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Abstract

Since the last decade, copulas have become more and more widespread in the con-
struction of hydrological models. Unlike the multivariate statistics which are tradition-
ally used, this tool enables scientists to model different dependence structures without
drawbacks. The authors propose to apply copulas to improve the performance of an5

existing model. The hourly rainfall stochastic model SHYPRE is based on the simu-
lation of descriptive variables. It generates long series of hourly rainfall and enables
the estimation of distribution quantiles for different climates. The paper focuses on the
relationship between two variables describing the rainfall signal. First, Kendall’s tau is
estimated on each of the 217 rain gauge stations in France, then the False Discov-10

ery Rate procedure is used to define stations for which the dependence is significant.
Among three usual archimedean copulas, a unique 2-copula is chosen to model this
dependence for any station. Modelling dependence leads to an obvious improvement
in the reproduction of the standard and extreme statistics of maximum rainfall, espe-
cially for the sub-daily rainfall. An accuracy test for the extreme values shows the good15

asymptotic behaviour of the new rainfall generator version and the impacts of the cop-
ula choice on extreme quantile estimation.

1 Introduction

The utilization of stochastic models in a hydrological framework was introduced by
(Eagleson, 1972). He derived the peak flow rate frequency from average intensity20

and storm duration, by assuming the two random variables independent and expo-
nentially distributed. This paper stimulated much subsequent works aimed at various
purposes in which same hypotheses are assumed (Eagleson, 1978a,b,c; Córdova and
Rodŕıguez-Iturbe, 1985; Dı́az-Granados et al., 1984; Guo and Adams, 1999; Li and
Adams, 2000).25
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Even if these papers led to remarkable results, observed data statistics undermined
the assumption of independence between the depth (or intensity) and the duration of
a rainfall. However, Adams and Papa (2000) compared analytical models by assum-
ing both dependent and independent rainfall characteristics and showed that models
have better performances and more conservative results by neglecting the association5

among the random variables. These results might be explained by the selection of an
inappropriate dependence model.

The joint probability function make it possible to model dependence between hydro-
logical variables (Goel et al., 2000; Kurothe et al., 1997). The main limitation of this
approach is that the individual behavior of the variables (marginal distributions) must10

then be characterized by the same parametric family of univariate distributions. Ex-
ponential marginal distribution is generally used to model the intensity or duration of
rainfall (Singh and Singh, 1991; Bacchi et al., 1994). However, the exponential function
does not always fit the sample distributions exactly and distinct marginal probability
functions may be needed for the variables (Salvadori and De Michele, 2006; Haber-15

landt et al., 2008).
An opportunity to overcome these modelling drawbacks has been achieved using

copula functions introduced by (Hoeffding, 1940; Sklar, 1959). Copulas are functions
that join or “couple” multivariate distribution functions to their one-dimensional marginal
distribution functions (Nelsen, 2006). Starting with the papers of De Michele and Sal-20

vadori (2003) and Favre et al. (2004), copula models have become more and more
widespread in hydrological models (Salvadori and De Michele, 2004; De Michele et al.,
2005; Zhang and Singh, 2007; Salvadori et al., 2007; Haberlandt et al., 2011) to im-
prove their performance (Vandenberghe et al., 2011). The flexibility of copulas can be
applied on different topics. Salvadori and De Michele (2006); Gargouri-Ellouze and25

Chebchoub (2008); Vandenberghe et al. (2010) used them to associate storm char-
acteristics in a rainfall model while copulas make it possible to simulate space-time
rainfall for several stations in (Haberlandt et al., 2008; Bárdossy et al., 2009; Ghosh,
2010; Salvadori et al., 2011). Most of the models described in these papers are tested
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on one station alone or on several stations subject to the same precipitation regime.
Balistrocchi and Bacchi (2011) proposed similar marginal distributions and the same
dependence structure to reproduce three Italian rainfall time series.

The aim of this paper is to present a practical framework which stochastically gener-
ates a dependence between the different rainstorm characteristics into a rainfall model5

already presented in (Cernesson et al., 1996; Arnaud and Lavabre, 1999, 2002; Ar-
naud et al., 2007). Like in Wu et al. (2006), the proposed model is applicable for sim-
ulating rainstorm at different sites. The model structure (marginal distribution functions
of rainstorm characteristics or relationships between them) is the same for any sta-
tion, shifting from one climate to another is possible based uniquely on the model’s10

parameters. Arnaud et al. (2007) highlighted that the model can reproduce extreme
rainfall for all types of climate by adding a dependence structure between the depths
of successive rainstorms. The current version of the model has been regionalized on
French territory providing a knowledge of the rain risk on ungauged sites (Arnaud et al.,
2006) and reproduced in a satisfactory way the standard and extreme statistics of long15

duration maximum rainfall (≥ 24h) (Muller et al., 2009; Neppel et al., 2007).
However, the sub-daily rainfalls generated by the model do not properly respect ob-

servations on several sites, particularly for sites situated in the mountain landscape
and near the Atlantic Ocean. In these regions, the coefficients of the Montana’s laws1

estimated from the simulated rainfalls are really different from the reality. It can be20

explained by a non-modelling dependence. To improve the generation of the sub-daily
rainfall, the paper focuses on the application of the copula theory to generate correlated
rainfall characteristics, especially the depth and duration of a rainstorm.

