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Abstract

Mesoscale NWP model is gaining more attention in providing high-resolution rainfall
forecasts at the catchment scale for real-time flood forecasting. The model accuracy
is however negatively affected by the “spin-up” effect and errors in the initial and lat-
eral boundary conditions. Synoptic studies in the meteorological area have shown that5

the assimilation of operational observations especially the weather radar data can im-
prove the reliability of the rainfall forecasts from the NWP models. This study aims at
investigating the potential of radar data assimilation in improving the NWP rainfall fore-
casts that have direct benefits for hydrological applications. The Weather Research
and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h10

storm event in the Brue catchment (135.2 km2) located in Southwest England. Radar
reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by
using the three dimensional variational (3D-Var) data assimilation technique. Consid-
ering the unsatisfactory quality of radar data compared to the rain gauges, the radar
data is assimilated in both the original form and an improved form based on a real-time15

correction ratio developed according to the rain gauge observations. Traditional me-
teorological observations including the surface and upper-air measurements of pres-
sure, temperature, humidity and wind speed are also assimilated as a bench mark to
better evaluate and test the potential of radar data assimilation. Four modes of data
assimilation are thus carried out on different types or combinations of observations:20

(1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity;
(4) a combination of the original reflectivity and meteorological data; and (5) a combi-
nation of the corrected reflectivity and meteorological data. The WRF rainfall forecasts
before and after different modes of data assimilation is evaluated by examining the rain-
fall cumulative curves and the rainfall totals which have direct impact on rainfall-runoff25

transformation in hydrological applications. It is found that by solely assimilating radar
data, the improvement of rainfall forecasts are not as obvious as assimilating meteoro-
logical data; whereas the positive effect of radar data can be seen when combined with
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the traditional meteorological data, which leads to the best rainfall forecasts among the
five modes. To further improve the effect of radar data assimilation, limitations of the
radar correction ratio developed in this study is discussed and suggestions are made
on more efficient utilisation of radar data in NWP assimilation.

1 Introduction5

Accurate rainfall forecasts are required in constructing a reliable flood forecasting sys-
tem. This is particularly true in the flash flooding area where the forecast accuracy is
highly dependent on the rapid availability of the rainfall distribution in advance (Fer-
raris et al., 2002). In recent years, the mesoscale numerical weather prediction (NWP)
model is gaining popularity in the hydrometeorological community in providing high-10

resolution rainfall forecasts (i.e. with grid resolution < 5km) at the catchment scale
for real-time flood forecasting. However, the reliability of the mesoscale NWP model
is largely dependent on the initial and lateral boundary conditions provided by global
models as the model driving. Besides the quality of the initial and lateral boundary
conditions, the accuracy of the mesoscale model is also negatively affected by the15

“spin-up” effect (Daley, 1991). It has been found that during the first 3 to 6 h, the rainfall
forecasts from the mesoscale NWP model are less accurate than predictions based on
a simple advection of the radar echoes (Austin et al., 1987). Assimilation of suitable
real-time observations into the NWP models can help significantly reduce the “spin-up”
effect and improve the initial and lateral boundary conditions of the mesoscale model20

(Sokol and Pešice, 2009). Appropriate data assimilation cannot only involve the real-
time observations used by the nowcasting systems (e.g. radar echoes and satellite
data) into the mesoscale NWP model, but also help initialise convective-scale events
(Sokol, 2010). Weather radar plays a prominent role in revealing structures of the con-
vective storms and the related mesoscale and microscale systems (Wakimoto et al.,25

2004). Xiao and Sun (2007) illustrated in their study that with the high resolution (2 km)
radar data assimilated into the NWP model, the convective systems could be better
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represented in the model initial conditions. Recent investigations in the meteorological
area have shown that the assimilation of real-time observations especially the radar
data (reflectivity or derived Doppler velocity), rainfall forecasts from the NWP models
can be obviously improved for the next few hours.

Some studies focused on assimilating rainfall observations converted from the radar5

reflectivity data into the NWP model. Macpherson (2001) introduced the assimilation
of radar-derived rainfall data into the UK Met Office’s operational mesoscale model. It
was found that the impact of assimilation can be detected at a forecast range of 12 h
and increasing the frequency of rainfall data from 3-h to hourly largely improved the
first 6 h forecasts. Stephan et al. (2008) assimilated the surface rainfall rates derived10

from the radar reflectivity data into the COSMO (Consortium for Small Scale Mod-
elling) model. The precipitation patterns were found to be better simulated in good
agreement with the radar observations for the first few hours of forecasts. Significant
improvements were also made in short range rainfall forecasts when the radar-derived
surface rainfall rates were assimilated into the 4-km grid length version of the Met Of-15

fice Unified Model (Dixon et al., 2009). In some cases, more obvious improvements
were seen when the radar reflectivity was assimilated together with Doppler radial ve-
locity. Tong and Xue (2005) assimilated the Doppler radar observations to facilitate the
forecast of a supercell storm. The best results were obtained when both radial velocity
and reflectivity data were assimilated, the impact of which remained for more than 2 h.20

Xiao et al. (2005, 2007) explored the use of the three dimensional variational method
(3D-Var) to assimilate radial velocity and radar reflectivity into MM5 (the Fifth Gener-
ation Penn State/ NCAR Mesoscale Model), both of which showed positive impacts
on short-range prediction of heavy rainfall events. However, without radial velocity, the
assimilation of only radar reflectivity can also result in promising results. Sokol carried25

out a series of experiments for radar reflectivity assimilation into the COSMO model,
i.e. assimilating solely radar reflectivity (Sokol and Rezacova, 2006), assimilating re-
flectivity together with satellite data (Sokol, 2009) and assimilating both observed and
1hr-ahead extrapolated radar reflectivity (Sokol, 2010). Improvements were seen in all
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cases in forecasting the basic features of the storm development for at least two to
three hours ahead.

