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Abstract. This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted

for official natural hazards warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitationregional

alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the

nowcasting system for the alerts. Warm and cold seasons monthly maxima of several statistical quantities describing regional

rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to5

sub-annual return periods for durations of 1, 3, 6, 12, 24 and48 hours. It is shown that regional return levels exhibit a large

spatial variability in Switzerland, and that their spatialdistribution strongly depends on the duration of the aggregation period:

for accumulations of 3 hours and shorter, the largest returnlevels are found over the northerly alpine slopes, whereas for longer

durations the southern Alps exhibit the largest values. Theinner Alpine chain shows the lowest values, in agreement with

previous rainfall climatologies.10

The nowcasting system presented here is aimed to issue heavyrainfall alerts for a large variety of end-users, who are interested

in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or

administrative districts. The alerts are issued not only ifthe rainfall measured in the immediate past or forecast in the near

future exceeds some pre-defined thresholds, but also as soonas the sum of past and forecast precipitation is larger than threshold

values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important15

as predicted one, such as urban floods early warning systems.The rainfall fields, the statistical quantity representingregional

rainfall and the frequency of alerts issued in case of continuous threshold exceedance are some of the configurable parameters

of the tool.

The analysis of the urban flood occurred in the city of Schaffhausen in May 2013 suggests that this alert tool might have

complementary skill with respect to radar-based thunderstorm nowcasting systems for storms which do not show a clear20

convective signature.
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1 Introduction

1.1 Rainfall monitoring, nowcasting and warning systems

In order to increase preparedness and to reduce human and economic impacts of natural hazards caused by heavy precipitation,

such as surface water flooding in urban areas, flash floods or debris flow, warnings are issued to local authorities and population

when rainfall amounts exceed some threshold values over a given area in a certain period of time. The thresholds corresponding5

to the alert levels are usually given by the depth of observedrainfall for a given duration which is likely to cause floods accord-

ing to examination of rainfall accumulations during previous flooding events, and they are often refined based on the findings

of post-events analyses. Therefore, they tend to be specificto individual regions (e.g., Alfieri et al., 2012; Sene, 2013). Both

rainfall depths and river discharges corresponding to pre-defined return periods are also used as thresholds for the alerts (e.g.,

Alfieri et al., 2011; Javelle et al., 2014; Fouchier et al., 2015). For some applications, precipitation thresholds depend also on10

antecedent rainfall: for example, when issuing landslide,debris flow or urban flooding warnings, the amount of precipitation

measured in the hours or days preceeding the onset of a storm event has to be carefully considered, since it strongly influences

soil saturation conditions or the spare capacity in the drainage network of a city, playing a fundamental role in determining

the severity of the hazard (e.g., Neary and Swift, 1987; Giannecchini et al., 2000; Wieczorek and Glade, 2005; Martina etal.,

2006; Guzzetti et al., 2007; Sene, 2013). Soil moisture state is a basic input variable also of the US National Weather Service15

flash flood forecasting system. In such a tool, rainfall-runoff curves are computed on a regular basis for each basin taking into

account current soil moisture conditions, and the average rainfall over a specified area and temporal interval requiredto initiate

flooding on small streams (flash flood guidance) is thus obtained, once the threshold runoff is known (e.g., Sweeney, 1992).

Real-time automatic monitoring of precipitation and reliable rainfall forecasts are thus necessary ingredients to issue accurate

and timely warnings, especially for flash floods, which occurrapidly and result in a limited opportunity for warnings to be pre-20

pared and issued (e.g., Collier, 2007). The large spatial and temporal variability of rainfall requires monitoring andforecasting

systems capable of measuring and predicting precipitationwith high spatial and temporal resolutions. Even though rain gauge

provide precise rainfall measurements at the local scale, the operational ground station networks can rarely provide precipita-

tion estimates with high spatial resolution: even in the European Alps, one of the regions with the densest rain gauge networks,

typical spacing between stations is about 10 km, whereas theprecipitation distribution can vary at scales much smallerthan 1025

km (e.g., Frei and Schär, 1998; Germann and Joss, 2001; Isotta et al., 2014). Ground-based weather radars, on the other hand,

can measure precipitation over large areas with high spatial and temporal resolution, even though the variability in the relation

between reflectivity and rainfall intensity limits the accuracy of the measurements; moreover, the use of radar in mountainous

regions requires proper solutions and corrections to the data (e.g., Germann et al., 2006). Combining rain gauges with radar

measurements through geostatistical interpolation techniques is a valid solution to obtain reliable precipitation fields (e.g.,30