1In France, Montana’s laws are widely used in applied hydrology providing a relationship
between rainfall of different time steps. Different rainfall patterns occurring in France can be
distinguished by the Montana coefficient.
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2 The rainfall generator: SHYPRE

This Section briefly presents the rainfall generator: principle and variables. For further
details, a methodological guide has been published (Arnaud and Lavabre, 2010) in
French language. Arnaud et al. (2007) can be considered as the referential scientific
paper about SHYPRE written in English.5

2.1 The principle

SHYPRE is a sequential model of hydrograph simulation based on an hourly rainfall
generation. It was developed at IRSTEA in Aix-en-Provence and can be coupled with
a rainfall-runoff model (Cernesson, 1993; Arnaud, 1997). This generator is of the aggre-
gation type and models only intense rainfall events. Descriptive variables are used to10

define the hourly rainfall signal into a rainfall event. Each variable was fitted by a prob-
ability law (Cernesson et al., 1996). Monte Carlo methods were used to reproduce
the rainfall signal from the generation of these variables. Then time series, statistically
equivalent to observations, can be reproduced for any desired time period. Quantiles
are empirically estimated from these simulated times series. The robustness and the15

accuracy of these quantiles has been tested for the daily rainfall (Muller et al., 2009;
Neppel et al., 2007). Figure 1 illustrates the generator’s principle.

2.2 Generator’s descriptive variables

First, the descriptive analysis of rainfall was based on rainfall events selected on daily
criteria, i.e. a succession of daily rainfall depths of more than 4 mm, including one20

daily rainfall depth of at least 20 mm. The selection threshold of 20 mm leads to the
determination of a first parameter, the average number of events per year (NE), strongly
variable according to the climate zone. We precisely chose to keep the same selection
criterion for the rainy events to make a homogeneous analysis on a same territory.
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Based on these events, selected at daily intervals, the hourly rainfall signal is char-
acterized by seven other descriptive variables. These variables are the number of rainy
periods within an event (NRP), the number of storms within a rainy period (NS), and
the dry duration that separates it from the next rainy period DRP. The storm is the ba-
sic entity for the analysis of rainfall events, and is defined as a succession of hourly5

rainfall accumulations with a single local maximum. Each storm is characterized by its
duration (DS) and its volume (VS). The quantitative analysis of storm volumes and du-
rations showed the need to distinguish two types of storm called “major” and “ordinary”
storms, and therefore to create a storm typology based on a daily criterion (Fine and
Lavabre, 2002). This storm typology enables us to extract the main information from10

rainfall modelling (Arnaud et al., 2007). Furthermore, two other variables have been
introduced to characterize the hourly rainfall itself: the ratio between the hourly peak of
the storm and its volume (1/DS ≤ RXS ≤ 1) and the relative position of the maximum
(1 ≤ RPXS ≤ DS). These allow for a satisfactory representation of the different hourly
rainfall patterns. Figure 2 illustrated an example of a rainy event where the different15

descriptive variables are presented.

2.3 Model calibration

A first study carried out by Cernesson et al. (1996) determined the most adapted prob-
ability laws to the various descriptive variables. The objective of the model regional-
ization (realized on the whole French territory) led us to define the same theoretical20

law for a given variable, whatever the studied station. For example, an exponential
law has been chosen for the storm volume, and Poisson’s law for the duration storm,
whatever the studied station. Only parameters of these probability laws distinguish the
climate (Arnaud et al., 2007). Calibrating the generator consists in estimating different
parameters of the chosen probability laws with observed rainfall in a given rain gauge25

station. 20 parameters are required to fully calibrate the rainfall generator for two dif-
ferent seasons namely the “winter” season from December to May and the “summer”
season from June to November. These were chosen for a maximum differentiation of

11232



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the precipitation regimes. Note that some of the 20 parameters either vary only slightly
or have very little impact on the results.

2.4 Simulation and rainfall quantiles estimation

After the model calibration, in order to simulate a rainy event, all descriptive variables
are generated in a specific order. Many rainy events are created to build time series5

as long as wanted in which the average number of observed events per year for each
season are respected. To reduce the sampling effect on the simulated events, we chose
to generate rainfall on periods which were a thousand times longer than the strongest
return period which we want to determine. For example, a 100 yr-quantile is determined
by generated hyetographs on a 100 000 yr simulation period. Quantiles can then be10

empirically estimated from these simulated times series without uncertainty due to the
sampling variability.

At the beginning, the descriptive variables of the model were considered statistically
independent. Many studies highlighted that some variables are dependent according
to observations and that the dependence modelization is needed in order to reproduce15

the rainfall signal. Indeed, Arnaud et al. (2007) shows that the model can reproduce
extreme rainfall for all types of climate by adding a dependence structure between the
depths of successive rainstorms. In this paper, we focus on the dependence between
two variables: the depth and the duration of a rainstorm.