However, in most of the previous studies, the improvements of the NWP rainfall fore-
casts after data assimilation were mainly evaluated from the meteorological aspect
using synoptic analyses. For hydrological applications using the NWP rainfall forecasts5

in real-time flood forecasting, hydrologists are particularly concerned with the accuracy
of the rainfall quantity at the catchment scale and its variations in time, both of which
have direct impacts on the forecast discharge and timing of the peak flow through the
rainfall-runoff transformation done by the hydrological models. Therefore, it is inter-
esting to see how much the assimilation of the radar observations can help improve10

the rainfall quantity and its temporal variation in a storm event, which directly benefit
the real-time flood forecasting. In this study, the potential of assimilating radar reflec-
tivity data in improving the NWP rainfall forecasts is investigated from the hydrologi-
cal aspect at the catchment scale. The radar data assimilation is compared with the
assimilation of traditional meteorological observations, e.g. the surface and upper-air15

measurements of pressure, temperature, humidity and wind speed. The improvement
of rainfall forecasts is also evaluated when the radar data is assimilated together with
the traditional meteorological observations. Since weather radar is normally subject to
errors such as bright band, attenuation of signal during high-resolution rainfall, occul-
tation, orographic enhancement and anomalous propagation (Hitschfeld and Bordan,20

1954; Browning et al., 1975; Collier, 1976; Bader and Roach, 1977; Joss and Waldvo-
gel, 1990, Han et al., 2000), the quality of the radar data is not satisfactory compared
to the rain gauge observations. In this study, the correction of the radar data is carried
out in real-time based on the rain gauge observations before they are assimilated into
the NWP model and comparisons are made for assimilating the original and corrected25

radar data.
The Weather Research and Forecasting (WRF) model is the latest generation

mesoscale NWP model, which is developed under joint efforts of the scientific com-
munity based on the experiences of its predecessors, such as the widely used MM5.
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Nowadays WRF has gained wide recognition in mesoscale weather research and fore-
casting. Recent studies have shown that the WRF model has good potential in handling
some rainfall features, e.g. the rainfall timing, location and evolution, however in pro-
ducing the accurate rainfall quantities, the results are still not ideal (Chang et al., 2009;
Hong and Lee, 2009; Shem and Shepherd, 2009; Chen et al., 2010; Liu et al., 2012a).5

As for data assimilation, the three/four Dimensional Variational methods (3D-Var/4D-
Var), Ensemble Kalman Filter (EnKF) and Latent Heating Nudging (LHN) are among
the most effective assimilation techniques that are commonly applied to radar data
(Sun, 2005). In continuous cycling mode, 3D-Var performs better in producing rational
analyses of hydrometeor fields with greater computational efficiency than 4D-Var, EnKF10

and LHN (Barker et al., 2004; Xiao and Sun, 2007). The Mesoscale & Microscale Me-
teorology division (MMM) of NCAR has developed and supports a unified model-space
variational data assimilation system for use with the WRF model, which contains the
3D-Var utility. In this study, the WRF model is used to produce the catchment-scale
rainfall forecasts, driven by the operational data from the European Centre for Medium-15

Range Weather Forecast (ECMWF). The radar reflectivity data together with traditional
meteorological observations are directly assimilated by the 3D-Var data assimilation
system in order to improve the WRF rainfall forecasts.

A 24 h storm event is selected from the Brue in Southwest England with a drainage
area of 135.2 km2. The WRF rainfall forecasts for this 24 h storm event before and af-20

ter data assimilation are evaluated according to the rainfall quantity and its variation
in time. Radar reflectivity is taken from a C-band weather radar which gives a com-
plete coverage of the Brue catchment. The traditional meteorological observations are
taken from the US National Centre of Atmospheric Research (NCAR) archives which
provide global operational surface and upper-air observations. Four modes of data as-25

similation are carried out with the assistance of 3D-Var based on different types or
combinations of observations: (1) traditional meteorological data; (2) radar reflectivity;
(3) corrected radar reflectivity based on rain gauge observations; (4) a combination of
the original radar reflectivity and traditional meteorological data; and (5) a combination

10328



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the corrected radar reflectivity and traditional meteorological data. The rest of paper
is organised as follows: Section 2 introduces the configurations of the WRF model and
the functions of the 3D-Var data assimilation system. Section 3 provides background
information of the study catchment and the storm event, the use of the ECMWF global
forecast data as the driving of the WRF model, and the NCAR and radar observations5

to be assimilated. The quality of the radar data is evaluated for the storm event based
on the rain gauge observations and a real-time correction ratio is developed to improve
the radar data quality. The results of five modes of data assimilation are evaluated in
Sect. 4, by examining the rainfall cumulative curves and the total rainfall quantities of
the storm event. Discussions are made in Sect. 5 regarding the limitations of the radar10

correction ratio and enhancing the efficiency of radar data utilisation in order to further
improve the NWP rainfall forecasts through data assimilation. Finally, conclusions of
the paper are made in Sect. 6.

2 The WRF model and 3D-Var data assimilation

2.1 WRF model set up15

The numerical experiments of data assimilation are conducted with the Advanced Re-
search WRF model (ARW) Version 3.1. WRF is a non-hydrostatic, primitive-equation
mesoscale meteorological model with advanced dynamics, physics and numerical
schemes. Detailed descriptions of the model can be found in the model manual (Ska-
marock et al., 2008) and also on the WRF user website (http://www.mmm.ucar.edu/wrf/20

users). Sigma coordinates are adopted in the model to describe the vertical pressure
levels, and a two-way nesting is allowed for the interaction between mother and child
domains. In this study, all domains are comprised of 28 vertical pressure levels with
the top level set at 50 hPa. Settings of the triple nested domain are shown in Table 1. In
order to decrease the modelling time and to make the results applicable in operational25

forecasting system, the grid spacing of the innermost domain is set to be 10 km so
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that the Brue catchment can be mostly covered by a single grid cell. Rainfall forecasts
extrapolated from that single grid cell are therefore treated as the catchment average
rainfall and used for analyses.

The WRF model has options for different physical parameterisations, including mi-
crophysics, cumulus physics, surface physics, planetary boundary layer physics and5

radiation physics. The model performance is highly dependent on the parameterisa-
tion schemes which might be suitable for one storm event but inappropriate for oth-
ers. Since it is difficult to tell the best choice for future events, the parameterisation
schemes are normally fixed beforehand for operational applications. In this study, the
most extensively used parameterisation schemes are used. The main physics pack-10

ages include the WRF Single-Moment 3-class (WSM3) microphysics scheme (Hong
et al., 2004), the new Kain-Fritsch cumulus parameterisation scheme (Kain, 2004),
the Yonsei University planetary scheme for the planetary boundary layer (Hong et al.,
2006), the Dudhia shortwave radiation scheme (Dudhia, 1989), and the Rapid Radia-
tive Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 1997). Other15

physics options include the Monin-Obukhov scheme (Monin and Obukhov, 1954) for
the description of the surface layer and the Pleim-Xiu Land Surface Model (Xiu and
Pleim, 2001) to present the land surface physics.

