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Abstract

The water balance in high Alpine regions is often characterized by significant variation
of meteorological variables in space and time, a complex hydrogeological situation and
steep gradients. The system is even more complex when the rock composition is dom-
inated by soluble limestone, because unknown underground flow conditions and flow5

directions lead to unknown storage quantities. Reliable distributed modeling cannot
be implemented by traditional approaches due to unknown storage processes at local
and catchment scale. We present an artificial neural network extension of a distributed
hydrological model (WaSiM-ETH) that allows to account for subsurface water transfer
in a karstic environment. The extension was developed for the Alpine catchment of the10

river “Berchtesgadener Ache” (Berchtesgaden Alps, Germany), which is characterized
by extreme topography and calcareous rocks. The model assumes porous conditions
and does not account for karstic environments, resulting in systematic mismatch of
modeled and measured runoff in discharge curves at the outlet points of neighboring
high alpine sub-catchments. Various precipitation interpolation methods did not allow15

to explain systematic mismatches, and unknown subsurface hydrological processes
were concluded as the underlying reason. We introduce a new method that allows
to describe the unknown subsurface boundary fluxes, and account for them in the dis-
tributed model. This is achieved by an Artificial Neural Network approach (ANN), where
three input variables are taken to calculate the unknown subsurface storage conditions.20

We explicitly derive the algebraic transfer function of an artificial neural net to calculate
the missing boundary fluxes. The result of the ANN is then implemented in the ground-
water module of the distributed model as boundary flux, and considered during the
consecutive model process. The ANN was able to reproduce the observed water stor-
age data sufficiently (r2 =0.48). The boundary influx in the sub-catchment improved25

the distributed model, as performance increased from NSE=0.34 to NSE=0.57. This
combined approach allows distributed quantification of water balance components in-
cluding subsurface water transfer.
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1 Introduction

Alpine catchments are very important albeit vulnerable landscapes. Most of the major
European rivers have their headwaters in Alpine catchments, and their discharge is
transported via river systems to lower-lying areas (EEA, 2007). The Alps are crucial
for water accumulation and water supply (e.g. Viviroli and Weingartner, 2004). For5

sustainable water management of water resources in alpine areas, it is imperative to
understand the hydrological processes, their quantities and dynamics. Distributed hy-
drological modeling has become an important tool for describing the water balance
in catchments (e.g. Goldscheider, 2011). However, those methods faces challenges
in Alpine areas, on account of high altitudinal gradients, variation of meteorological10

parameters in time and scale, snow cover dynamics and unknown subsurface water
fluxes and storages. The situation is even more complex, when the mountain ranges
within a watershed consist of soluble limestone, dissected by small fractures and domi-
nant flow paths up to caves and numerous spring locations, as is the case for this study
area. The duality of karst, enfolding slow and fast infiltration, slow and fast groundwater15

flow and unknown storage, leads to heterogeneous water flow in the unsaturated and
saturated zone (Attkinson, 1977; Bakalowicz, 2005; Kiraly, 2003; Sauter et al., 2006;
White, 2002, 2003). Many approaches at different temporal and spatial scales deal
with the modeling of hydrological processes in karst aquifers (e.g. Teutsch and Sauter,
1991). Spring hydrograph, chemograph, and tracer breakthrough curve analysis focus20

on small-scale effects of karst conduits to define the size and the characteristics of one
individual spring aquifer (Birk et al., 2004; Einsiedl, 2005; Geyer et al., 2008; Bonacci,
2004; Hauns et al., 2001; Kovacs et al., 2001; Grasso and Jeannin, 2002; Maloszweski
et al., 2005; Weiler et al., 2003). Other approaches concentrate on karst genesis or
theoretical conduit flow (Sauter et al., 2006; Romanov et al., 2004; Ford, 2003). Dis-25

tributive methods, such as “Single Continuum Porous Equivalent”, “Double Continuum
Porous Equivalent”, “Discrete Single Fracture Sets” or “Discrete Multiple Fracture Set”,
“Hybrid Models” (Sauter et al., 2006) attempt to take into account the heterogeneity of
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karst aquifers within single conduits or parameter fields in a spatial continuum, how-
ever mainly concentrate on modeling water fluxes within the saturated zone. The du-
ality of karst makes it tremendously difficult to find an adequate parameterization to
successfully model groundwater flow in present distributed models, which principally
assume porous conditions (Kiraly, 2003). In the past, many studies have applied dis-5

tributed groundwater models in karst environments (Scanlon et al., 2003; Caroll et al.,
2008; Martinez Santos and Andreu, 2010; Worthington, 2003), or other conceptual ap-
proaches such as (Rimmer and Salingar, 2006). These approaches do not deal with
the effects of a massif Alpine karst aquifer itself on the hydrology of a catchment or
sub-catchment. Barthel (2011) recommends groundwater studies that focus on the10

catchment scale. Kunstmann et al. (2006b) applied the distributed model WaSiM-ETH
in alpine catchments. To the author’s knowledge, so far, no attempt has been made
to examine the complete water balance of an Alpine karstified watershed and its sub-
catchments by applying a distributed hydrological model to determine possible subsur-
face boundary fluxes. White and White (2003) describe groundwater basins as total15

recharge areas including all surface stream catchments that drain into the conduit sys-
tem of a spring. Overall, karst ground water basins from springs do not correlate with
the boundaries of overlying surface water basins; they may also be linked by piracy or
spillover routes. Conduits develop across surface water divides thereby transmitting
water to or from other nearby surface water basins. Furthermore, groundwater basins20

have one set of flow paths active during base flow conditions and quite a different set
of flow paths during flood flow conditions (White and White, 2003). Our study area is
characterized by hundreds of springs connected to fracture, conduit or cave systems
with an unknown set of active or inactive flow paths. We assume, however, that water
fluxes in an high Alpine 1000 m banked limestone aquifer with an inclined stratifica-25

tion can lead to groundwater inflow, outflow or redistribution on an even larger scale
than spring basins – at catchment scale, where subbasins cover valleys in mountain-
ous regions, and that this affects river runoff within those subbasins and consecutive
streams.
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Summary of the new approach