Sideris et al., 2014a). Since the uncertainty of medium and long-range forecasts from numerical weather prediction models

is still too large at the scale of individual storms and rainfall peaks, automatic warning systems usually need more accurate

predictions with lead time shorter than 6 hours (nowcasting) to issue reliable alerts for small geographical regions such as ur-

ban areas or mountain catchments. Operational quantitative precipitation nowcasting is based on numerical weather prediction
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models and heuristic systems. Even though the first includesthe full set of equations describing the atmospheric processes,

the assimilation and the initialisation cycles as well as the time required to obtain the forecast are still too long withrespect to

the needs of operational nowcasting (e.g., Panziera et al.,2011). On the other hand, nowcasting by radar-based heuristic sys-

tems, such as Lagrangian extrapolation or analogues, quickly provides forecasts of rainfall and outperforms numerical model

forecasts for the first hours, even though it strongly suffers from the lack of growth and decay mechanisms able to predictthe5

evolution of the storms for lead times longer than a few hours(e.g., Panziera et al., 2011; Mandapaka et al., 2012). Finally,

some studies propose a merging of the forecasts obtained with numerical weather prediction models and heuristic systems

(e.g., Golding, 1998; Bowler et al., 2006; Atencia et al., 2010; Haiden et al., 2011), but this approach will be successful as long

as numerical models could provide good forecasts at the nowcasting spatio-temporal scales (Wilson et al., 2010).

10

1.2 Radar-based extreme rainfall analysis

Even though radar archives are nowadays a unique resource toinvestigate the behavior of precipitation, since weather radar

has been widely used for quantitative precipitation estimation (QPE) for many years, radar data have not yet been extensively

used to derive statistics of extreme rainfall. Among the first papers presenting extreme rainfall analyses based on radar QPE,

Durrans et al. (2002) obtained depth-area ratios for several return periods for a large portion of Western United Statesin-15

cluding part of Great Plains and the Rocky Mountains, by fitting a Gumbel distribution to annual radar rainfall maxima for

durations of 1, 2 and 4 hours using a radar data set of 8 years. They state that the most significant limitations of radar-rainfall

data, both for frequency analyses and for development of depth-area relationships, are the shortness of the archive andthe

heterogeneities caused by continual improvements in the data processing algorithms. In order to derive radar areal reduction

factors, Allen and DeGaetano (2005) estimate areal precipitation depths for the 2-, 5- and 10-years return periods for New20

Jersey and North Carolina (United States) employing a 5-years radar data set of daily rainfall. Overeem et al. (2009) employed

11 years of radar data adjusted using rain gauges to derive depth-duration-frequency curves for accumulation periods of 15

minutes to 24 hours over the Netherlands. They also found reasonable agreement between the parameters of the Generalized

Extreme Value (GEV) distribution derived with rain gauges and radar, showing that radar data are suitable to construct depth-

duration-frequency curves. The potential of using radar QPE for rainfall-frequency analyses has been recently illustrated also25

by Marra and Morin (2015), who derived intensity-duration-frequency curves for durations of 20 minutes, 1 and 4 hours by

using 23 years of radar data over Israel, a region characterised by steep climatic transitions. By means of a detailed compar-

ison between gauges- and radar-derived IDF curves, they could show that weather radar is able to discern between climatic

areas in terms of rainfall extremes and to identify extreme precipitation small-scale patterns in a region where regionalization

approaches are very difficult to apply because of the strong rainfall gradients and sparse rain gauge stations.30

1.3 Objective of this paper

The objective of this paper is twofold: first, to present a radar-based regional extreme precipitation analysis for Switzerland;

second, to introduce NowPAL (Nowcasting of Precipitation Accumulations), the nowcasting system recently developed at
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MeteoSwiss to issue precipitation alerts for pre-defined geographical regions. The two objectives are closely related, since the

extreme rainfall analysis provides the rainfall thresholds used by NowPAL for the alerts. This article offers an intuitive and

practical solution for both implementing an automatic regional rainfall alert system and for choosing the rainfall thresholds

corresponding to the alert levels. The basic assumption is that in a country characterized by different precipitation regimes such

as Switzerland (e.g., Isotta et al., 2014), an alert of a specific level should have the same probability to be issued in every region5

in a year. Thus, the alert thresholds should be the rainfall amounts corresponding to specific return periods. The originality of

this article, with respect to previous works dedicated to extreme precipitation analysis, nowcasting and warning systems, lies

in the following aspects.

1. The high spatial resolution of radar precipitation field is fully exploited, as rainfall maxima of several statistical quantities

describing regional rainfall distribution are not only taken into account for the extreme value analysis, but are also used10

by the nowcasting system to issue alerts.