The initial and lateral boundary conditions of the WRF model are provided by the
ECMWF global operational data. ECMWF produces global 10-day forecasts based on20

the 00:00 and 12:00 UTC analyses (The 00:00 UTC run is only available in specific
years as an experimental suite for severe weather predictions). To keep consistency
with the outermost domain which has a grid spacing of 250 km, the spatial resolution of
the ECMWF products used in this study was chosen to be 2.5◦ ×2.5◦ with a temporal
resolution of 6 h. Detailed information for the operational use of the ECMWF forecast25

data is given in Sect. 3.1.
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2.2 3D-Var data assimilation

Data assimilation is the technique by which observations are combined with a NWP
product (called the first guess or background forecast) and their respective error statis-
tics to provide an improved estimate (i.e. the analysis) of the atmospheric state. The
variational data assimilation technique achieves this through the iterative minimisation5

of a prescribed cost function (Ide et al., 1997):

J(x) =
1
2

(x−xb)TB−1(x−xb)+
1
2

(y − y0)TR−1(y − y0) (1)

where x is the analysis to be found that minimises the cost function J(x), xb is the first
guess of the NWP model, y0 is the assimilated observation and y = H(x) is the model-
derived observation transformed from the analysis x by the observation operator H for10

comparison against y0. The solution of the cost function shown by Eq. (1) represents
a posteriori maximum likelihood (minimum variance) estimate of the true atmosphere
state given the two sources of priori data: the first guess xb and the observation y0

(Lorenc, 1986). The fit to individual observation points is weighted by the estimates of
their errors, i.e. B and R, which are the background error covariance matrix and the15

observation error covariance matrix, respectively.
The three-dimensional variational (3D-Var) system developed by Barker et al. (2004)

is used in this study in tandem with the WRF model for assimilating the weather radar
reflectivity and the traditional observations. Its configuration is based on an incremental
formulation of the variational problem, producing a multivariate incremental analysis for20

pressure, wind, temperature, and relative humidity in the model space. The incremental
cost function minimisation is performed in a preconditioned control variable space. The
preconditioned control variables include stream function, unbalanced potential velocity,
unbalanced temperature, unbalanced surface pressure and pseudo relative humidity.
In the case of assimilating radar reflectivity, the total water mixing ratio qt is used as the25

moisture control variable instead of pseudo relative humidity. Equation (2) shows the
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observation operator used to calculate the model-derived reflectivity for comparison
with the observed reflectivity (Sun and Crook, 1997):

Z = 43.1+17.5 log(ρqr) (2)

where Z is the reflectivity in dBZ, ρ is the air density in kg m−3 and qr is the rainwater
mixing ratio. Since the total water mixing ratio qt is the control variable, the partitioning5

of the moisture and hydrometeor increments is necessary during the minimisation pro-
cedure. A warm-rain parameterisation (Dudhia, 1989) is adopted in the 3D-Var system,
which builds a constraint of the relations among rainwater, cloud water, moisture and
temperature. When the rainwater information (from the reflectivity through Eq. 2) enters
the minimisation iteration procedure, the forward warm-rain process and its backward10

adjoint distribute the information to the increments of other variables under the con-
straint of the warm-rain parameterisation scheme.

The performance of the data assimilation system largely depends on the plausibil-
ity of the background error covariance (BE), i.e. the matrix B in Eq. (1). In this study,
the default NCEP (National Centers for Environmental Prediction) global BE is adopted15

which is named as CV3. It is estimated in the grid space using the National Meteorolog-
ical Centre (NMC) method (Parrish and Derber, 1992) and is applicable for any regional
domains. The control variables for CV3 are estimated based on the differences of 24 h
and 48 h forecasts of GFS (Global Forecast System) with T170 resolution valid at the
same time for 357 cases distributed over a period of one year.20

3 Study area and data

3.1 Study area, storm event and global forecast data

The Brue catchment in Southwest England (Fig. 1) is chosen as the study area. It is
a predominantly rural catchment with a drainage area of 135.2 km2 and an elevation
range between 35 m to 190 m above the sea level. The average annual rainfall over the25
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catchment is 867 mm from 1961 to 1990. The catchment size and relief together with
its previous history of notable storms and floods (Clark, 1996) make it a representa-
tive among the catchments in the UK requiring flood warning. Besides, a hydrological
radar experiment (named HYREX) funded by Natural Environment Research Council
(NERC) was run from May 1993 to April 1997 in the catchment. Data collection was5

extended to 2000. A dense rain gauge network containing 49 Casella 0.2 mm tipping
bucket rain gauges was set up and a C-band weather radar was located 30 km to the
south (see Fig. 1, at Wardon Hill) which gave a complete coverage of the catchment
during the project. In this study, the radar reflectivity measured by the Wardon Hill
radar together with traditional meteorological observations is assimilated into the WRF10

model to improve the rainfall forecasts. Rainfall observations from the rain gauge net-
work are used as the ground truth to evaluate the WRF output before and after the data
assimilation.

A 24 h storm event which occurred over the Brue catchment on 24 October 1999 was
chosen as a test case for this study. The event produced a 24 h rainfall accumulation15

of 29.38 mm and resulted in a peak flow of 51.31 m3 s−1 at the catchment outlet. The
peak flow exceeded the “Flood Watch” threshold discharge which is 36.03 m3 s−1 is-
sued by the UK Environment Agency for the Brue catchment. According to the weather
log of the Royal Meteorological Society (Eden, 1999), the storm happened under the
control of the cyclonic weather system and was identified as a heavy thundery shower.20

For continuous assimilation of the real-time observations, WRF needs to run in the cy-
cling mode in tandem with the 3D-Var system. As previously mentioned, the ECMWF
operational forecast data is used as the input for the WRF model. The cycling runs
of the WRF model are illustrated in Fig. 2 with the ECMWF input for continuous data
assimilation in the case of the 24 h storm event.25

In Fig. 2, there are two ECMWF forecast origins producing forecasts covering the
24 h duration of the storm event. It is assumed that the most recent origin can provide
more accurate and reliable forecasts than the past origins. That is to say, as soon as
a new origin becomes available (e.g. as time comes to 12:00 of 24 October 1999 in
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Fig. 2), forecasts made from the past origin (origin1) are no longer used and results of
the new origin (origin2) are input into the model instead. Before the use of the forecast
data from an ECMWF forecast origin, a 6 h spin-up period (as shown by the dashed
lines as parts of run1 and run6 in Fig. 2) is adopted to provide a better state of the
model control variables. Data used for the 6 h spin-up is the 40 yr re-analysis data from5

ECMWF (ERA-40). In Fig. 2, run1 and run6 are the original runs of the WRF model
using the ECMWF forecast data respectively from origin1 and origin2. Data assimilation
starts from 12:00 of 23 October 1999 and happens onwards with a time interval of
6 h. The data assimilation times are marked with circles in Fig. 2. The remaining six
runs (run2, run3, run4, run5, run7 and run8) are data-assimilation runs, generating the10

updated results after assimilating observations at the starting time of each run. For the
cycling mode of WRF, the boundary files of the data-assimilation runs are generated
from their previous runs. In this way can the information of the assimilated observations
in previous runs be kept and delivered to the follow-on runs.

3.2 NCAR surface and upper-air observations15

The US National Centre of Atmospheric Research (NCAR) archives operational global
meteorological observations which are freely downloadable and suitable for use in real-
time cases. The surface and upper-air data assimilated in this study are obtained re-
spectively from the “ds353.4” and “ds464.0” datasets, which contain the surface and
upper-air measurements of pressure, temperature, humidity and wind from fixed and20

mobile land/sea stations. The data are initially downloaded in ADP format and then
converted into LITTLE R format before they are assimilated in the 3D-Var system. Ta-
ble 2 shows the number of NCAR data records located in each of the triple nested
domains at the six data assimilation times marked in Fig. 2.