2.5 An operational model20

Prima facie, SHYPRE appears to be a complex model due to the number of variables or
the different typologies used to define them. Nevertheless, an effort has been made to
simplify it enabling an application on many hydrological problems. For example, Cantet
et al. (2011) detected climate change impact on extreme rainfall throughout the model
parameters; the SHYPRE outputs are also used to determine the dimension of a dam25

in (Carvajal et al., 2009) or to estimate the occurrence frequency of rainfall observed
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with a radar (Fouchier, 2007) or in a flash flood warning (Javelle et al., 2010). A region-
alized version of the model allows the estimation of rainfall quantiles for different time
durations on a square of 1 km2 everywhere in the French territory (Arnaud et al., 2006).

3 How to diagnose and model the dependence

The aim of this part is to introduce the mathematical tools used in the study of depen-5

dence between random variables. Only tools used in our study are clearly presented.
For further information, see Nelsen (2006) and Genest and Favre (2007).

3.1 Measuring dependence: Kendall’s tau

Classically, dependence is measured by correlation coefficients. The most well-known
is Pearson’s coefficient (R) used for example in a linear regression. It only character-10

izes a linear dependence between two variables. When the dependence is not linear,
a correlation computed on ranks appears to be the best approach (Oakes, 1982) lead-
ing to the building of two other correlation coefficients: Spearman’s rho and Kendall’s
tau. Only Kendall’s tau (noted τ) is presented in this paper:

Suppose that a random sample (X1,Y1), . . . , (Xn,Yn) is given from some pair (X ,Y )15

of continuous variables. Here, Ri stands for the rank of Xi among X1, . . . ,Xn, and Si
stands for the rank of Yi among Y1, . . . ,Yn. The empirical version of Kendall’s tau is
given by:

τn =
Pn −Qn

n(n−1)/2
=

4
n(n−1)

Pn −1 (1)

where Pn and Qn are the number of concordant and discordant pairs, respectively.20

Here, two pairs (Xi ,Yi ), (Xj ,Yj ) are said to be concordant when (Xi −Xj )(Yi − Yj ) > 0,
and discordant when (Xi −Xj )(Yi − Yj ) < 0. The borderline case (Xi −Xj )(Yi − Yj ) = 0
occurs with a probability zero under assumption that X and Y are continuous. The
factor n(n−1)/2 corresponds to the number of pairs which are compared.
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It is obvious that τn is a function of the ranks of the observations only, since (Xi −
Xj )(Yi − Yj ) > 0 if and only if (Ri −Rj )(Si −Sj ) > 0.

If X and Y are mutually independent, we have τn ≈ 0. The closer to 1 |τn| is, the
stronger the dependence between two variables. If τn > 0 (resp. < 0), the dependence
is positive (resp. negative).5

An independence test can be based on τn, since under H0: independence between
two variables,big this statistic is close to normal with zero mean and variance 2(2n+
5)/ (9n(n+1)). For example, we can reject H0 with a significance level (type I error)

α = 5% if
√

9n(n+1)
2(2n+5) |τn| > zα/2 = 1.96.

With discrete variables, this statistical test is biased by the ties. An unbiasing test10

consists in replacing n by n− number of ties in the variance calculus under H0. How-
ever, this case will be discussed further.

3.2 Modelling dependence: copula approach

Traditionally, the pairwise dependence between variables has been described using
classical families of multivariate distributions. The main limitation of this approach is15

that the individual behavior of the two variables must be characterized by the same
parametric family of univariate distributions. The copula model, introduced by (Hoeffd-
ing, 1940; Sklar, 1959), is more and more widespread since it avoids this restriction.

For simplicity purposes, we restrict attention to the bivariate case in this paper.
A bidimensional copula, also called a 2-copula, is a two-place real function defined20

on [0,1]× [0,1] → [0,1] such as

1. ∀u, v ∈ [0,1],
C(u,0) = 0, C(u,1) = u, C(0,v) = 0, C(1,v) = v ;

2. ∀u1, u2, v1, v2 ∈ [0,1] such as u1 ≤ u2 and v1 ≤ v2,
C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1) ≥ 025
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FXY a joint cumulative distribution function of any pair of (X ,Y ) of continuous random
variables can be written in the form

FXY (x,y) = C (FX (x),FY (y)) , ∀x, y ∈R (2)

where FX and FY are the marginal functions and C : [0,1]× [0,1] → [0,1] is a copula.
Sklar (1959) showed that C, FX , and FY are uniquely determined when FXY is known,5

a valid model for (X ,Y ) arises from Eq. (2) whenever the three “ingredients” are chosen
from given parametric families of distributions.

The main advantage of the copula approach is that the choice of the dependence
model between X and Y does not depend on the marginal distributions.

For a random sample (X1,Y1), . . . , (Xn,Yn) from some pair (X ,Y ), an empirical copula10

can be introduced, and is defined by

Cn(u,v) =
1
n

n∑
i=1

1(FX (Xi )≤u∩FY (Yi )≤v) (3)

where 1(.) denotes the indicator function, FX and FY are the marginal distributions of X
and Y .