Within the study area, each of the three high Alpine head subcatchments is unique
in subsurface hydrological systems (Kraller et al., 2011), and measured runoff differs
significantly in between the valleys within the same time period. By applying the dis-
tributed model, we are able to show that high Alpine aquifers do have tremendous effect5

on the hydrology of subbasins and that common approaches for distributed modeling
(Richards, 2-D – Groundwater-Model, Darcy and continuity equation) of water balance
perform insufficiently. By analyzing measured runoff, and model results for precipita-
tion, evapotranspiration and runoff we found systematic data patterns in model mis-
match, and, consequently mismatch in modeled and observed water storage in three10

neighbouring subbasins “Klausbachtal”, “Wimbach” and “Königsseetal” (Fig. 1). This
under- and overestimation affects model results in consecutive subbasins within the
model area and the model area outflow. Different precipitation interpolation approaches
did not allow to correct for this mismatch. Therefore, we conclude that different storage
conditions lead to under and overestimation of runoff, and thus we develop a method15

to calculate missing water fluxes to enable flexible inflow and outflow at subbasin scale
on a monthly time basis. We derive the analytical solution of the artificial neural net to
calculate observed water storage which can be implemented in the distributed model
as inflow or outflow in the saturated zone as continuous boundary flux (Fig. 2). The
implemented flux is considered in the model run and affects modeled stream discharge20

of consecutive subbasins. Not only does this method allow to describe water storage
dynamics and resulting groundwater inflow and outflow in karstic terrains; it also allows
to adapt distributed hydrological models to karst dominated watersheds.

2 Study area and former karst research results

The study site encompasses the watershed of the river Berchtesgadener Ache and is25

situated in the Berchtesgaden Alps in the southeast of Germany in the Federal State of
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Bavaria. The area covers 432 km2 and is mostly German territory. Ten per cent, how-
ever, is Austrian national territory. Most of the area can be assigned to the Man and
Biosphere Reserve Berchtesgaden, of which the core zone is Berchtesgaden National
Park (IUCN Category II) with an area of 210 km2 (Fig. 1). The climate in the area is
cool-temperate and humid. Mean temperature is 4.5 ◦C. Precipitation has an altitude5

– dependent gradient of 47 mm/100 m. Annual precipitation ranges from 1500 mm in
the valleys to up to 2600 mm in higher elevated regions. Maximum precipitation is
250–350 mm in July in the high Alpine regions of the test site, albeit high uncertain-
ties exist as only few stations are established in higher regions. The number of days
with snow cover is more than 300 per year in peak regions. Dominant biotopes are10

forest, limestone grasslands, rock and scree, mountain pines and lakes and glaciers.
The Berchtesgaden Alps are situated in the northern limestone Alps and can be seen
as a geomorphological unit. The nine associated mountain ranges to the watershed
“Berchtesgadener Ache” are shaped in close proximity as plateaus and ridges. Three
valleys stretching from south to north, separating four mountain massifs from each15

other are representative for the area. Dominant rock formations are Triassic Dachstein
limestone and Ramsau Dolomite, but Jurassic and Cretaceous rock series are also
present. The banked limestone with a layer thickness of up to 1000 m covering 500–
700 m of Dolomite extends along an altitudinal gradient up to 2100 m (Fig. 3). The three
main tectonic units in the area are arranged on top of one another: The base Tirolikum20

is covered by the Tiefjuvavikum which itself lies beneath the Hochjuvavikum. Alpine
fold leads to a typical slope and inclined stratigraphy of the existing rock formations.
The mountain massifs Hochkalter and Watzmann slope slightly in a northern direc-
tion (Fischer, 2005; Langenscheidt, 1994). The soluble limestone has been exposed
to karstification processes since the Alpine lift, which took place in different phases.25

Typical karst phenomena in the region are the presence of dolines, basins, dry stream
beds, caves and karrens. The massif karst aquifer in the area is characterized by ma-
trix, fractures and conduits. The epikarst and vadose zones are more dominant than
the phreatic zone. Most of the spring discharge is a reaction to precipitation events.
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A spring horizon at the south shore of a lake which shows phreatic behaviour but reacts
also to precitpitation events. There are no permanent sinking streams within the study
area, but snowmelt and rain immediately infiltrate through swallow holes, especially
on karst plateaus. Based on spring locations, the boundary between unsaturated and
saturated zone is estimated at an altitude of 601 m a.s.l. and 1500 m a.s.l. maximum,5

but mainly at 700–1000 m a.s.l. Consequently, the unsaturated zone can be up to
1000 m in thickness. The eight rivers within the watershed drain the area in a northerly
direction. Based on nine river gauges available for the basin, it can be divided into
nine subbasins (Fig. 1). Several tracer experiments, a spring database and geolog-
ical conditions indicate a main groundwater flow direction from the south. Further-10

more, groundwater redistribution between subcatchments is also indicated between
three neighbouring Alpine head sub-catchments streching from north to south (Kraller
et al., 2011). These subbasins are located in a highly karstified area with a steep ter-
rain. Subbasin Klausbachtal (42.79 km2) is characterized by forests at lower altitudes
and high Alpine plateau and ridge karst at higher altitudes. It is bounded by the plateau15