It can be seen from Table 2 that the number of data records decreases obviously25

from the outermost to the innermost domain. The majority of records is distributed in
the two outer domains, with quite few data found in the innermost domain. For the
surface observations, there is even no data record in the innermost domain. It should
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be mentioned that in this study the WRF model is run with two-way nesting, which
allows for interaction and information exchange between the coarse and fine domain.
Therefore, data assimilated by the two outer domains can finally benefit the innermost
domain. The quality control of the assimilated observations is realised by defining the
observation error covariance, i.e. the matrix R of Eq. (1) in the 3D-Var system. The5

US Air Force (AFWA) OBS error file is used in this study for the NCAR surface and
upper-air observations, which defines the instrumental and sensor errors for various
air, water and surface observation types as well as satellite retrievals.

3.3 Weather radar data and the radar correction ratio

The radar reflectivity to be assimilated is from the Wardon Hill radar. The radar cycles10

through 4 different scan elevations (0.5◦, 1.0◦, 1.5◦, 2.5◦) every 5 min up to a range
of 210 km. The 3 dB radar beam width is 1.0◦. For the lowest scan elevation of 0.5◦,
the radar beam height above the Brue catchment is approximately 0.4 km. The local
software at the radar site converts the measurements of reflectivity from radial grids
to two Cartesian grids: a 76×76 grid of 2 km square pixels covering a radius of 76 km15

and an 84×84 grid of 5 km square pixels covering a radius of 210 km. Figure 3 shows
the radar images from the lowest scan (0.5◦) on the 2 km Cartesian grid at the six
data assimilation times of the storm event. The colour of each pixel (with an area of
2×2 km2) represents the rainfall intensity in the unit of mm 5 min−1. The red circle in
the centre of the image shows the location of the Wardon Hill radar (50.49◦ N, 2.33◦ W,20

with an altitude of 255 m above the sea level). The Brue catchment (outlined in red) is
located in a radar sector free of beam blocking and ground clutter for all the four scans
(Borga et al., 2002). In this study, the radar reflectivity shown by the six images in Fig. 3
is assimilated into WRF with a time interval of 6 h.

The number of the 2 km pixels located in the three nested domains are 4418, 441825

and 441 from the outermost to the innermost. The identical number for the two outer
domains is due to the complete coverage of the radar image by those two domains.
When the reflectivity is assimilated in the 3D-Var system, the latitude and longitude
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at the central point of each pixel and the height of the radar beam above that pixel
need to be stated together with the corresponding reflectivity. It should be mentioned
that a thorough quality control of the radar data has been carried out throughout the
HYREX experiment to remove invalid and missing data due to anomalous propagation
and technical problems leading to disruption of the radar image and the lack of radar5

response.
As aforementioned, there were 49 rain gauges in the Brue catchment during the

HYREX project. The catchment areal rainfall obtained from the rain gauge network by
the Thiessen polygon method can be used for a preliminary examination of the radar
data quality. For comparison with the gauge observations, the radar reflectivity has to10

be transformed into the rainfall rate by using the following Z−R relationship:

Z = 200×R1.6 (3)

where Z and R are the reflectivity in mm6 m−3 and the rainfall rate in mm h−1. Figure
4 shows the comparison between the gauge and radar estimated rainfall for the 24 h
storm event. The time series bars are shown Fig. 4a and the spatial distributions of the15

24 h rainfall accumulations are shown in Fig. 4b, c, respectively for the gauge and radar
observations. Obvious underestimation of the Wardon Hill radar can be noticed by com-
paring the spatial distributions of the gauge and radar estimated rainfall in Fig. 4b, c.
However, the time series bars in Fig. 4a show a good consistency of the radar with the
rain gauges in estimating the rainfall occurrences and the temporal variances of the20

rainfall rate. For this reason, the assimilation of the radar reflectivity is still expected to
have some positive effect on improving the rainfall forecasts from the WRF model.

As pointed by Borga et al. (2002), the underestimation of the Wardon Hill radar in
the Brue catchment is mainly caused by the non-uniform vertical profile of reflectivity,
the orographic enhancement of precipitation, the radar calibration stability effects and25

the uncertainty in Z−R conversion. To better improve the radar data quality, a real-time
correction ratio is developed to correct the radar bias at each data-assimilation time
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based on the rain gauge observations:

correction ratio =
R6hgauge

R6hradar
(4)

where R6hgauge and R6hradar represent the accumulative amounts of the catchment
average rainfall during the antecedent 6 h of the assimilation time, based on the ob-
servations from rain gauges and radar, respectively. The duration of 6 h is chosen as5

a compromise between the real-time representativeness and stability of the correction
ratio. This correction ratio is directly multiplied to the 2 km pixel-based rainfall rates
measured by the Wardon Hill radar on the whole scan range before they are converted
into the reflectivity. The values of the radar correction ratio at the six data assimilation
times for the 24 h storm event are shown in Table 3. For a more stable correction, the10

ratio is limited to a range from 0.3 to 3. In Table 3, the correction ratio varies from
1.96 to 3.21, which also reveals obvious underestimation of the Wardon Hill radar: the
radar estimated rainfall is less than half of the gauge observed values at the six data
assimilation times.

In this study, both the original and the corrected radar reflectivity data are assimilated15

into the WRF model to see if the radar data can help improve the rainfall forecasts.
Comparisons are further made on the improvement by assimilating the corrected and
the original radar data. Since the real-time radar correction ratio is applied directly on
the radar data, no measurement error is assumed when defining the observation error
covariance in the 3D-Var system.20

4 Results

With the NCAR observations and the original and corrected radar reflectivity data, 3D-
Var data assimilation is carried out for the 24 h storm event in the following five modes:

(1) Mode 1: assimilating NCAR surface and upper-air observations only;
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(2) Mode 2: assimilating the original radar reflectivity data only;

(3) Mode 3: assimilating the corrected radar reflectivity data only;

(4) Mode 4: assimilating both NCAR observations and the original radar data;

(5) Mode 5: assimilating both NCAR observations and the corrected radar data.

