in Model
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1 are the same (with one exception) as those in Arnason (2005) where point estimates
of a, b and c calculated from several data set at IMO were used to construct a prior
for these parameters. The exception is the standard deviation in the normal density for
b. Arnason (2005) used σb = 0.75 but in this paper σb = 0.4 is used. It is considered
safe to decrease the value of σb since the previous value was based on point estimates5

which included sampling error. This prior is reasonable in terms of sensible values of
b. The prior of a was then transformed to the prior of ϕ according to Eq. (2). The prior
distributions for ϕ, b and c are specified in Appendix. Note that the prior density for
b, denoted by p(b), is a truncated normal density between 0.5 and 5 so values below
0.5 and above 5 are assumed invalid. The posterior density of c will be influenced by10

its prior density which is denoted by p(c) and also by w0. Since c is the water level at
which discharge is zero, values of c above w0 are invalid. A vague but a proper prior is
chosen for η2 since the mean function for q is fairly well determined by the priors for the
parameters in the mean function and the deviation of the data from the mean curve is
allowed to form the posterior distribution. An inverse-χ2 prior distribution for η2 results15

in an inverse-χ2 conditional posterior distribution which is convenient when using the
Gibbs sampler. The hyperparameters in the prior distribution of η2 are chosen to have
a minimal effect on the posterior distribution. The prior for η2 could be improved by
collecting point estimates of η2 based on past data sets. This improvement is left for
future research.20

Some of the prior distributions for the parameters in Model 2 are the same as the
prior distributions of corresponding parameters in Model 1. First, b, c, ϕ and η2 in
Model 2 have the same prior distributions as b, c, ϕ and η2 in Model 1. The parameter
c2 in Model 2 has the same prior distributions as c in Model 1. The prior distribution
of b2 is constructed such that it has a distribution that is similar to that of b times ψ in25

Model 1.
A normal Markov random field prior (Rue and Held, 2005) with mean zero and covari-

ance matrix τ2D(I−φC)−1MD is assumed for the B-spline coefficients, λ, (see also in
Appendix). This prior works as a penalty for λ. The parameters τ2 and φ are unknown.
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In Marx and Eilers (2005) methods for multidimensional splines using classical statis-
tics are discussed. The authors introduce penalty terms in their objective function for
the estimation of the spline coefficients. The prior distribution proposed here for the B-
spline coefficients gives term in the logged posterior distribution which has a form very
similar to the one dimensional penalty term in the objective function in Marx and Eilers5

(2005). The parameter τ2 plays the same role as one over the smoothing parameter
in Marx and Eilers (2005). The parameter φ needs to be one to obtain the same ma-
trices as in Marx and Eilers (2005). But for the prior on the B-spline coefficients to be
proper φ needs to be less than one, in fact φ∈ [0,1). In order to have the prior working
similarly to the penalty in Marx and Eilers (2005), the prior for φ is selected such that it10

favors values very close to one. To accomplish this a beta prior distribution with α=20
and β = 0.5 is selected for φ. This distribution has 90% of its mass between 0.93 and
1. With these prior distributions forφ and λ rapid changes in consecutive λ are avoided,
the uncertainty in the λs is reduced and the B-spline function is smoother than if φ was
equal to zero. It was also found that if φ= 0 then the Bayesian computation becomes15

unstable and the λs do not converge to an optimal value.
The parameter τ2 controls the size of the elements of λ. A vague inverse-χ2 prior is

chosen for τ2 due to the lack of knowledge about sensible values for this parameter.
This prior allows the posterior distribution to put a lot of mass close to zero which is a
desirable property since in many cases τ2 is in fact equal to zero (the B-spline part is20

zero). The prior for τ2 also puts a lot of mass on larger values of τ2. The variability in
the data is bounded which in turn bounds the variability in the posterior distribution of
τ2.

The matrices D and M are diagonal with known constants on their diagonals and C
is a constant first order neighborhood matrix. The role of D is to let the prior variance25

of the λ’s decrease as the index goes from 1 to L which forces the B-spline part to
become smaller as w approaches wupp therefore it could be used to further force the
model to be smooth at the wupp. However, in this paper D is set equal to the identity

2759

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

matrix. The role of the matrix M is to adjust for the end points. M is such that

Ml l =0.5, ,l =2,...,L−1, M11 =MLL =1.