mountain Reiteralm and mount Hochkalter. Subbasin Wimbachtal (35.69 km2) is filled
with Dolomite gravel deposits, forming a porous aquifer with a depth of 300 m. It is sur-
rounded by mounts Hochkalter and Watzmann, which are characterzied by a huge car-
bonate stratum. In the southern part, it is surrounded by dolomite mountains. Subbasin
Königsseetal (163.54 km2) is characterized by Lake Königssee (511 mio m3) and very20

steep gradients. It is bounded by mount Watzmann and the Hagengebirge plateau,
while to the south it is surrounded by a huge Alpine karst plateau, called “Steinernes
Meer”. Geologically and hydrologically, these neighboring subbasins show unique ge-
ological and hydrological features (Fig. 3).
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3 Distributed modeling in high Alpine terrain

3.1 Model set up

We applied the distributed model WaSiM-ETH (Schulla, 1997, 2007) in a horizontal
resolution of 50 m and a temporal resolution of 1 h. The basin and borders of the sub-
basins were derived by the digital elevation model and the location of river gauges.5

Eight gauges are located in Germany and one in Austria. The model uses physically-
based algorithms within its modular system. Precipitation interpolation was done using
Inverse Distance Weighting and linear regression linearly combined (IDW weighted
with 0.25). Interpolation of other meteorological input data was done by Inverse Dis-
tance Weighting. Infiltration is calculated after Peschke (1977), evapotranspiration af-10

ter Penman-Monteith (Penman, 1948; Monteith, 1975; Brutsaert, 1982), snow cover
dynamics are calculated following Strasser (2008). Direct flow (surface runoff) is the
sum of infiltration excess, saturation excess and a defined fraction of the snow melt.
Vertical soil water fluxes within a defined number of soil layers and depth in the un-
saturated zone are described by solving the Richards equation (Richards, 1931). Soil15

parameterization is done according to Van Genuchten (1976). Interflow is calculated
depending on suction, drainable water content and saturated hydraulic conductivity.
The distributed model was applied with a 2-D groundwater model coupled to the un-
saturated zone with a vertical boundary flux. The lower boundary of the unsaturated
zone is the depth of the groundwater layer. Horizontal groundwater flow is calculated20

by the flow equation derived from Darcy’s law and the continuity equation. The sat-
urated zone is located within the defined soil layers and depth, groundwater level is
calculated corresponding to soil water content and previous storage conditions. The
aquifer is assumed to be unconfined. Storage conditions within the unsaturated zone
are initialized for each discretization layer with a water content corresponding to an25

hydraulic equilibrium with the groundwater (fluxes are zero) and the groundwater table
is assumed to be at a depth of 20 % of the soil column. In principle, the model environ-
ment is not able to account for karstic underground. A porous aquifer is assumed. It
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represents a substitutional porous media model whose parameters must be interpreted
as effective parameters approximating the karstic environment on subcatchment scale
(Kunstmann et al., 2006a). Next to numerous free model parameters, sensitive calibra-
tion parameters are the recession constant krec for the saturated hydraulic conductivity
and the interflow drainage density dr (Schulla, 1997, 2007). Discharge routing is done5

with a kinematic wave approach, including a flow time table, retardation and transla-
tion. Due to fast infiltration and high evapotranspiration in bare karst area, we adapted
parameters for evapotranspiration over rock surfaces leading to increased evapotran-
spiration for these areas. Furthermore, we also allowed for macropore – infiltration as
it is implemented in the distributed model after Jansson and Karlberg (2001). Data for10

soil classification were derived from the existing soil database of the National Park au-
thority and the concept soil map provided by the Bavarian Environment Agency. Land
use classification was derived from Lotz (2006) and Corine Land Cover data. We clas-
sified 15 land use types and 20 soil types within the model area. Soil stratification was
defined for 40 layers with a depth of 0.2 m to 4.0 m according the distributed porous ap-15

proach. Information on the hydraulic saturated conductivity was derived from BGRSGD
(2007). Best parameterization for aquifer thickness and the specific storage coeffcient
were iteratively estimated. River courses were derived from the digital elevation model
during preprocessing. The discharge data was provided by the Traunstein water man-
agement office and the Salzburg hydrographical service. Meteorological input data20

was provided by 33 weather stations whereby 20 are automatic and 15 are mechanical
stations (Table 1). The stations are equally distributed in altitude (604–1973 m a.s.l.)
and space throughout the model area (Fig. 4)

3.2 Analysis of precipitation interpolation methods

We found, there to be a mass problem within the distributed model, because it was not25

able to reproduce measured runoff in the Alpine head catchments. Various interpola-
tion methods to analyze whether precipitation input data was the cause for the devia-
tion or not were investigated. The precipitation interpolation methods Inverse Distance
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Weighting (IDW), Elevation Dependent Regression and a linear combination of IDW
and Elevation Dependent Regression (weighting factor IDW: 0.25) were tested for the
annual sum of precipitation in subbasin Königsseetal. Annual sums of interpolated
precipitation were 1559 mm for IDW, 1704 mm for regression and 1643 mm for the lin-
ear combination of both methods (Table 2). IDW shows the lowest value because the5

elevation dependency of the precipitation was not considered (1559 mm). Analyses
of station data within the area however proved gradient dependency of precipitation
amount. In high Alpine terrain, IDW was not considered appropriate for the applica-
tion. Regression showed the highest value, because it did not reproduce station data
(1704 mm). The combined method is giving a value between the two other methods,10

because it takes into account elevation dependency and station data (1643 mm). We
analyzed both methods for one station by comparing the overall mean from 2001–2010.
The analysis revealed that REG+ IDW could best reproduce the station data. Figure 5
shows modeled runoff resulting from the different interpolation methods. Runoff dy-
namics differ slightly, and no method resulted in improved model results. Therefore,15

we conclude unknown storage processes to be the most likely cause for the model
mismatch.