The improvements of the WRF rainfall forecasts by applying the five modes of data5

assimilation are examined in this section. Besides the different assimilated data, there
is no other difference in the five modes regarding the settings of the WRF model and
the 3D-Var system. The purpose is to find which type of observations (or a combination
of two types) is more effective in improving the accuracy of the forecasted rainfall. For
processing the WRF output, in the beginning, WRF outputs are extracted at the same10

locations of the 49 rain gauges and then averaged using the Thiessen polygon method
to get the catchment areal rainfall. It is found that the averaged WRF results have
very little differences compared to those extracted from the central single grid cell with
more than 60 % coverage of the Brue catchment in area. For simple calculation, the
rainfall forecasts extrapolated from that single grid cell are therefore treated as the15

catchment areal rainfall and used for analyses. Since the temporal variation and total
amount of the rainfall prediction are of more importance in operational use (e.g. in
real-time flood forecasting), the following analyses and comparisons are based on the
cumulative curves and the total cumulative amounts of the catchment areal rainfall. No
investigation of the rainfall improvement in the spatial dimension after data assimilation20

is made.

4.1 Cumulative curves of the catchment areal rainfall

The presumed trends of the rainfall cumulative curves after data assimilation are shown
in Fig. 5 for the WRF cycling runs illustrated in Fig. 2. For better comparison, an ex-
tension of 12 h is added to each of the WRF runs in order to show clearer trends of25

the rainfall cumulative curves. In Fig. 5, the black line indicates the cumulative curve of
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the catchment areal rainfall obtained by averaging the rain gauge observations using
the Thiessen polygon method. It is treated as the ground truth for evaluating the WRF
results. As shown by Fig. 2, run1 and run6 are the WRF original runs without data
assimilation, driven by ECMWF global data from two different forecast origins. These
two runs are represented by solid curves in Fig. 5. The remaining colour lines are the5

cumulative curves of the data-assimilation runs, which are solid lines at the beginning
and then become dashed after the next data assimilation. It is assumed that after each
time of data assimilation which happens every 6 h, the rainfall forecasts from the new
run are closer to the ground truth than the previous runs. That is why the solid curve
becomes dashed after 6 h when the forecasts from a new data-assimilation run are10

available. By assuming the WRF original run gives an underestimated accumulation of
the catchment areal rainfall, the following runs show a gradual uplifting of the original
curve as a result of the continuous data assimilation by the 3D-Var system.

The purpose of Fig. 5 is only to show the symbols and the meanings of the different
WRF runs. In reality, the curves may vary considerably from the presumed ones. Figure15

6 presents the actual curves of the catchment areal rainfall of the original WRF runs
and after the five modes of 3D-Var data assimilation. Only results of the innermost
domain (Dom3) are shown. Results of the two outer domains have similar trends as the
innermost domain, thus their cumulative curves are not shown in this section, while the
total cumulative amounts in all the three domains are later summarised and compared20

in Sect. 4.2. In Fig. 6, the same symbols are used as those shown in Fig. 5. The curve
in light grey represents the rainfall accumulation estimated by the Wardon Hill radar.
The radar reflectivity is transformed into the rainfall rate following the Z−R relation
shown by Eq. (3).

Using the ECMWF operational forecast data as the driving of the WRF model, the25

original runs (i.e. run1 and run6 in all the subfigures of Fig. 6) are much worse than ex-
pected. Almost no rainfall is produced by the original runs without assimilating any data.
When the NCAR observations are assimilated as Mode 1, significant improvement can
be seen in Fig. 6a. However, the results are not satisfactory since the final cumulative
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amount (see the curve of run8 in Fig. 6a) is still less than the radar estimated value. The
case is worse with the radar data. For Mode 2 in Fig. 6b, the assimilation of the radar re-
flectivity does not show any positive effect. Even using the corrected radar data (Mode
3 in Fig. 6c), the improvement is negligible. However, the best results are achieved
by assimilating both the NCAR observations and the radar reflectivity. In Fig. 6d and5

6e, the data-assimilation runs show a gradual increase following similar trends as the
ground truth, i.e. the black curve of the gauge observations. The most obvious case
is run5, which generates rainfall in a very consistent pattern with the ground truth, al-
though there is a little difference with respect to the rainfall quantities. For Mode 4 in
Fig. 6d, the final cumulative amount is increased to 88 % of the gauge observed value;10

and for Mode 5 in Fig. 6e, the cumulative amount also exceeds the radar estimated
value and is up to 55 % of the gauge observation. Against expectations, when com-
bined with the NCAR observations, the corrected radar reflectivity does not perform
better in improving the rainfall forecasts than the original radar data.

To further investigate the performances of data assimilation in different modes, the15

amount of data assimilated in each of the five modes is examined. Table 4 summarises
the number of data actually assimilated in the five modes of 3D-Var at the six assimila-
tion times of the storm event. As expected, the amount of assimilated data decreases
from the outermost domain (Dom1) to the innermost domain (Dom3). The number of
data assimilated is also highly related to the data validity and quality. For some data20

assimilation times such as Time 1, Time 2 and Time 6, the radar data assimilated are
much less than those assimilated at the other assimilation times in Mode 2 and Mode
3. The reason can be found by examining the radar images in Fig. 3. Since there is
less rainfall observed by the radar (i.e. more zero pixels in the images) in Fig. 3a, b,
and f, the number of data assimilated at these assimilation times is much less that the25

other cases.
For the comparison of the number of data assimilated in different modes, it is ex-

pected that the data assimilated in Mode 4 should equal to a sum of the data assimi-
lated in the corresponding domain of Mode 1 and Mode 2 (ditto for Mode 5, the number
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of data assimilated should be a sum of those assimilated in Mode 1 and Mode 3). How-
ever, as shown by Table 4, Mode 4 and Mode 5 do not assimilate the same numbers
of data as expected. Also, the number of data assimilated in Mode 2 does not equal
to that in Mode 3, and Mode 4 does not equal to Model 5. This is caused by the con-
sistency checking of the observations with the WRF first guesses and the removal of5

the duplicate and conflict observations before the assimilation takes place. Similarly, it
can also be found that for Mode 2 and Mode 3 (assimilating radar data only) in Table 4,
the radar data assimilated by Dom2 is slightly more than that assimilated by Dom1 for
all the assimilation times, although the same number of radar data is located in the
two domains (as mentioned, 4418). This is probably due to the difference of the hori-10

zontal resolution between the domain and the radar image. Compared to Dom2 (with
a resolution of 50 km), there might be more radar data (2 km resolution) deemed to be
redundant in Dom1 (250 km resolution) by the 3D-Var system. As a consequence, less
data are actually assimilated in Dom1 than Dom2.

4.2 Error quantification using the 24 h rainfall totals15

For a more quantitative evaluation of the five modes of data assimilation, the total cu-
mulative amounts of the catchment areal rainfall is calculated for the 24 h duration of
the storm event. The results are shown in Table 5, which summarises the 24 h rainfall
totals observed by the rain gauges and the Wardon Hill radar, and also rainfall totals
produced by WRF before and after data assimilation of the five modes. The WRF re-20

sults in all the three nested domains are presented in the table. It should be mentioned
that when calculating the rainfall totals for the data-assimilation runs, the first six hours
of the runs covering the duration of the storm event are used, i.e. the first six hours
of run4, run5, run7 and run8 are used to calculate the 24 h accumulation after data
assimilation. This guarantees that for each 6 h period of the storm duration, the latest25

updating results are adopted. Similarly, when calculating the rainfall accumulation for
the WRF original runs (i.e. run1 and run6), the downscaled results from the most recent
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ECMWF origins are used, e.g. the results of run1 are used the first two 6 h intervals of
the storm duration, whereas the results of run6 are used for the last two 6 h intervals.