The neighborhood matrix C is such that

Cl ,l−1 =Cl ,l+1 =0.5, ,l =2,...,L−1,

and C12 =CL,L−1 = 1. The posterior distribution of θ = (ϕ,b,c,η2,b2,c2,λ,τ
2,φ) given5

the data q= (q1,...,qn), w = (w 1,...,w n), is given by

p(θ ||q,w )∝
n∏
i=1

p(qi |θ ,wi )×p(ϕ)p(b)p(c)p(η2)×p(b2)p(c2)p(λ|τ2,φ)p(τ2)p(φ)

(5)

where p(qi |θ ,wi ) is a normal density with mean as in Eq. (4) and variance as in Eq. (3).
The part

∏n
i=1p(qi |θ ,wi ) is the likelihood function which is used for the computation of10

DIC and Bayes factor.
The inference about the unknown parameters is based on samples from the poste-

rior distribution which are generated by a Markov chain Monte Carlo (MCMC) simula-
tion. A Gibbs sampler with Metropolis-Hastings steps is used for the MCMC simulation
which consists of the conditional distributions of the unknown parameters (see Gelman15

et al. (2004) for further details on MCMC and the Gibbs sampler). The conditional
distributions of η2 and τ2 are scaled inverse chi-square distributions. The conditional
distributions of λ is a multivariate normal distribution where λ is first generated with-
out any constraints then the constraint λL = 0 is taken into account. To generate from
the conditional distributions of ϕ, b, c, b2, c2 and φ, a Metropolis–Hastings steps is20

needed in each case. However in Model 2 the values for the parameters c and c2
are set equal to constant values, namely, their posterior medians, which were found by
using the Gibbs sampler. Other parameters in the model are estimated again with c
and c2 fixed, resulting in more reliable estimates.
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For the unknown parameters of Model 1 and Model 2 four separate chains of itera-
tions are used. Each chain takes a number of iterations to converge. Those iterations
are thrown away and referred to as burn-in period. The decision on the length of the
burn-in period is based on the data set that took the longest time to converge. Both
models rely the same total number of iterations or 450 thousand. Model 1 than has a5

burn-in period of 390 thousand iterations. Every fourth value of each chain was stored
after the burn-in period to reduce correlation between iterations, yielding four chains
of length 15 thousand for posterior inference. For Model 2 the first burn-in period cov-
ers the first quarter of each chain. The parameters c and c2 are estimated from the
iterations in the second quarter of each chain. A second burn-in period starts after10

the first half of each chain. Out of the 60 thousand remaining iterations every fourth
value of each chain is stored as in Model 1. Posterior simulations for both Model 1 and
Model 2 were stable and the simulated chains converged in all cases. However, it is
worth mentioning that in many cases both models converge when the total number of
iterations is 160 thousand.15

6 Results

In this section the two models introduced in Sect. 4 are applied to the 61 data sets from
IMO database for comparison between the two models. As mentioned in Sect. 2 four
of the data sets are analyzed in detail. These four data sets are from Norðurá, Jökulsá
á Fjöllum, Jökulsá á Dal and Skjálfandafljót. Figure A shows the fitted discharge rating20

curves of the two models for these four data sets, along with prediction intervals and
posterior intervals for the discharge rating curves.

In all cases, except for Jökulsá á Fjöllum, the 95% prediction intervals are wider for
larger values of water level in Model 1 than in Model 2. This is mainly due to the fact
that if the fit through the observations is adequate then the variability around the fitted25

curve is smaller when compared to the variability around a poorer fit, this in turn results
in narrower prediction intervals.
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Figure 2 shows the standardized residuals of the two models versus water level.
In general, when an adequate model is used then the standardized residuals should
not show any trend and appear to have the same variance for all values of the water
level. In the case of Norðurá, Model 2 yields more convincing standardized residuals
than Model 1, which shows a trend in the standardized residuals while that is not the5

case for Model 2. In the case of Jökulsá á Fjöllum there is no visible difference in the
standardized residuals which indicates that Model 2 imitates Model 1 when Model 2
does not provide significant improvement over Model 1. For Jökulsá á Dal the trend
in the standardized residuals of Model 1 is obvious, while the standardized residuals
of Model 2 show no trend. In the case of Skjálfandafljót, there appears to be a trend10

in the standardized residuals of Model 1 for water level values lower than 1.84 m and
greater than 2.37 m while the standardized residuals of Model 2 show no trend. These
four examples demonstrate that Model 2 can provide better results than Model 1 and
when Model 1 appears to be adequate, Model 2 performs as well as Model 1.