3.3 Outcomes distributed modeling – identification and quantification of
boundary fluxes

In a first step, we analyzed annual sums and overall means of measured runoff20

and modeled precipitation, evapotranspiration and runoff at the river gauges of the
three high Alpine neighbouring head subbasins Klausbachtal (1), Wimbachtal (2) and
Königsseetal (4) (Table 3). Annual sums of measured runoff ranged from 996 mm
to 1375 mm in subbasin Klausbachtal (mean 1207), from 1045 to 2808 mm in sub-
basin Wimbachtal (mean 2091) and from 1197 to 1831 mm (mean 1604) in subbasin25

Königsseetal. Annual sums of measured runoff differed significantly in these subcatch-
ments. Precipitation ranged from 1607 to 2112 mm in subbasin Klausbachtal, from
1621 to 1940 mm in subbasin Wimbachtal and from 1511 to 1869 mm in subbasin
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Königsseetal, resulting in an overall mean of 1772 mm (Klausbachtal), 1704 mm (Wim-
bachtal) and 1681 mm (Königsseetal), respectively. Mean annual evapotranspiration
was 367 mm for subbasin Klausbachtal, 348 mm for subbasin Wimbachtal and 425 mm
for subbasin Königsseetal. The measured runoff indicates a unique hydrology in each
valley. After distributed model calibration, model runs result in equally calculated an-5

nual sums of modeled runoff, dependent on precipiation input. Mean annual modeled
discharge was 1325 mm in subbasin Klausbachtal, 1280 mm in subbasin Wimbachtal
and 1201 mm in subbasin Königsseetal. Consequently, a systematic over- and under-
estimation of discharge was found in these sub-catchments when comparing modeled
to measured runoff (Fig. 6). Based on analyses of several precipitation interpolation10

approaches, we assume that different annual sums of measured runoff in subbasin
Klausbachtal, Wimbachtal and Königsseetal to be the result of subsurface boundary
fluxes that were not taken into account by the distributed model, leading to under and
overestimation of measured runoff during model runs. Since it is the characteristic sub-
surface conditions and resulting water fluxes that influence the water balance in karst15

aquifers, the monthly sums of water storage for subbasins Klausbachtal, Wimbachtal
and Königsseetal were analyzed in model runs and reality to gain more information
about the annual dynamics of the water storage. By substracting the runoff (Q) from
the incoming effective precipitation (Eq. 1) storage reduction or buildup is expressed
and is assumed to be positive in winter and summer (snow storage and soil storage)20

and negative in spring and autumn (snow melt and soil storage decrease), leading to
a systematic pattern throughout one year. Deviations from the assumed pattern for the
observed water storage may give insights into groundwater inflow, outflow or redistri-
bution at subbasin scale due to subsurface water fluxes. Monthly sums of modeled and
observed water storage were analyzed (Eqs. 2 and 3).25

Peff(t)= P (t)−ET(t) (1)

Smod(t)= Peff(t)−Qmod(t) (2)

Sobsreal
(t)= Peff(t)−Qmeas(t) (3)
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Figure 7 a shows the water storage modeled for the subcatchments Klausbachtal, Wim-
bachtal and Königsseetal in monthly sums for the summer period in years 2001 to
2011. Storage is always positive as there is less runoff than precipitation income (soil
storage buildup) in the distributed model. The monthly sums of modeled runoff show
positive values. Figure 7b shows the water storage derived from the measured runoff.5

It shows negative peaks during summer for subbasins Klausbachtal and Königsseetal
(Fig. 7b). There is more runoff than precipitation coming in, indicating groundwater in-
flow and explaining the amount of measured annual runoff. In subbasin Klausbachtal,
there is less soil storage and snow melt, indicating groundwater outflow and explaining
the annual lack of water. Table 4 shows the maximum, minimum and mean of monthly10

modeled and measured water storage. In subbasin Klausbachtal, mean of observed
water storage is positive (15 mm), indicating water outflow from the subbasin. It is
underestimated by the distributed model (−2 mm), because water outflow is not calcu-
lated and all incoming precipitation is routed to the stream. In subbasins Wimbachtal
and Königsseetal, mean water storage is negative (−24 mm; −59 mm) indicating more15

river runoff than incoming precipitation and consequently water inflow into the system.
Figure 8 shows monthly sums for measured runoff and distributed model runoff for
summer months of the years 2007 to 2011. Modeled runoff underestimates measured
runoff. Figure 9 shows the annual dynamic of main water balance components for each
hydrological year within the study period for subbasin Königssetal. Figure 9a,b shows20

the sum of snowmelt and rain and snowmelt only. In November, snowmelt and rain
are hydrological input into the system, from February to June snowmelt is dominant,
and from June to October it is mainly rainfall that contributes to the water balance in
the subbasin. The evapotranspiration (Fig. 9c) shows an annual dynamic with a peak
in July. Figure 9d shows water storage derived from the modeled runoff by the dis-25

tributed model. In winter months, storage is nearly zero, in spring values are negative
due to snow melt, while in summer values are slightly positive due to soil water stor-
age. Figure 9e shows the water storage derived from the measured runoff. In winter
months, the storage is positive due to snow cover build-up. In May there is strong snow
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melt impact, leading to negative storage values. In summer months, storage remains
negative, indicating water inflow through unknown subsurface processes. We assume
that underground catchment sizes differ from surface catchment sizes as they are pre-
sumed for distributed modeling, and that this is the cause of deviating water storage
quantities (Fig. 2).5

