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Abstract

The impact of climate change on water resources is usually assessed at the local
scale. However, regional climate models (RCM) are known to exhibit systematic biases
in precipitation. Hence, RCM simulations need to be post-processed in order to pro-
duce reliable estimators of local scale climate. A popular post-processing approach is5

quantile mapping (QM), which is designed to adjust the distribution of modeled data,
such that it matches observed climatologies. However, the diversity of suggested QM
methods renders the selection of optimal techniques difficult and hence there is a need
for clarification. In this paper, QM methods are reviewed and classified into: (1) distri-
bution derived transformations, (2) parametric transformations and (3) nonparametric10

transformations; each differing with respect to their underlying assumptions. A real
world application, using observations of 82 precipitation stations in Norway, showed
that nonparametric transformations have the highest skill in systematically reducing
biases in RCM precipitation.

1 Introduction15

It is well established that precipitation simulations from regional climate models (RCM)
are biased (e.g. due to limited process understanding or insufficient spatial resolu-
tion; Rauscher et al., 2010) and hence need to be post processed (i.e. statistically
adjusted, bias corrected) before being used for climate impact assessment (e.g. Chris-
tensen et al., 2008; Maraun et al., 2010; Teutschbein and Seibert, 2010; Winkler et al.,20

2011a,b). In recent years a multitude of studies has investigated different post pro-
cessing techniques, aiming at providing reliable estimators of observed precipitation
climatologies given RCM output (e.g. Ines and Hansen, 2006; Engen-Skaugen, 2007;
Schmidli et al., 2007; Dosio and Paruolo, 2011; Themeßl et al., 2011; Turco et al.,
2011). Recently, Themeßl et al. (2011) compared several approaches, concluding that25

quantile mapping (QM) (Panofsky and Brier, 1968) – the mapping of the modeled
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cumulative distribution function (CDF) of the variable of interest onto the observed
CDF – was most efficient in removing precipitation biases, also for the extreme part
of the distribution. Hence it is not surprising that QM and closely related approaches
have become popular to adjust both RCM (e.g. Ashfaq et al., 2010; Dosio and Paruolo,
2011; Themeßl et al., 2011; Sunyer et al., 2012) and global circulation model (GCM)5

(e.g. Wood et al., 2004; Ines and Hansen, 2006; Boé et al., 2007; Li et al., 2010; Piani
et al., 2010a,b) precipitation. However, there is no general agreement on the optimal
technique to solve the QM task and the approaches employed differ at times sub-
stantially. Therefore, there is an urgent need for clarifying the relation among different
approaches as well as for an objective assessment of their performance.10

2 Methods for quantile mapping

Quantile mapping (also referred to as quantile matching, cumulative distribution func-
tion matching, quantile-quantile transformation) attempts to find a transformation,

Po = h (Pm) , (1)

of a modeled variable Pm such that its new distribution equals the distribution of the ob-15

served variable Po. In the context of this paper Po and Pm denote observed and modeled
precipitation respectively. QM is an application of the probability integral transform (An-
gus, 1994) and if the distribution of the variable of interest is known, the transformation
h is defined as

Po = F −1
o (Fm (Pm)) , (2)20

where Fm is the CDF of Pm and F −1
o is the inverse CDF (or quantile function) corre-

sponding to Po.
Figure 1 illustrates QM using observed and modeled daily precipitation rates from

Geiranger, in the fjords of western Norway. Modeled precipitation was extracted from
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a HIRHAM RCM simulation with 25 km resolution (Førland et al., 2009, 2011) forced
with the ERA40 re-analysis (Uppala et al., 2005) on a model domain covering Norway
and the Nordic Arctic. The left panel shows the quantile-quantile plot of observed and
modeled precipitation as well as the best fit of an arbitrary function used to approxi-
mate the transformation h. The right panel shows the corresponding empirical CDF of5

observed and modeled values as well as the transformed modeled values. The practi-
cal challenge is to find a suitable approximation for the transformation h and different
approaches have been suggested in the literature.

2.1 Distribution derived transformations

Quantile mapping can be achieved by using theoretical distributions to solve Eq. (2).10

This approach has seen wide application for adjusting modeled precipitation (e.g. Ines
and Hansen, 2006; Li et al., 2010; Piani et al., 2010a). All these studies assume that
F is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distri-
bution is used to model the probability of precipitation occurrence and the Gamma dis-
tribution used to model precipitation intensities (e.g. Thom, 1968; Mooley, 1973; Can-15

non, 2008). In this study, further mixtures, i.e. the Bernoulli-Weibull, the Bernoulli-Log-
normal and the Bernoulli-Exponential distributions (Cannon, 2012), are also assessed.
The parameters of the distributions are estimated by maximum likelihood methods for
both Po and Pm.