Figure 3 shows the roles that the standard power-law part and the B-spline part15

play in Model 2 for the four rivers. The B-spline part models the variation in the data
for the values of the water level below wupp that the standard power-law part can not
adjust for on its own. The B-spline part is zero at and above wupp and it smoothly
approaches zero as w approaches wupp from below. In the case of Norðurá as well as
Skjálfandafljót the B-spline part allows Model 2 to give a visibly better fit. The standard20

power-law model (Model 1) is adequate in the case of Jökulsá á Fjöllum as is seen in
the left panel of Fig. 3. The right panel shows clearly the ability of the B-spline part of
Model 2 to reduce to almost zero, thus, the B-spline addition has insignificant effect on
the discharge rating curve for such case. In case of Jökulsá á Dal it can be seen that
the B-spline part can take as large values as needed when the standard power-law25

part is inadequate for the data set.
In Table 4, a comparison between the two models is made through DIC and Bayes

factor (see Sect. 3). Table 4 shows that pD is less than the actual number of unknown
parameters in Model 1 and Model 2 which are 5 and 15, respectively. This is expected
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due to the fact that the prior distributions constrain the unknown parameters. It seems
that the more the B-spline part is contributing, the larger the number of effective pa-
rameters. This shows the adaptive nature of the Markov random field prior for λ.

Table 4 shows that in all cases except Jökulsá á Fjöllum, Model 2 has considerably
lower DIC than Model 1 indicating better fit for Model 2. The difference in DIC between5

Model 1 and Model 2 is about 19 and 23 for Norðurá and Skjálfandafljót, respectively,
and about 98 for Jökulsá á Dal. In the case of DIC these are all relatively large differ-
ences. In the case of Jökulsá á Fjöllum the difference in DIC is less than 3 which is
viewed as a small difference. This is reflected in the fitted discharge rating curves of
Model 1 and Model 2 which show no visible differences for Jökulsá á Fjöllum in Fig. 3.10

The results in Table 4 and Figs. 2, 3 and 4 show that the B-spline part of Model 2 either
improves the fit compared to Model 1 or gives a fit equally good as that of Model 1 when
Model 1 is adequate. The posterior probability of Model 2 (based on Bayes factor) is
also computed for the four selected data sets in Table 4. The computed probability val-
ues confirm that the DIC differences for Norðurá, Jökulsá á Dal and Skjálfandafljót are15

relatively large and support selecting Model 2 over Model 1. The posterior probability
of Model 2 is close to 0.5 for Jökulsá á Fjöllum implying that Model 1 and Model 2 give
similar results.

Figure 4 shows comparison between Model 1 and Model 2 for 61 stations analyzed
from the IMO database by plotting the difference in DIC between the Model 2 and20

Model 1 on the horizontal axis (positive if Model 2 gives a better fit) and the posterior
probability of Model 2 on the vertical axis. When the DIC difference is greater than ten
and the posterior probability of Model 2 is greater than 0.9, then Model 2 significantly
improves the fit of Model 1 (see Sect. 3). This is the case for 16 rivers which is about
26% of the data sets. When the probability of Model 2 is between 0.0 and 0.90 and the25

DIC diffence is less than 10 then Model 2 is not outperforming Model 1 and that Model
1 is adequate. This is the case for 36 rivers out of 61, or 59%. In case when the DIC
difference is less than 10 and the posterior probability of Model 2 is greater than 0.9
(7 of 61), and in the case when the DIC difference is greater than 10 and the posterior

2763

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

probability of Model 2 is less than 0.9 (2 of 61), a close look at the descriptive plots and
statistics is needed to determine whether Model 1 is adequate or not. This is true in
general, that is, a detailed analyzes of each data set is needed before a final decision
about Model 1 or Model 2 is made. The DIC difference and the posterior probability
of Model 2 are important measures to support that decision. It is however noted that5

Model 2 never yields worse results than Model 1. Model 2 only fails to improve Model
1 in some cases, so Model 2 could be used in all cases.