2. The presented nowcasting system can be targeted for specific user requirements, as it is fully configurable and it is based

on a simple and practical approach. Thus, it is appropriate to issue alerts for customers interested in specific applications

and regions, such as small urban areas or alpine catchments.

3. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some15

pre-defined thresholds, but also as soon as the sum of past andforecast precipitation is larger than threshold values. In

fact, in operational nowcasting the sum of accumulated and predicted rainfall is the quantity which actually drives the

emergency decisions taken during heavy precipitation events (see figure 1).

4. Since the nowcasting system should issue alerts not only for rare events, but also for frequent storms producing rainfall

amounts with sub-annual return periods, the analysis is performed taking into account monthly maxima of warm and20

cold seasons.

In this paper, the term alert indicates the situation in which the pre-defined rainfall thresholds are exceeded over a given region,

and timely communications are fully automatically sent to the customers of the nowcasting system. Since the utility of the

alerts and the performance of the system strongly depends onthe quality of the ingested QPE products and on the skill of the

forecasting systems, a verification of the alerts issued by NowPAL is beyond the scope of this work.25

1.4 Outline of this article

The data used by the NowPAL system to issue alerts in real-time, as well as those employed for the statistical analysis, are

described in section 2, which also presents the methodologies adopted for the regional extreme rainfall analysis. The results of

such analysis are presented in section 3, whereas section 4 illustrates the details of the NowPAL system. Section 5 provides an

example of the functioning of the system through the analysis of a urban flood. Finally, section 6 presents the main conclusions30

of this work.
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2 Data and methods

This section introduces the data which are used in real-timeby the NowPAL system, together with the data set and the method-

ologies employed for the regional extreme rainfall analysis.

2.1 Past rainfall

Precipitation fields for past rainfall estimates are obtained from the MeteoSwiss operational radar product for QPE (Germann et al.,5

2006), and from a recent radar-rain gauge merging technique(Sideris et al., 2014a). Such products are used as QPE for both

the real-time NowPAL system and the regional extreme value analysis.

The third generation (3GEN) of Swiss radars, installed backin 1993 and consisting of three C-band Doppler radars, has been

recently renewed. Two more radars were added to the network,in order to improve rainfall estimates in the inner Alpine regions

where the third generation network had low visibility. Thus, the fourth-generation (4GEN) radar network is now composed by10

five C-band Doppler radars with state-of-the-art dual polarization technique (Germann et al., 2015). The operational scan strat-

egy of the 3GEN and 4GEN radars consists of 20 elevations between -0.2◦ and 40◦ repeated every 5 minutes. For the extreme

value analysis presented in this paper, data from 2005 to 2015 were considered, excluding the year 2011, during which the

3GEN radars were substituted. The analysis was not extendedfurther into the past since data prior to the year 2005 had only a

global bias adjustment, while data from 2005 were adjusted for both local and global bias, giving more reliable precipitation15

measurements (Germann et al., 2006). Since the last 4GEN radar in Canton Grisons is operational since the beginning of 2016,

the rainfall maps used in this study are cartesian composites derived from the measurements of three radars till 2013, four

radars afterwards.

The best radar estimate of precipitation at ground level is the result of sophisticated data processing based on more than 50

years of experience in radar operation in the Alpine environment at MeteoSwiss (Joss and Lee, 1995; Germann et al., 2006).20

Such a product is retrieved through a weighted mean of all thevolumetric radar observations above the ground, and radar data

processing includes automatic hardware calibration, ground clutter elimination, visibility correction, correction for vertical

profile of reflectivity, removal of residual non-weather echoes and bias correction (Germann and Joss, 2002; Germann et al.,

2006). The latter compensates for systematic errors due to non-uniform beam filling, low level growth not seen by the vertical

profile correction and attenuation.25

The merging of radar and rain gauge measurements is operationally performed at MeteoSwiss by CombiPrecip, a co-kriging

with external drift geostatistical method which incorporates both spatial and temporal information into the modelling and esti-

mation technique (Sideris et al., 2014a). CombiPrecip locally adjusts the radar rainfall map according to the values ofthe rain

gauges; the main assumption is that the point rain gauge measurements are the primary, trustworthy data, while the radardata

function as an external drift. The scheme includes a convection control routine, in order to reduce the negative effect on kriging30

of the scarce representativeness of rain gauge measurements in case of convective rainfall patterns (Sideris et al., 2014b).