4 Artificial neural net to calculate boundary fluxes and distributed model
correction

Analysis of the mismatches indicate, that there are systematic subsurface boundary
fluxes, which can be expressed as observed water storage. The distributed model
needs to be adapted to the special hydrological systems in the high Alpine karst envi-10

ronment. We developed an Artificial Neural Network (ANN) as introduced by Herz et al.
(1991) and Haykin (1999) to calculate the observed water storage (Fig. 2). Neural net-
works have already been applied in karstic environments by Dou et al. (1997); Dixon
(2005); Siou et al. (2011); Kurtulus and Razack (2010); Kunstmann et al. (2006a) to
calculate spring response and stream discharge. The Artificial Neural Network in our15

study does not calculate stream or spring discharge, but the observed water storage.
With this method we describe the strong heterogeneity and discontinuity of the medium.
Input variables are distributed model outputs. Artificial Neural Network approaches are

usually implemented using libraries, as they are e.g. available for the Matlab® Neural
Network Toolbox libraries. We present the analytical solution of the neural network to20

enable implementation of this method within the distributed model source code.

4.1 Artificial Neural Network (ANN)

We implemented a two layer feedforward Artificial Neural Network (ANN) with a sigmoid
function in the hidden layer and a linear function in the output layer for the subbasins
Klausbachtal, Wimbachtal and Königsseetal each (Fig. 10). The exogenous inputs are25
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monthly means of temperature Tm(t), relative humidity RHm(t) and monthly sums of
snowmelt SNm(t) and rain Pm(t), which is QSm(t) (Eq. 4) and gives the observed wa-
ter storage S(t) (Eq. 5). Explanatory variables for the artificial neural net are outputs
of the distributed model to ensure that the ANN is not based on any measured data.
During the training process and input data testing, three input variables turned out to5

perform best. Temperature Tm(t) and air humidity RHm(t) as interpolated meteorolog-
ical variables to capture seasonality and air moisture; QSm is the calculated input into
the hydrological system. This study concentrates on monthly sums; therefore, no slid-
ing window is needed. Selection of the number of hidden neurons was done by trial
and error. Best results were obtainend with 20 neurons (n= 20) in the hidden layer.10

The ANN was trained and validated with 65 months (m= 65) and tested for m= 44
(test data). The dataset for training and validation was split up into m= 56 (85 %) for
training and m= 11 for validation (15 %). Net training to obtain the parameters ai to fi
was done with the Levenberg-Marquardt algorithm for which the RMSE was chosen as
the objective function to be minimized (Eq. 6). Table 5 shows the weights and biases15

derived by the training process.

QSm(t)= Pm(t)+SNm(t) (4)

SobsANN
(t)=ai +

n∑
i=1

bi

1+eci+diQSm(t)+eiTm(t)+fiRHm(t)
(5)

RMSE=

√√√√1
n

n∑
i=1

(SobsANN
(t)−Sobsreal

(t))2 (6)

Net input and output were normalized from rmin =−1 to rmax = 1 and backtransformed20

using the following equations (Eqs. 7 and 8) during pre- and postprocessing:

y = (rmax−rmin)
x−xmin

xmax−xmin
+rmin (7)

x= (y+1)(xmax−xmin)/2+xmin (8)
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Performance evaluation – ANN

We show monthly sums of observed water storage simulated with the ANN in sub-
basin Königsseetal for the test period of the neural net from March 2007 to October
2009 (m= 444). Correlation of the observed water storage simulated with the ANN
and the observed water storage give r2 = 0.48 (Fig. 11), whereby the NSE = 0.43 and5

the RMSE= 0.27 (Table 6). Figure 12a represents modeled water storage based on
the distributed model and observed water storage from June 2007 to October 2009
(n= 44), showing deviations during summer months. The distributed model underes-
timates river runoff in the given subbasin from April to October 2007, from June to
September 2008 and from June to October 2009. Underestimation also occurs dur-10

ing the summer months when snow melt is not present. Figure 12b represents water
storage by the distributed model and observed water storage and the observed water
storage simulated with the ANN. The ANN is able to represent observed water stor-
age during summer months. It underestimates observed water storage in November
2007 and Mai 2009 and it overestimates water storage in June 2009. The observed15

water storage simulated with the ANN is then implemented in the distributed model as
a constant boundary flux to improve distributed model within that time period.

4.2 Distributed model correction: implementation of boundary flux in the
saturated zone

We used the monthly outcomes of the artificial neural network as a basis for the con-20

stant boundary flux into the distributed model (Fig. 2). The monthly sum of observed
water storage simulated with the neural net was subtracted from the modeled water
storage already calculated for the investigated period (Eq. 9). The difference was im-
plemented as continuous boundary flux Qbound(t) in m s−1 per hour for each month in
the saturated zone at selected sites at the border of subcatchments. Therefore, the25

hydrological model was constantly corrected during model run. The correction was

229

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

subsequently considered in consecutive modules of the distributed model and finally
routed to river outlets.

Qbound(t)=Smod(t)−SobsANN
(t) (9)

This method is not a bias correction of modeled runoff at the outlet point, but an inflow
within the groundwater model, which the model accounts for and which is considered5

in the following modeling process. The inflow size can vary from one grid cell to the
whole subbasin area. We implemented a boundary flux based on the results of the test
period of the neural net from July to October for the years 2007 to 2009. The results
are presented in Fig. 13.