The 24 h accumulation observed by the rain gauges is treated as the ground truth
to calculate the relative errors of the WRF original run and the 3D-Var runs of different
modes, as shown in the brackets in Table 5. The original run of WRF produces quite5

little rainfall, with the accumulative errors being −96 %, −99 % and −99 % in the three
nested domains. After assimilating the observations, obvious improvements can be
seen in the 24 h totals of the catchment areal rainfall. When comparing the five modes
of 3D-Var, the conclusions made in Sect. 4.1 can be further verified quantitatively by the
24 h accumulative amounts and their corresponding errors in Table 5. The assimilation10

of the combinations of NCAR and radar data are found to generate better results than
assimilating each single type of the data. Compared to Mode 5 which assimilates the
corrected radar data, Mode 4 shows better capability in improving the rainfall forecasts
by combining the NCAR observations with the original radar data. The accumulative
errors in Mode 4 are −31 %, −16 % and −12 % from the outermost to the innermost15

domain, which are the best results among the five 3D-Var modes. For the cases as-
similating one type of observations only, Mode 1 (using NCAR observations) performs
better than Mode 2 and Mode 3 (assimilating respectively original and corrected radar
data). Although the 24 h rainfall totals are increased after applying the radar correction
ratios in Mode 3, the improvements are not obvious. Compared to Mode 2, the accu-20

mulative errors are only reduced by 12 %, 8 % and 7 % in the three nested domains
in Mode 3. For the difference of the 24 h rainfall totals in different domains, except for
Mode 1 and Mode 4 where the rainfall forecasts are improved from the outermost to the
innermost domain, there is no big difference in the three nested domains in the other
modes of 3D-Var.25

The reason for the unsatisfactory results of assimilating the radar data (i.e. the worse
results of Mode 2 and Mode 3 compared with Mode 1) might lie with the inefficient util-
isation of the radar data with the current assimilation frequency (i.e. the time interval
of 6 h for radar data assimilation). As aforementioned, the Wardon Hill radar completes
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an azimuthal scan at of certain elevation every 5 min. In this case, the assimilation of
the radar data is technically possible at a time interval as short as 5 min. More frequent
data assimilation with a shortened time interval can help include more useful informa-
tion of the rainfall formation process, thus might further improve the rainfall forecasts
of the WRF model (Liu et al., 2012b). As for the correction of the radar data using the5

correction ratio developed in this study, it had been expected that the assimilation of the
corrected data could lead to better rainfall improvement compared to the original data.
When assimilating only the radar data in Mode 2 and Mode 3, the results are better
using the corrected radar data in Mode 3 although the improvement is not significant.
However, when combining the radar data with the NCAR observations, the use of the10

corrected radar data in Mode 5 does not show any advantage compared with using the
original radar data in Mode 4. The limitations of the radar correction ratio are investi-
gated in the following section and discussions are made on more effective correction
and efficient utilisation of the radar data in data assimilation of the NWP model.

5 Discussion15

The real-time correction ratio of the radar reflectivity adopted in this study has limi-
tations itself. The radar errors are obtained by examining the difference between the
gauge and radar observed rainfall accumulations from the Brue catchment (with an
area of 135.2 km2), which are then used to correct the whole radar image (2×2 km2

pixels coving an area with a radius of 76 km). This is actually not appropriate since20

the radar error in the Brue catchment can not be approved to be representative of the
errors in the whole radar scan range. Besides, the use of the catchment average error
to correct each single pixel value also brings uncertainties. However, this is the best
that can be done considering the current availability of the gauge observations. The
correction ratio used in this study is only a preliminary trial for improving the quality25

of the radar data. With more observations available beyond the Brue catchment, the
correction could be more promising. Moreover, since only the WRF forecasted rainfall
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in the Brue catchment is examined, further investigation of the WRF results over an
extended area might help find more obvious improvement after the assimilation of the
corrected radar data.

It is noteworthy that this gauge-based correction ratio only accounts for the mean-
field bias of the radar data, which is normally generated due to the beam height above5

the ground, the deviation of the Z−R relationship, and the imperfect radar calibration
(Anagnostou et al., 1998; Seo et al., 1999). It should be mentioned that for radar data
assimilation, the rainfall rates estimated by the Wardon Hill radar have to be converted
back into reflectivitites before they are assimilated by WRF-3D-Var. If the underestima-
tion of the Wardon Hill radar found in this study is largely caused by the biased Z−R10

relationship, then the application of the correction ratio could make the case even worse
when the corrected rainfall rates are converted back into reflectivities following the orig-
inal biased Z−R relationship. This may to some extent explain why the assimilation re-
sults are not much improved when using the corrected radar data in Mode 3. Moreover,
the gauge-based radar adjustment can be best applied only when the homogeneity in15

the accuracy of the radar rainfall estimates with respect to range and scanning eleva-
tion is ensured (Borga et al., 2002). For further improvement, the range-dependent er-
rors associated with the non-uniform vertical profile of reflectivity and beam attenuation
should be corrected before the adjustment of the mean-field bias. Besides, consider-
ing the complex terrain of the study area, the orographic enhancement may only be20

partially detected or entirely missed by the Wardon Hill radar. Therefore, a physically
based adjustment scheme could help take into account the low-level orographic growth
and further improve the radar measurements (Kitchen et al., 1994).

For a more efficient utilisation of the weather radar observations for data assimilation,
as mentioned in the previous section, the assimilation time interval could be shortened.25

This is of great importance to short-duration storms with large rainfall intensities. Figure
7 shows a highly convective storm that happened during a 24 h period from 3 August
1994 12:00 to 5 August 1994 12:00 in the Brue catchment (Liu et al., 2012b). The time
series bars of the catchment areal rainfall observed by both the rain gauges and the
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Wardon Hill radar are shown in Fig. 7a. The majority of rain fell in 1 h from 22:00 to
23:00 on 3 August 1994 with very large intensity. The cumulative curves of the WRF
rainfall outputs for this convective event before and after data assimilation are shown
in Fig. 7b. Run1 and Run4 are original runs using forecast data from two ECMWF ori-
gins; the others are data assimilation runs with both NCAR and radar reflectivity data5

assimilated at a 6 h interval. The curves in Fig. 7b show very poor assimilation results:
only a small amount of rainfall appears after 06:00 of 4 August 1994, which is not con-
sistent with the gauge and radar observations. The storm process is so short that the
assimilated observations at a time interval of 6 h can not provide sufficient information
to trigger storm process in the WRF model. Heavy convective storm may develop very10

quickly without preceding precipitation being easily detected in the surrounding regions
(Sokol, 2009). A shortened assimilation time interval together with data containing in-
formation of the cloud development (e.g. the satellite data) that precedes the formation
of precipitation may help in this case to capture the evolution of the highly convective
storm.15