Table 5 shows estimates of the parameters a, b and c which are sufficient to con-
struct discharge rating curves based on standard power-law. These parameters are
presented for both Model 1 and Model 2. There is a substantial difference in these10

parameters between Model 1 and Model 2 which is due to the extra flexibility of Model
2. The B-spline part in Model 2 has the ability to utilize information from lower values
of water level in the data and therefore the standard power-law parameters can be es-
timated with a more focus on the higher water level when needed. This can lead to a
different posterior density for a, b and c in the two models as seen in Table 5.15

In Table 6, a posterior interval is given for rest of the parameters in Model 1 and in
Model 2 except for λ. For Model 1 the parameter ψ is multiplied by b so it can be
compared to the parameter b2 in Model 2. The posterior median of τ2 varies from
2.99 in Jökulsá á Fjöllum to 1180.6 in Jökulsá á Dal which shows the difference in the
amplitude of the B-spline part for these data sets. The parameter φ is forced to be20

close to one through its prior distribution to ensure strong positive correlation between
the elements of λ. The effect of the prior is clear in the posterior estimates of φ.

As discussed in Sect. 1, discharge rating curves are frequently used in extrapolation
of discharge. As a demonstration, the three highest water level observations, along
with corresponding discharges observations, were excluded from the data sets for the25

four rivers previously analysed. Then both models were used to extrapolate over the
range of the three excluded water level values. Figure 5 shows the results. In all cases
the three excluded discharge values are within the 95% prediction interval for Model 2
but only in two cases for Model 1, namely, Jökulsá á Fjöllum and Norðurá. For these
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two cases the models are similar for Jökulsá á Fjöllum but Model 2 looks better for
Norðurá. For the other two cases Model 1 is considerably of the mark. From these four
cases it can be concluded that Model 2 performs considerably better or equally good
in predicting discharge for extrapolated water level values greater than wmax.

Model 1 and Model 2 (with wupp equal to the third largest water level observation) are5

compared in terms of prediction. For that comparison only 48 data sets could be used
since, as described above, the three highest water level were excluded in estimation
of parameters. Model 2 performed better than Model 1 for 29 data sets out of 48 or in
case of 60% of data sets. However, in terms of fitting the data, 16 data sets out of 61
are such that Model 2 is judged to give a better fit than Model 1. So, in some cases10

even if the fit for Model 1 is better than or equally good as that of Model 2, then Model 2
appears to perform better when predicting discharge for water level greater than wmax.
However, in few cases Model 1 performs better when predicting discharge for water
level greater than wmax even though Model 2 gives a better fit.

7 Conclusions15

A Bayesian model for discharge rating curves, labeled Model 2, was developed by ex-
tending the standard power-law model, labeled Model 1, by adding a B-spline function.
Comparison of these two models based on analysis of 61 data sets from IMO shows
that Model 2 outperforms or performs as well as Model 1. One of the most important
properties of Model 2 is the capacity of the B-spline part to catch deviation in the data20

from the standard power-law model when that model is inadequate. In these cases,
Model 2 achives a more convincing fit to the data than Model 1. This is confirmed with
calculations of DIC and Bayes factor where Model 2 yields a substantially lower DIC
values and higher posterior probabilities than Model 1 in 16 of 61 cases (DIC difference
greater than ten and posterior probability of Model 2 greater than 0.9). In 36 cases the25

DIC difference is less than ten and the posterior probability of Model 2 less than 0.9
and it is debatable whether the added complexity of Model 2 leads to an improvement.
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Another important property of Model 2 is that when Model 1 gives an adequate fit, as
in the case of Jökulsá á Fjöllum, Model 2 imitates Model 1 by reducing the amplitude of
the B-spline almost down to zero. Model 2 performs better than Model 1 when it comes
to prediction of discharge for water level above wmax as it gives better results for 60%
of the analyzed data sets, which supports the use of Model 2.5