5 Results and discussion10

Within the scope of this study, we could show the limitations of a distributed model
in high alpine terrain with massive carbonate aquifers. We were able to quantify
systematic model mismatch at subbasin scale and point out hydrological processes
within these heterogeneous catchments that deviate from common model assump-
tions (Darcy Flow, Porous Media Conditions). To enable distributed modeling within15

these catchments, which are the origin of lowland river runoff quantities and dynam-
ics, we developed a method to describe and account for the missing water quantities.
By the given station data and interpolation method, unrealistic precipitation assump-
tions are not the case and could be suspended as the underlying reason for the model
mismatch. Therefore, we concluded an uneven observed water balance for the given20

sub-catchments to be the cause, because of unknown subsurface boundary fluxes. Or,
in other words, the real catchment size for river gauges differs from the size assumed
by the distributed model due to underground fluxes. By assuming porous conditions,
the model is unable to account for extreme differences in hydrological system at catch-
ment scale resulting in consistent model mismatch. Figure 15 shows the results of the25

distributed model for the hydrological year 2006–2007. It is evident that the grid-based
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approach provides detailed information on the heterogeneous Alpine catchment. The
annual sum of precipitation ranges from 1300 mm in the valleys to over 2100 mm in
mountainous regions. Evapotranspiration is calculated from zero to over 1400 mm at
extreme locations. Relative humidity ranges from 0.70 % to over 0.82 %. Mean annual
temperature is from 10 ◦C in valleys to −2 ◦C at elevated regions. The massive karst5

aquifer itself and, the location of all conduits and subsurface flow channels, remains
a black box. However, based on tracer experiments and the spring locations we were
able to synthesize that the main underground flow direction tends to be north, which
corresponds with the results of the distributed model mismatch (Kraller et al., 2011).
Since we are unable to quantify each underground flux in the study area, and espe-10

cially the dynamics throughout a hydrological year, we chose a statistical method to
capture unknown underground flow processes at catchment scale on a monthly ba-
sis. By developing the artificial neural net, we were able to reproduce monthly storage
deviations. A two layer feedforward backpropagation network with a sigmoid function
in the hidden layer and a linear function in the output layer with 20 neurons in the15

hidden layer gave best results. The neural net is satisfactory representing observed
water storage. We implemented a constant boundary flux in m s−1 per time step of
one hour for each month in the saturated zone module of the distributed model for
subbasin Königsseetal from July to October for the years 2007 to 2009 based on the
results of the ANN. The influx was then involved in the consecutive modules during20

model run. Performance of the distributed model improved with implementation of
the constant boundary flux (Eq. 9). NSE increased from 0.34 to 0.57 and the RMSE
decreased from 6.10 mm to 1.66 mm, which shows that after implementation of the
boundary flux the distributed model was better at reproducing the measured runoff
(Table 6). Figure 13 shows monthly sums of measured runoff, modeled runoff and25

modeled runoff after implementing the boundary flux for 2007 to 2009. Measured
runoff is improved in most months. In June 2008 and July 2009 the influx did not
improve model results. In September 2007, the neural net did not give satisfactory rep-
resentation of observed storage. Consequently, monthly sums of modeled runoff do
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not perfectly match monthly sums of measured runoff after implementing the boundary
flux. Figure 14 shows main components of the annual water balance of 2007 in sub-
basin Königsseetal before and after distributed model correction. As the inflow takes
place in the saturated zone module, annual sums of precipitation (1604 mm), evapo-
transpiration (432 mm), effective precipitation (1181 mm) and observed water storage5

(−618 mm) are equally calculated before and after the boundary influx. Observed wa-
ter storage was negative in the annual balance, because subsurface water inflow takes
place throughout subbasin borders (derived by the DEM). In the original model run,
the modeled runoff (1094 mm) underestimated measured runoff. After implementing
the boundary flux, modeled runoff is increased to 1487 mm. Originally, modeled water10

storage was minimal (18 mm), because the distributed model calculates even annual
water balances internally. By correcting the distributed model with the constant inflow
on a monthly basis, annual modeled water storage resulted in −306 mm and better
reproduction of observed water storage. At river gauge St. Leonhardt, which is the
outlet of the whole catchment, modeled runoff also increases, showing improved dis-15

tributed modeling for the overall study area. Figure 15 shows the mean groundwater
level in the region in the year 2006–2007. Based on the assumed soil layers, which
had to be in the given range of the distributed model, groundwater reaches the sur-
face in valley regions, as steep gradients lead to increased flow in hill slopes. Soil
moisture in the root zone ranges from zero to almost 100 %. Storage capacities are20

reached within the saturated zone in the given soil layers, and water excess is given
to the unsaturated zone. Figure 16 presents runoff components of modeled runoff in
year 2007 before and after implementation of the boundary flux. In the original model
run, interflow and baseflow were calculated almost equally, whereas direct flow is the
main contributor to modeled runoff. After implementing the boundary flux, interflow25

increased most, whereas baseflow and directflow remain almost unchanged. As the
groundwater module and unsaturated zone module in the distributed model are cou-
pled bidirectionally, baseflow is converted to interflow within model performance. ANN
has been used previously in hydrological studies, but mainly to predict and calculate
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the discharge of a given river course or spring rather than deviating storage conditions.
Our new method describes the ANN analytically, and enables to calculate unknown
storage processes in complex hydrogeological environments on a monthly basis. With
this method, the distributed model reproduces storage conditions more realistically in
high Alpine karst terrain, which leads to a more realistic runoff at catchment scale.5