However, it should be noted that as the decrease of the assimilation time interval,
the added information will not necessarily make the assimilation more effective (e.g.
the information will become redundant with a very small interval). Therefore, the se-
lection of an appropriate assimilation time interval remains an interesting issue that
deserves more attention in future studies. Besides the time interval issue, in this study20

only data from the lowest scan elevation (0.5◦) of the Wardon Hill radar are used. Ac-
tually in the 3D-Var system, data from different scan elevations can be assimilated in
the meanwhile. Other scan elevations (1.0◦, 1.5◦, 2.5◦) of the Wardon Hill radar that
are available in the 5 km Cartesian grids are also worth trying. Further, comparison
on the assimilation results of the 2 km and 5 km radar data could be made in order to25

investigate the appropriate horizontal resolution of the assimilated observations that
well matches the resolutions of the nested domains. The involvement of the radial ve-
locity together with the reflectivity might also help improve the assimilation results of
the forecasted rainfall. With all the above investigated, the assimilation of radar data
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is expected to be comparable to or even more efficient than the assimilation of tradi-
tional meteorological observations. Finally, it should be emphasised that in this study
the simplest configurations of 3D-Var data assimilation is adopted, i.e. by using the de-
fault background error covariance CV3 and assuming zero error of the radar reflectivity
data. The performance of the data assimilation system largely depends on the plausi-5

bility of the background and observation error covariances. However, the estimation of
the error covariances has always been a problem due to the unavailability of the true
state of the atmosphere. The use of the background error generating facility “GEN BE”
in the 3D-Var system might help more appropriately define the background error and
additional runs should be carried out to check the sensitivity of the results to the uncer-10

tainty in the background and observation error before the most plausible ones could be
ascertained.

6 Conclusions

This study investigates the potential of assimilating radar reflectivity data in improving
the NWP rainfall forecasts with respect to the cumulative quantities and temporal varia-15

tions, which have direct impact on rainfall-runoff transformation in hydrological applica-
tions. The latest generation mesoscale NWP model, WRF, is used in tandem with the
3D-Var data assimilation technique to carry out the rainfall forecasting experiments for
a 24 h storm event in a catchment with a drainage area of 135.2 km2. Radar reflectivity
data from a C-band weather radar is assimilated into the WRF model in their original20

quality, and also in a improved version by applying a real-time correction ratio devel-
oped according to the rain gauge observations. Besides the radar reflectivity, traditional
meteorological data taken from the NCAR global data archive containing the surface
and upper-air measurements of pressure, temperature, humidity and wind speed are
also assimilated as a benchmark of the radar data assimilation. It is found in this study25

that the effect of assimilating either the original or the corrected radar reflectivity is not
as good as the NCAR observations. Obvious improvement can be observed regarding
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both the rainfall cumulative curve and the 24 h rainfall total after assimilating the NCAR
observations; however for radar data assimilation, although there is some improvement
after the radar data are corrected by the real-time correction ratio, the improvements
in both of the two cases are negligible compared with the assimilation of the tradi-
tional meteorological observations. This might be due to the inefficiency of the radar5

data utilisation in this study. To better use the radar data, reflectivity from different scan
elevations should be assimilated together at an appropriate horizontal resolution. De-
creasing the data assimilation time interval can involve more observational information
which may assist in capturing the development of short-duration storms. For weather
radars with Doppler capacity, the assimilation of reflectivity together with radial velocity10

may also help to further improve the rainfall forecasts from the NWP model.
In order to fully investigate the potential of radar data assimilation, the original and

corrected radar reflectivity data are assimilated respectively in combination with the
NCAR surface and upper-air observations. The results of assimilating both the two
types of observations (i.e. the radar reflectivity and the traditional meteorological data)15

are found to generate the best rainfall improvement compared with assimilating either
one type of data. The effect of assimilating NCAR observations can be further im-
proved by the involvement of the radar reflectivity. This is because of the good ability of
the weather radar in estimating the rainfall occurrences and their temporal tendencies
in spite of the underestimated rainfall quantities. However, for the overall improvement20

of the rainfall forecasts, the contribution made by the corrected radar data is less sig-
nificant than the original radar data. Regarding this and the unobvious improvement
made by the corrected data when the radar reflectivity is assimilated alone, it is con-
cluded that the radar correction method adopted in this study is not mature enough.
Limitations of the radar correction ratio are fully discussed and a more comprehensive25

approach for direct adjustment of the radar reflectivity data considering not only the
mean-field bias but also the range-dependent error and the orographic enhancement
is to be found.
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It should be mentioned that the conclusions made in this study are subject to the
specific parameterisation schemes. Different parameterisation schemes may lead to
different rainfall forecasting results of the WRF model after data assimilation. However,
as aforementioned, it is difficult to set in advance the most appropriate parameterisa-
tions for future climatic events. Therefore, the most widely used parameterisations are5

adopted in this study. Further research is needed with different types of parameteri-
sation schemes and various storm events so that the assimilation of radar data can
be fully investigated and more general patterns can be found to better improve the
effectiveness of radar data assimilation and the accuracy of NWP rainfall forecasts.
Besides the parameterisation schemes, a plausible acquisition of the background er-10

ror covariance and the observation error of the radar reflectivity should be taken into
consideration during the procedure of data assimilation. Finally, it is noteworthy that in
this study only the improvement of the catchment areal rainfall is examined in time. For
larger catchments where the use of the distributed hydrological model is necessary,
the spatial accuracy of the rainfall forecasts after data assimilation is also worth investi-15

gating. However, the increase of the spatial resolution and the domain size of the NWP
model will result in a remarkable increase of the modelling time, which is not realistic in
operational forecasting. In this study, the relatively “coarse” resolution and the limited
size of the innermost domain are designed to save the downscaling and data assimi-
lation time in the three nested domains. To obtain more reliable NWP rainfall forecasts20

with higher horizontal resolutions, the time issue remains to be an unsolved problem
which deserves more attentions in further studies. Optimised domain setting together
with more efficient data assimilation techniques may be able to help.
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Table 1. Settings of the triple nested domains in the WRF model.

Output time Grid Grid No. Domain Downscaling
interval (h) spacing (km) size (km) ratio

Dom1 3 250 15×15 3750×3750 −
Dom2 3 50 15×15 750×750 1 : 5
Dom3 1 10 5×5 50×50 1 : 5

Note: Downscaling ratio = the grid size of the children domain divided by that of the mother domain.
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Table 2. Number of NCAR data records distributed inside each of the triple nested domains.