It is concluded that Model 2 can be used to fit discharge rating curves regardless of
whether the standard power-law model is adequate or not. The exception is when the
data sets contain few data pairs so there may not be enough information to estimate
the B-spline part successfully. Based on the experience gained in the present analysis
at least ten data pairs are needed.10

Finally, it is noted that segmentation has been commonly used in estimating dis-
charge rating curves and it could be argued that maybe it is more appropriate than
Model 2 for data sets where there is visually an apparent shift. A direct comparison
between segmentation models and Model 2 is needed to compare their performance.
A joint use of multi-segment discharge rating curves and B-splines could potentially be15

beneficial for such cases.
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Appendix A

Prior distributions

The following prior distributions are proposed for the unknown parameters.
p(ϕ)=N(ϕ|µϕ =0,σ2

ϕ =0.822)
p(b)∝N(b|µb =2.15,σ2

b =0.42)I(0.5<b< 5)
p(c)∝N(c|µc =75,σ2

c =502)I(c<w0)
p(ψ)∝N(ψ |µψ =0.8,σ2

ψ =0.252)I(0<ψ < 1.2)
p(b2)∝N(b2|µb2 =2.15,σ2

b2 =0.42)I(1<b< 6)
p(c2)∝N(c2|µc2 =75,σ2

c2 =502)I(c2 <w0)
p(η2)∝ Inv−χ2(η2|νη =10−12,S2

η =1)
p(φ)=Beta(φ|αφ =20,βφ =0.5)
p(τ2)∝ Inv−χ2(τ2|ντ =10−12,S2

τ =1)
p(λ|τ2,φ)∝N(λ|0,τ2D(I−φC)−1MD)

5

where I(A) is such that I(A) = 1 if A is true and I(A) = 0 otherwise. In the prior
distribution for λ, I is an identity matrix, D and M are diagonal matrices and C is a
neighborhood matrix with constants on the first off-diagonals, other elements are equal
to zero.10
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Table 1. Categories for evidence against Model 1.

P (M2|y) Evidence against Model 1

0.50 to 0.75 Barely worth mentioning
0.75 to 0.90 Substantial
0.90 to 0.99 Strong
0.99 to 1.00 Decisive
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Table 2. The prediction performance of Model 2 when wupp was set equal to the second largest
(w(n−1)), the third largest (w(n−2)) and the fourth largest (w(n−3)) water level measurement. The
table shows the percentage of times selected value of wupp yields the best prediction, the
second best prediction and the third best prediction. The total number of datasets used was
48.

wupp w(n−1) w(n−2) w(n−3)

Best prediction 39.6% 29.2% 31.2%
2nd best prediction 22.9% 47.9% 29.2%
3rd best prediction 37.5% 22.9% 39.6%
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Table 3. The values of pd , DIC, for different number of L in Model 2 for the four rivers.

J. Fjöllum Norðurá
L pd DIC pd DIC

5 3.27 594.35 3.00 134.30
7 3.12 594.23 0.95 118.12
9 3.07 593.84 4.33 121.95
11 3.08 593.65 4.99 123.19
13 3.14 593.27 5.94 124.65
15 3.07 592.97 5.95 125.17

J. Dal Skjálf.

5 6.32 676.96 5.63 255.04
7 7.80 673.95 6.95 253.79
9 8.68 675.50 7.75 251.98
11 10.00 675.92 8.29 252.98
13 10.91 675.48 8.95 251.67
15 11.53 674.57 9.50 251.57
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Table 4. Model number (i = 1,2), values of Davg, Dθ̂, pD, DIC, DIC difference (∆DIC=DIC1 −
DIC2) and posterior probability (pi = P (Mi |q,w )) for Model 1 and Model 2 for the four rivers.

i Davg Dθ̂ pD DIC ∆DIC pi

Norðurá 1 136.1 131.5 4.56 140.7 0.25
2 117.6 113.3 4.33 122.0 18.7 0.75

Jökulsá 1 592.1 587.6 4.46 596.6 0.44
á Fjöllum 2 590.8 587.7 3.07 593.8 2.8 0.56

Jökulsá 1 768.9 764.0 4.88 773.8 0.00
á Dal 2 666.8 658.2 8.68 675.5 98.3 1.00

Skjálf- 1 271.1 266.6 4.48 274.6 0.01
andafljót 2 244.2 236.5 7.75 252.0 22.6 0.99
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Table 5. Posterior estimates of a, b and c in Model 1 and Model 2.