3.3 Estimation and choice of models15

Modeling dependence between two random variables (X and Y ) can be achieved by
using some families of copulas. In this paper, we only considered 3 archimedean copu-
las: the Frank copula (Frank, 1979), the Clayton copula (Clayton, 1978), and the Gum-
bel copula (Gumbel, 1961). These copulas have been chosen because they have only
one parameter and are easily applicable.20

Like usual statistic laws, different methods are used to estimate copula parameters.
Spearman’s rho and Kendall’s tau can be used as estimators since some analytic re-
lations between these two quantities and the copula parameters exist (see Table 1 for
Kendall’s tau). A method based on the maximizing of the likelihood is also often used
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(Genest et al., 1995). For other methods, see Joe (1997), Tsukahara (2005) and Gen-
est et al. (2008a). In this study, we estimated the copula parameter with the Kendall’s
tau.

In typical modelling exercises, the user can choose between many different depen-
dence structures. Consequently, a method is necessary to select, among different cop-5

ulas, the best adapted dependence structure for the studied data. For the unidimen-
sional law, several tests provide the best fitting to the observations, for example the
Kolmogorov-Smirnov test. To test the suitability of copula models, the same principle
can be used. For example, we can compare the empirical copula (defined in Eq. (3))
to a theoretical copula through the calculation of the Kolmogorov-Smirnov statistic or10

through a QQ-plot. In this way, Genest and Rivest (1993); Hillali (2001) proposed a test
for the Archimedean copulas. Genest et al. (2008b) compared a lot of measures to
choose the best copula. Genest and Rémillard (2008) use a bootstrap procedure for
suitability testing. This test has been implemented in the “copula” package (Yan, 2007)
from the language R (http://www.r-project.org/).15

3.4 Generating a pair from a copula

Simple simulation algorithms are available for most copula models, e.g. Devroye (1986,
Ch. 2), or Whelan (2004) for the Archimedean copulas. In the bivariate case, a good
strategy for generating a pair (U ,V ) from a copula C consists in using the conditional
distributions:20

1. Generate u from a uniform distribution on the interval [0,1],

2. Given U = u, generate from the conditional distribution:
Qu(v) = P

(
V ≤ v |U = u

)
= ∂

∂uC(u,v)

by setting V = Q−1
u (U ◦), where U ◦ ∼ U[0,1]
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The explicit formulas for Q−1
u are illustrated in the Table 2 for the Frank and Clayton

copulas. For the Gumbel copula, no explicit formula exists, the value v = Q−1
u (u◦) can

be determined by a numerical approach2.
To avoid using an optimization algorithm, Embrechts et al. (2003) or Mc Neil (2008)

propose to generate directly the pair (U ,V ). In our case, the latter approach is not5

suitable since the storm duration must be generated for a given volume storm (already
generated Arnaud et al., 2007).

3.5 The discrete variable case

In the context of dependence, the methods described above depend on the continu-
ity assumptions for the marginal distributions. In the case of discrete variables, many10

desirable properties of dependence measures no longer hold. The main technical ar-
gument consists in a continuous extension of integer-valued random variables. Here,
we used the method proposed by (Denuit and Lambert, 2005).

Assume that X is a discrete variable and X ≥ 0. We associate X with a continuous
random X ∗ such as15

X ∗ = X + (U −1), where U ∼ U[0,1]. (4)

4 Application into the rainfall generator: Depth/Duration dependence

The subject of this section is to apply the copula approach to the rainfall generator to
simulate the relationship between the depth and duration of a rainstorm. This relation-
ship is called further the Depth/Duration dependence. Only major storms are taken into20

account to study this dependence.

2In our case, three iterations of the bisection method give the starting point of the Newton-
Raphson algorithm. A Q−1

u (u◦)-estimation as accurate as desired is possible in a relatively short
time.
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First, the data used in the study are briefly presented. Then, the mathematical tools,
presented in Sect. 3, are applied to model this dependence. Finally, the impacts on the
rainfall quantiles estimation are illustrated.

4.1 Presentation of data used

217 rain-gauge stations are used in metropolitan France (Fig. 3). Among the 217 sta-5

tions studied, 173 are reference rainfall stations for the French weather office Météo-
France (synoptic network). The others are stations with long observation records, and
data that have been validated by management agencies – mainly Cemagref; DDE,
the local offices of the France Ministry of Equipment; and Diren, the regional environ-
ment authorities. If all stations are taken into account, the median observation period10

is 17.8 yr, with observation periods ranging from a few years for some of the alpine sta-
tions to 78 yr for the rainfall series in Marseille. The sampling of data used in this study
indicates an extremely wide range of rainfall values, providing the opportunity to see
how the hourly rainfall models perform in highly diverse contexts. Arnaud et al. (2007)
used the same stations and presented them in further details.15

4.2 The Depth/Duration dependence model

In the rainfall generator, the volume of a rainstorm, noted V , follows an exponential
law while the duration of a rainstorm, noted D, follows a Poisson’s law, a discrete law.
Consequently, the method described in Sect. 3.5 is applied to transform D to D∗ without
losing information.20

4.2.1 Where is the Depth/Duration dependence significant?

First Kendall’s tau between V and D∗ is estimated on each of the 217 rain gauge
stations. Then a False Discovery Rate (FDR) approach (see Appendix A) is used to
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determine, from the 217 obtained p-values3, the number of rejected null hypothesis,
that is the number of stations for which the Depth/Duration independence hypothesis
is rejected at a fixed significance level α = 0.05 (type I error).