The horizontal spatial resolution of both radar and CombiPrecip precipitation maps is 1 km x 1 km. The temporal resolu-

tion of radar measurements is 5 minutes, whereas CombiPrecip has a temporal resolution of 1 hour before 2012, 5 minutes
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since 2013. For the statistical analysis presented here, 1 and 3 hours rainfall accumulations were obtained from radar maps

temporally aggregated every 5 minutes, whereas 6 hours and longer accumulations were obtained from CombiPrecip maps

temporally aggregated every hour. The use of radar instead of CombiPrecip for short accumulations is motivated by the need

to ingest as soon as possible in NowPAL these data, and in real-time radar maps are available before CombiPrecip. Moreover,

using CombiPrecip to derive rainfall totals as short as 1 and3 hours would have led to large negative bias in precipitation totals5

corresponding to given return periods, since the temporal resolution of CombiPrecip available through the whole data set is 1

hour.

2.1.1 Residual ground clutter removal

The continuous repetition of low echoes due to residual ground clutter in radar QPE can produce isolated large rainfall totals

over long temporal aggregations. For the study of extreme rainfall, therefore, the identification of radar measurements contami-10

nated by ground clutter has primary importance. Even thoughground clutter elimination algorithms are part of the sophisticated

data processing of radar data, 3GEN radar rainfall estimates were still partially contaminated by clutter, in opposition to 4GEN

radar data which are almost free from it. For this study, we employed the two-sample Kolmogorov-Smirnov statistical test to

identify the pixels significantly contaminated by residualground clutter in 3GEN radar data. The two-sample Kolmogorov-

Smirnov test is a non-parametric hypothesis test which can be used to state whether or not two samples are characterized by the15

same probability distribution (Kolmogorov, 1933; Smirnov, 1948). The test is based on the comparison between cumulative

distribution functions (C) of the two samples, the test statisticD being the supremum of the set of their distances:

D = sup
x

(|C1(x)−C2(x)|) (1)

The null hypothesis assumes that two samples are described by the same probability distribution, and it is rejected if the test

statistic is larger than a critical value which depends on the significance levelα. In our case, the two samples are the 5-min20

radar rainfall estimates at a given pixel for a year of 3GEN and a year of 4 GEN data, andα was set to 0.01. Assuming that the

differences in distributions between 3GEN and 4GEN radar data due to residual ground clutter are more evident at low rainfall

intensities, because of the frequent repetition of low intensity echoes, the range considered for the test was limited to [0,5]

mm/h. Two pairs of years characterized by similar mean yearly precipitation in Switzerland were chosen: 2007 and 2013, 2008

and 2014. Kolmogorov-Smirnov test was then applied to the two pairs of years, and the pixels which did not pass the test in25

both cases were considered as affected by residual ground clutter and were not included in the extreme rainfall analysis. Figure

3 shows the 3-hours rainfall accumulation for three precipitation events occured between Italy and Swizerland, together with

the resulting mask shaded in black. Such region is particularly affected by residual ground clutter, since the radar beam directly

impacts high mountains towards the West as, for example, Monte Rosa (4634 m asl). Figure 3 shows that most of the cluttered

pixels are located over high mountain peaks, where the presence of residual ground clutter could have effectively contaminated30

radar measurements.

We are aware that changes in the radar scan strategy from 3GENto 4GEN radars might have led to the removal of non-
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cluttered pixels, and that pixels affected by residual ground clutter in both 3GEN and 4GEN might not have been identifiedby

this analysis. However, we assume that the results of this analysis are appropriate to the scopes of this study.

2.2 Future rainfall

Information on rainfall expected in the near future is derived from three different products: COSMO, INCA and MAPLE. Such

rainfall fields have not been used for the extreme value analysis, but they are used by the real-time NowPAL system.5

COSMO (COnsortium for Small-Scale Modeling) is the numerical model operationally used at MeteoSwiss, as part of a

major cooperative research effort between several national weather services in Europe (http://cosmo-model.org). Itis a high-

resolution, limited-area, non-hydrostatic numerical weather prediction model with the radar-rainfall observations assimilated

using a latent heat nudging scheme. COSMO has a spatial resolution of 1 km, forecasts are produced every 3 hours and extend

up to 33 hours with 10 minutes temporal resolution.10

INCA (Integrated Nowcasting through Comprehensive Analysis) is an operational nowcasting system producing a rainfall

forecast based on Lagrangian extrapolation of the precipitation field for the first hour of forecast (0 to 1 hour lead times), and

on blending of extrapolation with COSMO forecasts for the hours 2 to 4 (1 to 4 hours lead times); forecasts for longer lead

times coincide with numerical model forecasts (Haiden et al., 2011). The INCA precipitation analysis incorporates station data,

radar data and elevation effects (orographic effects on rainfall). Forecasts are produced every 10 minutes as new radarand rain15

gauge measurements become available, and extend up to 6 hours lead time with 10 minutes temporal resolution.