6 Summary and conclusions

We implemented a distributed water balance model in the watershed of the river Bercht-
esgadener Ache. The model area was derived during preprocessing by surface water
divides. Since the model area is situated in high Alpine karst, we expect groundwater
basins sizes to differ from surface basin sizes. This was also indicated by Kraller et al.10

(2011), who synthesized northerly subsurface water flow direction. Subsurface water
fluxes in the unsaturated zone and saturated zone lead to an uneven water balance.
Each of the three neighbouring high Alpine head sub-catchments is unique in its hy-
drology. Distributed modeling resulted in systematic model mismatch in the high alpine
neighboring subbasins. Model mismatch is a consequence of water storage deviations15

in reality and the distributed model. To improve the distributed model in high Alpine
karst dominated catchments, we developed an artificial neural net to calculate missing
fluxes in monthly sums that can then be implemented as inflow or outflow in the satu-
rated zone of the distributed model. The results obtained with the artificial neural net
respresent observed water storage satisfactorily. Implementation of missing boundary20

fluxes in the distributed model improved modeled runoff at subbasin scale. Further
studies will show that the approach can be generalized on a larger spacial scale.
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Table 1. Location, altitute and parameters and temporal resolution of the meteorologi-
cal stations used for our investigation (T =air temperature, H = relative humidity, WS=wind
speed, SD= snow depth, SWE= snow water equivalent, SS= sunshine duration, GR=global
radiation, DR=direct radiation, RR= relfelcted radiation, P =precipitation, AP=atmospheric
pressure at sea level, TS= surface temperature, LWZ=Bavarian avalanche warning service,
NPV=Administration Berchtesgaden National Park, ZAMG=Central Institute for Meteorology
and Geodynamics Austria).

Station Altitude Parameters Temporal Operator
[m a.s.l.] resolution

Reiteralm1 1755 T , H , WS, WD 10 min LWZ
Reiteralm2 1670 T , H , TS, SD 10 min LWZ
Reiteralm3 1615 T , H , P , GR RR, SD 10 min LWZ
Schönau 617 T , H , P , GR, DR, SS, WS, WD, AP 10 min Schönau/NPV/DWD
Jenner 1200 T , H , P , WS, TS, SD 10 min LWZ
Höllgraben 653 T , H , P 10 min LWZ
Kühroint 1407 T , H , P , WS, WD, GR, RR, TS, SD, SWE 10 min LWZ
Funtenseetauern 2445 T , H , WS,WD 10 min LWZ
Lofer 625 T , P , H , WS, WD, GR, SS, AP 1 h ZAMG
Loferer Alm 1623 T , P , H , WS, WD, GR, SS, AP 1 h ZAMG
SBG Flughafen 430 T , P , H , WS, WD, GR, SS, AP 1 h ZAMG
Schmittenhöhe 1973 T , P , H , WS, WD, GR, SS, AP 1 h ZAMG
Königsberg Pegel 699 P 1 d NPV
Schapbach 953 P 1 d NPV
Kühroint (mech.) 1418 P 1 d NPV
Lahneralm 1240 P 1 d NPV
St. Bartholomä 604 P 1 d NPV
Wimbachschloss 926 P 1 d NPV
Brunftbergtiefe (mech.) 1238 P 1 d NPV
Auf dem Gries 1435 P 1 d NPV
Bindalm 1119 P 1 d NPV
Eckau 1015 P 1 d NPV
Lahnwaldfütterung 840 P 1 d NPV
Mittereis 1325 P 1 d NPV
Halsalm 1088 P 1 d NPV
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Table 2. Precipitation interpolation analysis. Inverse Distance Weighting (IDW), Regression
(REG) and the combination of Regression and IDW (REG+ IDW) in the year 2006/2007 for
subbasin Königsseetal (4). Regression and REG+ IDW for station location (Kühroint) – mean
2001–2010.

Scale Time period IDW REG REG+ IDW Station Data (Kühroint)
[mm] [mm] [mm] [mm] (1407 m a.s.l.)

Subbasin Sum 2006/2007 1559 1704 1643 –
Station Mean 2001–2010 – 1468 1670 1676
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Table 3. Annual sums and mean of precipitation, evapotranspiration, modeled and measured
discharge – subbasins Klausbachtal, Wimbachtal and Königsseetal

Year Klausbachtal Wimbachtal Königsseetal

Area [km2] 42.79 35.69 163.54
Precipitation/evapotranspiration [mm] 2001/2002 2112/349 1940/354 1869/446

2002/2003 1652/405 1533/393 1469/477
2003/2004 1782/355 1718/351 1639/420
2004/2005 1832/338 1745/319 1655/371
2005/2006 1607/331 1574/310 1511/362
2006/2007 1672/355 1621/355 1604/423
2007/2008 1739/389 1654/353 1774/465
2008/2009 1818/192 1899/350 1804/434
2009/2010 1739/389 1654/353 1774/435

Mean precipitation/evapotranspiration [mm] 1772/367 1704/348 1681/425

Measured/modeled runoff [mm] 2001/2002 1183/1541 1535/1411 1402/1297
2002/2003 1375/1260 1872/1146 1634/1002
2003/2004 996/1371 1045/1265 1197/1178
2004/2005 1253/1450 1783/1351 1596/1241
2005/2006 1235/1291 2622/1255 1784/1137
2006/2007 1259/1175 2269/1175 1799/1094
2007/2008 1128/1283 2346/1226 1831/1291
2008/2009 1178/1178 2544/1335 1597/1240
2009/2010 1253/1282 2808/1353 1593/1332