The null hypothesis H0: independence between V and D∗ is not rejected for all sta-
tions. Actually the significance of the dependence seems to depend on the season and5

the geographical location (climate) (See Fig. 3). In Winter, 140 among 217 rain gauge
stations have a significant positive dependence, that is to say, a storm with a big volume
is usually associated with a storm with a long duration (on these 140 stations). In Sum-
mer, only 81 stations have a significant positive dependence, these stations are mostly
located in the mountain landscape or near the ocean. These results are climatologi-10

cally consistent. Indeed, summer rainfall, especially in the continental climate, occur
in rainy phenomena providing rainstorms with a strong intensity and a short duration
(convective systems).

4.2.2 How can the Depth/Duration dependence be modelled?

The goal is to maintain a single model structure: only model parameters can distinguish15

the climate. Therefore only one copula should be used to model the Depth/Duration
dependence for any station.

On each station where the dependence is significant (140 for Winter and 81 for
Summer), the L2-distance between the empirical copula and the 3 theoretical copulas
is calculated and is ordered. The best copula, that is to say the copula whose distance20

is minimum, has the rank 1. Most of the time, the copula which is selected is the
Frank copula (see Table 3). When another copula seems to be better (it often occurs
when the numbers of storms is lower than 40), the Frank copula is always the second
best copula, never the “worst” copula. Besides, the L2-distance for the Frank copula

3the p-value is the probability of obtaining a result at least as large as the one actually
observed, given that the null hypothesis is true. In our case, it corresponds to P(X > tau) where
X ∼N (0,2(2n+5)/ (9n(n+1))) with n the number of storms in the studied station.
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is close to the L2-distance for the best copula. Finally, there is no specific geographic
localization where the Frank copula is not the best one.

This procedure is not a formal test, it only permits to define the best adapted copula
among others according to a criterion. To assure the goodness-of-fit, the test presented
by (Genest and Rémillard, 2008)4 has been performed on each station where the de-5

pendence is significant. As for the independence test, the FDR procedure is applied on
the p-values (140 for Winter and 81 for Summer). No null hypothesis – Frank copula is
well adapted – is rejected at a fixed significance level α = 0.05 for Winter and Summer.
Note that, the same test has been performed for the Gumbel copula and only 5 (resp.
2) null hypothesis are rejected for Winter (resp. Summer). For the Clayton copula, 10210

(resp. 69) null hypothesis are rejected for Winter (resp. Summer).
The Frank copula is chosen to model the Depth/Duration dependence for any station.

The parameter θ of the copula is estimated with the inversion of Kendall’s tau which is
estimated on each station (as shown in Fig. 3). Therefore, the shifting from one climate
to another is possible based uniquely on the parameter θ.15

4.3 Impacts on the rainfall quantiles estimated by the generator

The Depth/Duration dependence modelling (by Frank and Gumbel copulas) has been
implemented into the rainfall generator as shown in the Sect. 3.4. Simulations were
performed on all 217 available stations and the performance of the new model was
compared to the performance of the model that does not take into account the20

Depth/Duration dependence for all stations. The model is only tested in terms of repro-
duction of the maximum rainfall of an event. Testing autocorrelation, cross-validation or
intermittency is not the subject of the paper.

First, the impact of the Depth/Duration dependence modelling is illustrated by the
plotting of the frequency distributions for 1-h maximum rainfall for three stations (see25

Fig. 4). On these three stations, presented in Table 4, the effects are not high even if

4with the R function gofcopula of the “copula” package.
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the positive dependence is significant. Nevertheless the new model allows a better es-
timation according to the observations. Indeed, without the dependence modelling, the
generator seems to overestimate 1-h rainfall. Note that, the quantiles with the Gumbel
copula model are not shown in Fig. 4 because they are very close to Frank’s quantiles.

Then, we also compared the quantiles obtained from fitting an exponential law5 to5

the observation samples (noted QT
obs) with quantiles from simulations of rainfall events

(noted QT
RG) according to two criteria:

1. The relative error given by

Error = 100
QT

RG −QT
obs

QT
obs

(5)

is calculated on each 217 available stations. Its distribution is illustrated by a box-10

plot where whiskers corresponding to the 0.05 and 0.95 quantile (See Fig. 5).

2. The Nash criterion (Nash and Sutcliffe, 1970) given by

Nash = 1−

n∑
i=1

(QT
obs −QT

RG
)2

n∑
i=1

(QT
obs −QT

obs)2

(6)

where QT
obs =

1
n

n∑
i=1

QT
obs and n is the number of studied stations. It is widely con-

sidered that Nash ≥ 0.7 signifies that the two series are similar. Table 5 illustrated15

5The exponential has been chosen because the estimation of its parameter is few influenced
by the sampling in comparison to a Generalized Pareto Distribution. Besides, only quantiles
with a return period T ≤ 10 yr, for which the choice of the distribution leads to a little gap, are
compared.
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the value of the Nash criterion for T = 2, 5, 10 yr calculated on the 217 available
stations coming from quantiles estimated by the two models.