2.2 Parametric transformations20

The quantile-quantile relation (Fig. 1) can be modeled directly using parametric trans-
formations. Here the suitability of the following parametric transformations for was ex-
plored:
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P̂o = bPm (3)

P̂o = a + bPm (4)

P̂o = bP c
m (5)

P̂o = b (Pm − x)c (6)

P̂o = (a + bPm)
(

1 − e−(Pm−x)/τ
)

(7)5

where, P̂o indicates the best estimate of Po. The simple scaling (Eq. 3) is regularly used
to adjust precipitation from RCM (see Maraun et al., 2010, and references therein) and
closely related to local intensity scaling (Schmidli et al., 2006; Widmann et al., 2003).
The transformations Eq. (4) to Eq. (7) were all used by Piani et al. (2010b) and have10

been further explored by Dosio and Paruolo (2011).
Following Piani et al. (2010b), all parametric transformations were fitted to the frac-

tion of the CDF corresponding to observed wet days (Po >0) by minimizing the residual
sum of squares. Modeled values corresponding to the dry part of the observed empiri-
cal CDF were set to zero.15

2.3 Nonparametric transformations

2.3.1 Empirical quantiles (QUANT)

A common approach to QM is to solve Eq. (2) using the empirical CDF of observed and
modeled values in stead of assuming parametric distributions (e.g. Wood et al., 2004;
Reichle and Koster, 2004; Boé et al., 2007; Themeßl et al., 2011, 2012). Following the20

procedure of Boé et al. (2007), the empirical CDFs are approximated using tables of
the empirical percentiles. Values in between the percentiles are approximated using
linear interpolation. If new model values (e.g. from climate projections) are larger than
the training values used to estimate the empirical CDF, the correction found for the
highest quantile of the training period is used (Boé et al., 2007; Themeßl et al., 2012).25
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2.3.2 Smoothing-splines (SSPLIN)

The transformation (Eq. 1) can also be modeled using nonparametric regression. We
suggest to use cubic smoothing-splines (e.g. Hastie et al., 2001), although other non-
parametric methods may be equally efficient. Like for the parametric transformations
(Sect. 2.2) the smoothing spline is only fitted to the fraction of the CDF corresponding5

to observed wet days and modeled values below this are set to zero. The smoothing
parameter of the spline is identified by means of generalized cross-validation.

3 Performance of quantile mapping

3.1 Data and implementation

The suitability of the different QM methods to correct model precipitation from the10

HIRHAM RCM forced with the ERA40 re-analysis was tested using observed daily
precipitation rates of 82 stations in Norway, all covering the 1960–2000 time interval.
The QM methods where implemented in the R language (R Development Core Team,
2011) and bundled in the package “qmap” which is made available on the Comprehen-
sive R Archive Network (http://www.cran.r-project.org/).15

3.2 Skill scores

To assess the performance of different QM methods a set of scores is needed that
quantifies the similarity of the observed and the (corrected) modeled empirical CDF.
Previously used scores include overall measures such as the root mean square er-
ror (Piani et al., 2010b) and the Kolmogorov-Smirnov two sample statistic (Dosio and20

Paruolo, 2011). Other suggested scores assess specific moments of the distribution
including the mean (Engen-Skaugen, 2007; Li et al., 2010; Dosio and Paruolo, 2011;
Themeßl et al., 2011; Turco et al., 2011), the standard deviation (Engen-Skaugen,
2007; Li et al., 2010; Themeßl et al., 2011) and the skewness (Li et al., 2010). A variety
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of further scores are based on the comparing of the frequency of days with precipita-
tion (Schmidli et al., 2006, 2007; Themeßl et al., 2011) and the magnitude of selected
(mostly high) percentiles (Schmidli et al., 2006, 2007; Li et al., 2010; Themeßl et al.,
2011). All these scores are either presented as maps or as spatial averages which
facilitate a quantitative comparison of methods. One limitation of the scores above is5

that they can often not be summarized into one global measure; e.g. due to different
physical units or lack of normalization. This renders a global evaluation, combining
the advantages and drawbacks of different QM methods difficult. Therefore, this study
suggests a novel set of scores, aiming at a global evaluation, while keeping track of
many relevant properties of the distribution. Overall performance is measured using10

the mean absolute error (MAE) between the observed and the corrected empirical
CDF. To assess the performance for more specific properties related, for example, to
the fraction of dry days, average intensities or precipitation extremes other scores are
required. Here these properties are assessed using MAE0.1, MAE0.2, ..., MAE1.0, mean
absolute errors computed for equally spaced probability intervals of the observed em-15

pirical CDF. The subscript indicates the upper bounds of 0.1 wide probability intervals.
MAE0.1, for example, evaluates differences in the dry part of the distribution, indicating
discrepancies in the number of wet days. Similarly, MAE1.0 indicates differences in the
magnitude of the most extreme events. Note also that MAE can be computed as the
mean of MAE0.1, MAE0.2, . . ., MAE1.0, which demonstrates the consistency of these20

measures. To reduce the risk of over fitting all scores were estimated using a 10-fold
cross-validation (CV) (e.g. Hastie et al., 2001) and the mean CV error is reported.