Mod. 1 Mod. 2
a b c a b c

N.á
Post. med. 15.7 2.16 0.88 9.6 2.45 0.69∗

2.5 perc. 11.7 2.06 0.77 6.5 1.94
97.5 perc. 17.5 2.36 0.93 21.1 2.75

J. á Fj.
Post. med. 69.9 2.13 0.29 66.0 2.16 0.25∗

2.5 perc. 49.4 1.94 0.11 59.4 2.03
97.5 perc. 92.2 2.34 0.43 75.4 2.27

J. á Dal
Post. med. 112.7 1.68 0.74 107.9 1.48 0.44∗

2.5 perc. 92.6 1.52 0.64 73.6 1.22
97.5 perc. 135.0 1.87 0.82 151.1 1.76

Skj.fl.
Post. med. 7.6 3.01 0.06 24.4 2.39 0.58∗

2.5 perc. 4.1 2.85 −0.18 20.7 2.23
97.5 perc. 10.1 3.36 0.18 29.0 2.54

* c is pre-estimated and therefore a constant, as explained in Sect. 5.
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Table 6. Posterior estimates of ψ×b and η2 in Model 1 and b2, c2, η2, τ2 and φ in Model 2.

Mod. 1 Mod. 2
ψ×b η2 b2 c2 η2 τ2 φ

Norðurá
Post. median 2.42 0.05 2.71 0.62∗ 0.22 19.80 0.95
2.5 percentile 2.12 0.02 2.30 0.12 0.32 0.80
97.5 percentile 2.63 0.15 3.12 0.47 597.33 0.99

Jökulsá á Fj.
Post. median 1.77 1.04 2.02 0.15∗ 8.87 2.99 0.95
2.5 percentile 1.17 0.06 1.48 4.14 0.0004 0.81
97.5 percentile 2.57 21.64 2.55 20.32 136.74 0.99

Jökulsá á Dal
Post. median 1.44 4.74 1.96 −0.19∗ 3.77 1180.6 0.96
2.5 percentile 1.03 0.84 1.52 1.67 437.8 0.83
97.5 percentile 1.84 45.17 2.40 9.09 4274.6 0.99

Skjálfandaflj.
Post. median 2.75 0.024 2.03 0.11∗ 0.26 17.11 0.95
2.5 percentile 1.98 0.002 1.43 0.11 3.88 0.82
97.5 percentile 3.72 0.231 2.63 0.64 79.43 0.99

* c2 is pre-estimated and therefore a constant as explained in Sect. 5.
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Fig. 1. The fit of Model 1 ((a), (c), (e), (g)) and of Model 2 ((b), (d), (f), (h)) to the four selected
data sets. The vertical axes shows water level (w) in meters while the horizontal axes shows
the discharge (q), in m3/s. The black solid curves show the posterior median of E(q) and the
95% posterior interval of E(q). The dotted curves show prediction intervals.
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Fig. 2. Standardized residuals for the four selected data sets (vertical axes). Water level is on
the horizontal axes (cm) but the scale is nonlinear. Standardized residuals for Model 1 ((a), (c),
(e), (g)) and Model 2 ((b), (d), (f), (h)).
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Fig. 3. Figures (a), (c), (e) and (g) show shows the standard power-law part (solid red curves)
of Model 2 and the sum of standard power-law part and the B-spline part of Model 2 (solid
black curves) for the four selected data sets. Figures (b), (d), (f) and (h) show the B-spline part
of Model 2 for each data set. Water level is on the vertical axes (m) while discharge is on the
horizontal axes (m3/s).
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Fig. 4. The difference in DIC between the two models is on the horizontal axis and the posterior
probability of Model 2 (based on Bayes factor) is on the vertical axes.
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Fig. 5. The solid curves show the posterior median of E(q), red for Model 1 and black for
Model 2 for the four selected data sets. The dotted curves show prediction intervals, red for
Model 1 and black for Model 2. Water level is on the vertical axes (m) while discharge is on the
horizontal axes (m3/s).
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