Rainfall patterns can be distinguished according to the ratio between the short dura-
tion rainfall and long duration rainfall. Figure 6 illustrated the difference (like in Eq. (5))
between RT

obs and RT
RG where:5

RT
obs(D1,D2) =

QT
obs(D1)

QT
obs(D2)

and RT
RG

(D1,D2) =
QT

RG(D1)

QT
RG

(D2)
(7)

D1 or D2 being the duration of the maximum rainfall with D1 = 1h or 6h and D2 = 6h
or 24h.

Results presented in Table 5 and Figs. 5 and 6 show an obvious gain of the copula
used to reproduce hourly extreme rainfall. Indeed quantiles are globally more similar10

to observed data when dependence is modelled for both models (Gumbel or Frank).
This improvement is due to a better grasp of the observed phenomena. Modelling the
Depth/Duration dependence results in a more accurate plotting of rainfall quantiles,
especially for the sub-daily maximum rainfall, enables us to generate different rainfall
patterns. The copula choice in the Depth/Duration dependence modelling leads to little15

impact on the estimation of rainfall T -quantiles with T ≤ 10 yr for any duration.
The previous part showed that quantiles estimated by the new models are similar to

the quantiles coming from a fitting by an exponential for T ≤ 10 yr. Dealing with (very)
extreme values, finding a relevant accuracy test is not an easy task6.

Arnaud et al. (2008) proposed a simple test which is also used in (Garavaglia et al.,20

2010). The purpose of this test is to count the number of stations where a given quantile
(estimated by the tested method) is exceeded by the maximum observed rainfall. The
distribution of the theoretical number of exceedances can be determined assuming the
spatial independence of the observed records (See Appendix B). This test has been

6The choice of the distribution leads to a too high gap in the quantile estimation for T ≥ 10 yr.
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performed on 414 rain gauge stations7. Table 6 shows the number of stations where
the T -quantiles are exceeded by the maximum observed rainfall.

The results of the accuracy test show that the model without dependence proposes
overestimated extreme quantiles, especially for the sub-daily rainfalls. Unlike the mod-
els where the Depth/Duration dependence is modeled, the number of stations where5

the observed records exceed extreme quantiles is too small compared to the “theoret-
ical” number. Modelling dependence allows the researchers to obtain extreme rainfall
quantiles that are coherent with the accuracy test for the sub-daily rainfall. The choice
of the copula (Frank versus Gumbel) affects the rainfall quantiles for duration D > 1h,
especially when the return period is high. Unlike the Frank copula, the Gumbel cop-10

ula “amplifies” the dependence in extreme values leading to a clear underestimation
for daily rainfall extreme quantiles. An extreme rainfall event is often constructed from
a succession of heavy storms (persistence phenomenon in Arnaud et al., 2007). Gen-
erating too long durations for these heavy storms causes a decrease of the number of
rainstorms occurring in 24h leading to a decrease of daily rainfall depth.15

5 Discussion and conclusions

In this paper, the copula approach is applied into a stochastic hourly rainfall generation
model. With this tool, any dependence can easily be taken into account in an existing
stochastic model, because a copula process permits the desciption of the dependen-
cies between many random variables, independently of their marginal distributions. It20

has been applied to generate a relation between the depth and the duration of a rain-
storm.

The rainfall generator has been developed to be applicable for all types of climate.
The rainfall model structure is the same for any station, a shifting from one climate to

7the 217 stations presented before + 207 other stations (generally these stations are only
used to validate the regionalized model)
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another is possible based uniquely on the model’s parameters. To continue in the same
way, only one copula has been chosen to model the same structure of dependence on
any sites. A procedure has been performed to find the best adapted copula among
others. For both seasons, the Frank copula appears to be the best for most of the
sites, according to our criteria, and has been validated by a formal goodness-of-fit test.5

No influence seems to be exerted by the rain gauge locations over the dependence
structure. Here, two seasons are distinguished into the generator calibration. A future
version of the model will distinguish different weather patterns based on meteorological
circulation used in Garavaglia et al. (2010). This distinction could lead to use different
copulas for each class of weather providing a better generation of all rainfall patterns.10

Taking dependence into account enables the researchers to improve the results of
the rainfall model, especially in the sub-daily rainfall generation. The copula choice in
the Depth/Duration dependence modelling (Gumbel or Frank) leads to minor impact
on the estimation of rainfall T -quantiles with T ≤ 10yr for any duration. The two criteria
used have shown that the proposed model could reproduce the standard statistics of15

maximum rainfall for all durations. Indeed biennial or decennial quantiles estimated by
the model are close to those estimated by a fitting on observations: the relative errors
are centred to 0 and do not exceed ±20% for 95% of 217 available stations. Stations
can be clustered according to three different types of climate: alpine, temperate and
Mediterranean to test the model’s performance in each type of climate. For the three20

climates, the Frank copula seems to be the best adapted and the two criteria (relative
error and the Nash criterium) are approximately the same for each type of climate.
However, simulated hourly rainfall in the alpine climate seems to be overestimated in
the high elevation site. This overestimation can be caused by the fact that the snow can
lead to inaccurate knowledge of the real rainfall intensity.25