Mean measured/modeled runoff [mm] 1207/1325 2091/1280 1604/1201
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Table 4. Minimum, maximum and mean of monthly modeled (Smod) water storage by the dis-
tributed model and observed water storage (Sobs) in subbasin Klausbachtal, Wimbachtal and
Königsseetal (mm)

Klausbachtal Wimbachtal Königsseetal
Smod/Sobsreal

Smod/Sobsreal
Smod/Sobsreal

Max 264/271 275/207 285/439
Min −282/−199 −282/−328 −366/−349
Mean −2/15 5/−21 1/−59
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Table 5. Weights and biases ANN. bi =weight hidden layer to output. di , ei , fi =weights layer 1
to hidden layer. ci =bias layer 1 to hidden layer. ai =−0.54 ( bias hidden layer to output).

bi ci di ei fi

−0.35 4.99 −8.50 4.96 2.44
0.13 2.37 −11.70 2.143 1.398

−1.07 4.53 −6.87 −2.25 5.19
−1.6 −1.65 9.21 −2.32 −4.00

−0.04 −3.07 2.71 −6.02 −5.72
0.23 0.71 −3.88 −5.79 −5.12
0.82 0.06 −6.16 −3.36 −5.49

−0.17 0.68 −4.06 −7.77 1.60
0.84 0.78 9.94 3.65 3.76
0.56 3.55 9.29 −3.49 0.52

−0.05 0.63 1.00 −1.21 −7.14
0.17 −0.01 1.85 −5.75 −8.72
0.03 4.38 4.47 5.75 4.38
0.74 −3.53 −11.77 0.54 1.70
0.06 5.15 3.12 7.94 1.10
0.37 −9.02 −8.6 1.46 −3.33

−1.65 −6.59 −2.00 5.99 3.69
1.57 −4.92 −1.70 5.67 3.38
0.01 −10.03 −10.03 −3.00 2.02

−0.13 12.27 −10.26 3.30 −2.02
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Table 6. Performance evaluation Artificial Neural Net (observed water storage and modeled
water storage) and distributed model correction (measured vs. modeled discharge).

Efficiency criteria ANN Distributed modeling Distributed modeling
without ANN extention with ANN extention

Coefficient of Determination (r2) 0.48 0.80 0.79
Coefficient of Efficiency (NSE) 0.43 0.34 0.57
Root Mean Square Error (RSME) [mm] 0.27 6.10 1.66
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Fig. 1. Study area: river gauges and subbasins.
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Fig. 2. Overview of the presented method. Effective precipitation (Precipitation P minus Evap-
otranspiration ET) results in modeled runoff Consistent model mismatch was detected due to
water storage deviations. Modeled water storage (derived from distributed model runoff) sys-
tematically over/underestimates observed water storage (derived from measured runoff). The
observed water storage is then calcualted by the ANN and implemented in the groundwater
module to account for the observed storage processes.
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Fig. 3. Soil classification, landuse classification and main geological units within the study area.
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Fig. 4. Locations of weather stations within and outside the study area.
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Fig. 5. Comparison of different interpolation methods in subbasin Königsseetal. Inverse Dis-
tance Weighting (IDW), Elevation dependent Regression (REG) and both methods linearly
combined (IDW+REG).
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Fig. 6. Annual sums of modeled and measured discharge subbasins Klausbachtal, Wimbachtal
and Königsseetal.
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Fig. 7. (a) Comparison of the water storage (Smod) derived from results of distributed
model runoff. Monthly sums July–October 2001–2011 – subbasins Klausbachtal, Wimbach-
tal, Königsseetal. (b) Comparison of the water storage (Sobsreal

) derived from measured runoff.
Monthly sums July–October 2001–2011 – subbasins Klausbachtal, Wimbachtal, Königsseetal.
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Fig. 8. Monthly sums of measured runoff and modeled runoff in subbasin Königsseetal – June
to October for years 2007 to 2009.
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Fig. 9. Monthly sums of snowmelt+ rain (a), snowmelt (b), evapotranspiration (c), water stor-
age distributed model (d) and observed water storage (e) for hydrological years 2001–2010 in
subbasin Königsseetal.
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Fig. 10. Architecture Artificial Neural network. Input Layer, Hidden Layer and Output Layer.
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Fig. 11. Performance ANN – Test period. Correlation diagram between simulated monthly
observed water storage by the ANN vs. observed water storages.
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Fig. 12. Comparison of observed water storage and observed water storage simulated by the
ANN in monthly sums. Test period of the neural net in subbasin Königsseetal. The upper graph
shows the observed water storage and the water storage by the distributed model. The lower
diagram is showing the simulated observed water storage by the artificial neural network.
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Fig. 13. Monthly sums of measured runoff and distributed model runoff with and without imple-
mented boundary flux from June to October for years 2007–2009 – subbasin Königsseetal.
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Fig. 14. Water balance components for subbasin Königsseetal and modeled runoff for St.
Leonhard – annual sums 2007. Results for original model run and model run with imple-
mented boundary flux (P =Precipitation, ET=Evapotranspiration; Peff =effective precipitation,
Qobs =measured runoff, Qmod =modeled runoff, Sobs =observed storage, Smod =modeled stor-
age).
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Fig. 15. Spatial water balance results of the distributed model. Precipitation and Evapotranspi-
ration, Relative Humidity, Temperature, Groundwaterlevel and Relative Soil Moisture.
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Fig. 16. Components of modeled runoff. Subbasin Königsseetal – annual sums [mm] 2007.
Results for original model run and model run with implemented boundary flux.
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