Figure 2 shows the MAE for all stations and all methods under consideration. For
the uncorrected model output MAE has pronounced geographic variations. The largest
errors are found along the west coast, where the model cannot resolve the orographic25

effect on precipitation with sufficient detail. Most QM methods reduce the error and
even out some of its spatial variability. An exception is the transformation based on the
Bernoulli-Log-normal distribution, which does not lead to any visible improvements.
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The largest improvements are achieved by parametric and nonparametric transforma-
tions, especially along the west coast.

Figure 3 shows the total MAE and MAE0.1, MAE0.2, ..., MAE1.0 averaged over all
stations. Most QM methods reduce both the total MAE as well as the MAE for the per-
centile intervals. The absolute improvements are in most cases largest for the upper5

part of the CDF (p≥0.5). Note however, that two of the distribution derived transforma-
tions (Bernoulli-Exponential and Bernoulli-Log-normal) increase the error for the most
extreme values. In the lower part of the CDF the absolute improvements are generally
smaller, owing to the small (often zero) precipitation rates.

3.3 Ranking of methods10

In order to obtain a global comparison of the efficiency of the different methods their
performance was ranked, closely following the procedure suggested by Reichler and
Kim (2008). In a first step, relative errors are computed for each method by dividing the
spatial averages of MAE and MAE0.1, MAE0.2, ..., MAE1.0 by the corresponding scores
of the uncorrected model output. In other words, the relative errors are defined as the15

individual points in Fig. 3 divided by the solid line. The relative errors range from an
optimal value of zero to infinity. A value smaller than one indicates that the QM method
causes an improvement; larger values indicate worsening. The relative errors where
finally averaged for each method and ordered from the lowest (best method) to the
highest value (worst method).20

Figure 4 shows the ranking of the methods, based on the mean of the relative er-
ror (black dots). The hollow symbols show the relative errors for the total MAE and
the MAE for all percentile intervals. The two nonparametric methods SSPLINE and
QUANT have on average the best skill in reducing systematic errors, also for very
high (extreme) quantiles. The success of the nonparametric transformations is likely25

related their flexibility as they do not relying on any predetermined function. This flexi-
bility allows good fits to any quantile-quantile relation. For all highly adaptable methods
with many degrees of freedom, over fitting may be a concern. Recall, however, that all
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scores are estimated using a 10-fold CV, which reduces the risk of over fitting effec-
tively. Nevertheless, over fitting may be an issue if QM methods are fitted to small data
samples, i.e distributions of time series that cover only a short period of time. The large
spread in performance of parametric transformations is likely related to the flexibility of
the different functions. Parametric transformations with three or more free parameters5

(Eqs. 6 and 7) are almost as efficient as their nonparametric counterparts. Transfor-
mations with less flexibility, in particular the simple scaling function (Eq. 3), do have
worse performance. The distribution derived transformations rank on average lowest.
The best ranking distribution derived transformation is based on the Bernoulli-Weibull
distribution. The transformation derived from the Bernoulli-Log-normal distribution has10

the lowest performance of all considered methods. Note also that all distribution de-
rived transformations have particularly low performance with respect to the extreme
part of the distribution. The low performance of distribution derived transformation may
seem somewhat surprising, given the theoretical elegance of this approach. This is
likely related to the fact that the parameters of the distributions are identified for Po and15

Pm separately, which does not guarantee an optimal transformation (Eq. 1).

4 Conclusions

The three approaches to QM assessed in this paper differ substantially with respect to
their underlying assumptions, despite the fact that they are all designed to transform
RCM output such that its empirical distribution matches the distribution of observed20

values. A real-world evaluation of a wide range of QM methods showed that most of
them are capable to remove biases in RCM precipitation. Despite this overall success,
it was also demonstrated that the performance of the QM methods differ substantially.
Therefore we stress that QM methods should not be applied without checking their
suitability for the data under consideration. The methods with the best skill in reduc-25

ing biases from RCM precipitation through the entire range of the distribution are all
classified as nonparametric transformations. These have the additional advantage that
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they can be applied without specific assumptions and are thus recommended for most
applications of statistical bias correction.
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Fig. 1. Left panel: quantile-quantile plot of observed (Po) and modeled (Pm) precipitation in
Geiranger, Norway, as well as a transformation (Po =h(Pm)) that is used to map the modeled
onto observed quantiles. Right panel: empirical CDF of observed, modeled and transformed
(h(Pm)) precipitation.
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Fig. 2. Mean Absolute Error (MAE) between the observed and modeled empirical CDF for different QM methods.
“none” indicates uncorrected modeled values. Equations: parametric transformations. Distribution derived transfor-
mations are based on the Bernoulli-Exponential (BernExp), the Bernoulli-Log-normal (BernLogNorm), the Bernoulli-
Gamma (BernGamma) and the Bernoulli-Weibull (BernWeibull) distributions. QUANT: QM based on empirical quan-
tiles. SSPLINE: QM using a smoothing-spline.
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