An accuracy test for the extreme values has shown the good asymptotic behaviour of
the rainfall generator. The number of observed records which exceed a given quantile
estimated by the proposed model is in the “theoretical” confidence interval for the Frank
copula model while the Gumbel copula seems to model too long durations for the
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heaviest storms leading an underestimation on the daily rainfall quantiles. As previously
mentioned, this test should be performed in each climate but the authors think the
number of stations is too small to apply it. However, the location of the stations where
the quantiles have been exceeded can give an idea of the good representation of all
types of climate. For example, the stations where the decennial quantile is exceeded5

are well distributed all over France. It is similarly for the centennial quantiles except for
alpine sites where no centennial quantiles are exceeded. It can be explained by the
relatively short observation periods (about 10 yr for the alpine stations).

To conclude, the proposed model can reproduce the standard and extreme statistics
of maximum rainfall for any duration. Only one parameter has been added compared10

to the previous version. It has been regionalized and can provide rainfall quantiles on
ungauged sites (Arnaud et al., 2006). The additional parameter can be explained by
geographical variables and has been regionalized to apply the proposed version of the
rainfall generator in the whole France leading to an improvement of the estimation of
the hourly rainfall quantiles.15

Note that, in this study, copulas are applied to model the Depth/Duration dependence
but their application can be extended to many dependencies. In another study, the “per-
sistence” phenomenon (dependence between the depth of rainstorms in a rainy event)
introduced by (Arnaud et al., 2007), is modeled by an approach based on copulas,
providing good results in extreme rainfall generation.20

Appendix A

Controlling the global significance level of a multiple tests approach using the
False Discovery Rate (FDR): the Benjamini and Hochberg (BH) procedure

Benjamini and Hochberg (1995) proposed a procedure to control the global signifi-
cance level αg of a multiple tests procedure. Assuming that K tests of a null hypothesis25

H0 are achieved, the BH procedure is the following:
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1. Let p(1) ≤ p(2) ≤ . . . ≤ p(K ) be the sorted observed p-values related to the K tests;

2. Compute m = max{1 ≤ j ≤ K , p(j ) ≤
j
K α};

3. If m exists, then reject among the K hypothesis the m ones corresponding to
p(1) ≤ . . . ≤ p(m) p-values; else reject no hypothesis.

Appendix B5

An accuracy test for the extreme values

A procedure has proposed to test the pertinence of extreme quantiles estimated by
a method. This test can be performed on many stations.

Let be NYi the number of years of observation at the station i .
Let be NEi the number of rainfall events observed during the NYi years at the sta-10

tion i .
Let be NEi def

= NEi

NAi : the average number of events per year for the station i .

X i = {X i
j }j=1...NEi : the depth of the rainfall observed during the NEi rainy events.

X i
S = max{X i

j }j=1...NEi : the maximum rainfall observed at the station i .

qi
T: the “true” quantile with the return period T years at the station i15

q̂i
T: the quantile with the return period T years at the station i estimated by the tested

method.
Nsup: the number of stations, among N, where qi

T is exceeded by X i
S.

n̂sup: the number of stations, among N, where q̂i
T is exceeded by X i

S.
The goal is to define the theoretical law of Nsup.20
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Assuming that the Xj are independent, we have:

P(X i
S
< x) =

NEi∏
j=1

P(X i
j < x)

=
[
P(X i

j < x)
]NEi

5

By definition, P(X i
j < qi

T) = 1− 1

T×NEi
. Therefore, we obtain P(X i

S > qi
T) = 1−

[
1−

1

T×NEi

]NEi

On each station, a Bernouilli draw is realized where the success probabil-

ity P(X i
S > qi

T) depends on NEi and NEi . Consequently, this success probability is
different from a station to another: Nsup does not follow an usual binomial distribution.

The idea is to approach this distribution by a Monte-Carlo method.10

When the observed records are considered independent between them, the following
procedure is proposed to approximate the theoretical distribution of Nsup:

Let be Nsim a large number
for k = 1 : Nsim do

Nk
sup = 015

for i = 1 : N do
u ∼ U[0,1]

if u < 1−
[
1− 1

T×NEi

]NEi

then Nk
sup = Nk

sup +1

end for
end for20

Nsim values of the random variable Nsup have been performed to obtain Π̃(x) an
approximation of Π(x), the theoretical distribution of Nsup. Then, it is easy to estimate
P(Nsup = n̂sup) which can correspond to the p-value in a classical test. In this paper, the
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construction of a confidence interval Iconf of Nsup has been chosen. If n̂sup ∈ Iconf then

the quantile q̂i
T estimated by the method appears to be correct according to the data. If

n̂sup is too large (respectively small), the method seems to underestimate (respectively
overestimate) rainfall quantiles.