Data assimilation time Surface data records Upper-air data records
Dom1 Dom2 Dom3 Dom1 Dom2 Dom3

Time 1 23 October, 12:00 75 8 0 1873 233 2
Time 2 23 October, 18:00 51 7 0 1744 213 2
Time 3 23 October, 00:00 78 8 0 1416 186 2
Time 4 24 October, 06:00 58 7 0 1819 218 2
Time 5 24 October, 12:00 78 8 0 1871 233 2
Time 6 24 October, 18:00 50 6 0 1780 215 1
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Table 3. Correction ratios for the Wardon Hill radar data at the data assimilation times.

Data assimilation time Gauge Radar Correction ratio
(mm) (mm) (gauge/radar)

Time 1 23 October 1999, 12:00 5.08 2.14 2.38
Time 2 23 October 1999, 18:00 2.19 1.11 1.96
Time 3 24 October 1999, 00:00 1.21 0.54 2.23
Time 4 24 October 1999, 06:00 4.72 1.83 2.58
Time 5 24 October 1999, 12:00 14.16 4.41 3.21∗

Time 6 24 October 1999, 18:00 10.42 4.05 2.57

Note: ∗ Correction ratios larger than 3 are limited to 3; the gauge and radar observations at
each data assimilation time represent the accumulative amounts for the previous 6 h.
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Table 4. Number of observations actually assimilated in each of the triple nested domains.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6
23 Oct, 12:00 23 Oct, 18:00 24 Oct, 00:00 24 Oct, 06:00 24 Oct, 12:00 24 Oct, 18:00

Mode 1 Dom1 11 487 8933 12 231 9553 11 604 8717
Dom2 1620 1689 1618 1605 1701 1603
Dom3 3 5 3 5 5 3

Mode 2 Dom1 379 194 488 2288 1762 241
Dom2 389 197 494 2284 1770 251
Dom3 4 20 0 156 63 4

Mode 3 Dom1 385 242 875 1232 1436 338
Dom2 395 251 884 1246 1437 348
Dom3 1 22 1 74 65 9

Mode 4 Dom1 11 866 9068 12 625 11 484 13 366 8144
Dom2 2009 1870 1569 3003 3471 1503
Dom3 7 24 3 236 68 6

Mode 5 Dom1 11 872 9174 13 086 11 522 13 040 8972
Dom2 2015 1960 1625 3159 3138 1882
Dom3 4 25 4 88 70 12
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Table 5. Cumulative amounts (in mm) of rainfall observations and forecasts for the 24 h storm
duration

Dom1 Dom2 Dom3
Observations Rain gauge 29.38 29.38 29.38

Radar 10.36 10.36 10.36

Original run 1.27 (−96%) 0.23 (−99%) 0.15 (−99%)
WRF forecasts 3D-Var Mode 1 6.11 (−79%) 8.34 (−72%) 8.52 (−71%)

3D-Var Mode 2 0.16 (−99%) 0.01 (−100%) 0.00 (−100%)
3D-Var Mode 3 3.78 (−87%) 2.26 (−92%) 1.95 (−93%)
3D-Var Mode 4 20.21 (−31%) 24.61 (−16%) 25.95 (−12%)
3D-Var Mode 5 16.82 (−43%) 16.13 (−45%) 16.17 (−45%)

10357

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 31

 
Figure 1 Location of the Brue catchment and the Wardon Hill weather radar 

 
 
 
 
 

 
Figure 2 Time bars of the cycling WRF runs for continuous data assimilation using the 

ECMWF operational forecast data 

 
 
 

 
 
 
 
 
 
 
 

Fig. 1. Location of the Brue catchment and the Wardon Hill weather radar.
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Figure 1 Location of the Brue catchment and the Wardon Hill weather radar 

 
 
 
 
 

 
Figure 2 Time bars of the cycling WRF runs for continuous data assimilation using the 

ECMWF operational forecast data 

 
 
 

 
 
 
 
 
 
 
 

Fig. 2. Time bars of the cycling WRF runs for continuous data assimilation using the ECMWF
operational forecast data.
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Figure 3 Radar images of the lowest scan (0.5°) on the 2 km Cartesian grid at the six data 

assimilation times of the storm event (mm/5min)

 

(a) Time 1: 23/10/1999 12:00 

(e) Time 5: 24/10/1999 12:00 

(c) Time 3: 24/10/1999 00:00 

(b) Time 2: 23/10/1999 18:00 

(f) Time 6: 24/10/1999 18:00 

(d) Time 4: 24/10/1999 06:00 

Fig. 3. Radar images of the lowest scan (0.5◦) on the 2 km Cartesian grid at the six data
assimilation times of the storm event (mm 5 min−1).
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Figure 4 Comparison of the Wardon Hill radar and the rain gauge network: (a) time series 

bars of the hourly catchment areal rainfall; (b) 24hr rainfall accumulation observed by the 

rain gauge network (mm); (c) 24hr rainfall accumulation measured by the weather radar (mm) 
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Figure 5 Presumed trends of the rainfall cumulative curves after data assimilation 
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Fig. 4. Comparison of the Wardon Hill radar and the rain gauge network: (a) time series bars
of the hourly catchment areal rainfall; (b) 24 h rainfall accumulation observed by the rain gauge
network (mm); (c) 24 h rainfall accumulation measured by the weather radar (mm).
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Figure 4 Comparison of the Wardon Hill radar and the rain gauge network: (a) time series 

bars of the hourly catchment areal rainfall; (b) 24hr rainfall accumulation observed by the 

rain gauge network (mm); (c) 24hr rainfall accumulation measured by the weather radar (mm) 
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Figure 5 Presumed trends of the rainfall cumulative curves after data assimilation 
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Fig. 5. Presumed trends of the rainfall cumulative curves after data assimilation.
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Figure 6 Rainfall cumulative curves of the storm event after applying the five modes of data 

assimilation (23/10/1999 12:00 ~ 25/10/1999 12:00) 
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Fig. 6. Cumulative curves of the forecast rainfall after applying the five modes of data assimila-
tion from 23 October 1999, 12:00 to 25 October 1999, 12:00.
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Figure 7 Data assimilation results for a highly convective storm: (a) radar and rain gauge 

observations for the 24hr duration (03/08/1994 12:00 ~ 04/08/1994 12:00); (b) rainfall 

cumulative curves after assimilating both radar reflectivity and NCAR surface and upper-air 

observations (24hr duration + 12hr) 
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Fig. 7. Data assimilation results for a highly convective storm: (a) radar and rain gauge ob-
servations for the 24 h duration (3 August 1994, 12:00 ∼ 4 August 1994, 12:00); (b) rainfall
cumulative curves after assimilating both radar reflectivity and NCAR surface and upper-air
observations (24 h duration + 12 h).
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