To obtain the independence between the observed records (a strong hypothesis to5

construct Π̃(x)), we propose to delete the stations where their records occur on the
same day (only one station is kept, randomly chosen). Thus, the confidence interval
Iconf can differ according to the rainfall duration.
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de pluies horaires sur la France métropolitaine pour la connaissance de l’aléa plu-
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Table 1. Definition of the four archimedean copulas with their parameter (θ) space, and an
expression for the population value of Kendall’s tau (τ).

Copulas Cθ(u,v) Parameter θ Kendall’s tau

Independence uv No −
Frank 1

θ ln
(

1+ (eθu−1)(eθv−1)
(eθ−1)

)
R∗ τ(θ) = 1− 4

θ + 4
θ2

∫θ
0

t
et−1dt

Gumbel exp{−
[
(− lnu)θ + (− lnv)θ

]1/θ} θ ≥ 1 τ(θ) = 1− 1
θ

Clayton
(
u−1/θ + v−1/θ −1

)−θ
θ ≥ −1 τ(θ) = θ

θ+2
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Table 2. The Frank and Clayton copulas and the inverse function of their conditional distribu-
tions.

Copulas C(u,v) Q−1
u (u∗)

Frank 1
θ ln

(
1+ (eθu−1)(eθv−1)

(eθ−1)

)
− 1

θ ln
(

1+ u∗(e−θ−1)
ũ+(1+u∗)e−θ·u

)
Clayton

(
u−1/θ + v−1/θ −1

)−θ (
1−u−θ + (u∗ ·u1+θ)−

θ
1+θ

)−1/θ
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Table 3. The number of stations where a copula is associated with a rank. The rank 1 corre-
sponds to the smaller L2-distance between the empirical copula and the theoretical copula.

Season Rank Frank Gumbel Clayton Total

Winter
Rank 1 67 44 29 140
Rank 2 73 44 23 140
Rank 3 0 52 88 140

Summer
Rank 1 45 17 19 81
Rank 2 36 22 23 81
Rank 3 0 42 39 81
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Table 4. Information on the 3 stations illustrated in Fig. 4.

Station X (m) Y (m) Altitude (m) Location τ in Winter τ in Summer

4809 705.0 1917.4 913 Barre des Cévennes 0.31 0.23
3809 875.05 2044.5 1700 La Scia 0 0.29
38V I 853.6 2013.4 1050 Villard-de-Lans 0.23 0.22
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Table 5. Value of the Nash criterion between QT
obs and QT

RG (Eq. 6) for 1-hour, 6-hours and
24-hours maximal rainfall at the 217 rain-gauge stations studied with T = 2, 5, 10 yr.

Rainfall duration Return period Without dependence Frank Copula Gumbel Copula

1 h
T = 2 yr 0.7 0.92 0.92
T = 5 yr 0.52 0.86 0.89
T = 10 yr 0.35 0.77 0.83

6 h
T = 2 yr 0.97 0.98 0.97
T = 5 yr 0.95 0.96 0.94
T = 10 yr 0.92 0.94 0.92

24 h
T = 2 yr 0.96 0.95 0.95
T = 5 yr 0.96 0.95 0.94
T = 10 yr 0.95 0.95 0.94
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Table 6. Number of stations where the maximum observed rainfall exceed the T -quantiles es-
timated by the 3 models with T = 10, 100, 1000 yr. The range of the theoretical number is esti-
mated by the 0.025 and 0.975 quantiles of the sample generated by Monte-Carlo simulations
(See Appendix B).

Return Period Rainfall duration “Theoretical” Without Dependence Frank Copula Gumbel Copula

T = 10 yr
1 h [208,232] 180 215 216
6 h [183,205] 175 190 198
24 h [160,183] 157 164 179

T = 100 yr
1 h [31,50] 20 40 42
6 h [29,50] 32 45 55
24 h [24,39] 18 24 46

T = 1000 yr
1 h [1,7] 1 4 4
6 h [1,7] 4 6 12
24 h [1,7] 0 2 13
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Fig. 1. Principle of the hourly rainfall generator. Figure from (Arnaud et al., 2007).
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Fig. 2. Illustration of a rainy event (88.8 mm in 2 days) with 3 rainy periods (NRP = 3) and 6
storms (including 2 “major” storms: Storm1 and Storm2).
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Fig. 3. Results of the independence test (α = 0.05) based on the Kendall’s tau between the
depth and duration of major storm tested on each 217 rain gauge stations with the False Dis-
covery Rate approach.
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Fig. 4. Frequency distribution for 1-h maximum rainfall observed (points) and drawn from sim-
ulated hyetographs for both models (lines).
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Fig. 5. Boxplots of relative errors (in %) between Q10
obs and Q10

RG (Eq. 5) according to the choice
of the model (independence in dark grey, Frank copula in light grey, and Gumbel copula in
white) for the maximal rainfall in 1 h (MR1), 6 h (MR6) or 24 h (MR24).
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Fig. 6. Boxplots of relative errors (in %) between R5
obs and R5

RG (Eq. 7) according to the choice of
the model (independence in dark grey, Frank copula in light grey, and Gumbel copula in white)
for the ratio MR1/MR6 (R(1 h, 6 h)), MR1/MR24 (R(1 h, 24 h)) or MR6/MR24 (R(6 h, 24 h)).
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