MAPLE (McGill Algorithm for Precipitation Nowcasting) produces forecasts by first estimating the velocity field using vari-

ational echo tracking and then extrapolating the current radar image according to the velocity vectors previously derived

(Germann and Zawadzki, 2002; Turner et al., 2004). This nowcasting system produces forecasts every 5 minutes, up to 12

hours lead time with 5 minutes temporal resolution. Over theAlps, MAPLE has a larger skill with respect to COSMO forecasts20

for lead times shorter than 3 hours (Mandapaka et al., 2012).At present, significant efforts are being made in order to include

the growth and decay processes due to the orographic forcingon the extrapolation scheme (Sideris et al., 2015).

2.3 Extreme rainfall analysis

The regional extreme rainfall analysis performed in this study has been conducted on radar and CombiPrecip precipitation fields

aggregated overN different temporal periods. In particular, radar data havebeen used to derive 1 and 3 hours accumulations,25

whereas CombiPrecip product was aggregated to 6, 12, 24 and 48 hours (see section 2.1). These temporal periods, which are

calledtoti with i = 1, ..,6, have been selected because they are employed by the officialMeteoSwiss warning system to issue

alerts for the 159 Swiss warning regions shown in figure 2. Theregionsregj , with j = 1, ..,159, were not defined as part of

this study, since they are administrative districts or catchments; their area ranges from about 100 to 500 km2, with an average

value of 264 km2. Different quantities describing the distribution of the temporally aggregated precipitation field within each30

warning regionR(toti)j were computed, exploiting the high spatial resolution of radar and CombiPrecip rainfall maps:

1. R(toti)j , the average rainfall in periodtoti in the regionj
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2. max(R(toti)j), the maximum of 1 km2 rainfall in periodtoti in the regionj

3. Qx(R(toti)j , the 90 percentile of rainfall in periodtoti in the regionj

4. max(RS(toti)j), the maximum of regional rainfall in periodtoti in the regionj after a spatial aggregation of the original

field with a square moving window of areaSxS km2.

These statistical quantities are calledregional statisticsand are indicated withstat(R(toti)j). Since regional statistics5

describe different aspects of regional rainfall distribution, they are required in order to provide a variety of solutions to NowPAL

customers, which might be interested in different featuresof the rainfall field for a variety of applications. For example, while

for hydrologic applications the average rainfall in the region is needed, the maximum rainfall in the region might be useful to

emergency agencies which need to take care also of very localized heavy rainfall. The aim of considering the maximum of

precipitation after spatial aggregation with moving windows of a given area is motivated by the need to derive return periods10

of rainfall patterns of different sizes, so that an alert canbe issued as soon as a rainfall pattern of that size is observed within

the region, even though only a part of the region is affected by heavy rainfall.

The extreme value analysis presented here is based on a block-maxima approach. Statistical modeling of the block-maxima

of precipitation is performed using the Generalized Extreme Value (GEV) distribution (e.g., Coles, 2001) whose cumulative

distribution function has the form:15

G(z) = exp

{
−

[
1+ ξ

(
z−µ

σ

)]− 1
ξ

}
(2)

and it is defined on the set{z : 1+ ξ (z−µ)/σ > 0} wherez represents maximum precipitation,−∞< µ <∞ is the location

parameter,σ > 0 is the scale parameter and−∞< ξ <∞ is the shape parameter. The latter describes the heaviness of the

tail of the distribution: the larger the value ofξ, the heavier the tail of the distribution, the larger the probability of occurrence

of extreme values. The subset of the GEV family distributions with ξ = 0 is interpreted as the limit of the GEV asξ → 0,20

leading to the Gumbel distribution; the case withξ > 0 (ξ < 0) correspond to the Fréchet (Weibull) family distributions. The

parameters of the GEV are estimated in this study using maximum likelihood estimation (e.g., Coles, 2001) by means of the

gevfitMatlab function, which also provides the corresponding 95% confidence intervals.

The quantiles of the GEV can be written as a function of the return period by inverting equation 2:

zp =





µ− σ
ξ

[
1−{− ln(1− p)}−ξ

]
for ξ 6= 0

µ−σ ln{− ln(1− p)} for ξ = 0
(3)25

wherep is the probability that the maximum rainfall exceedszp and the return periodT is thus:

T = 1/p (4)

zp is called the return level associated with the return periodT , and it represents the rainfall amounts which is expected tobe

eceeded on average once everyT blocks. The curve which shows the behavior ofzp againstT is called return level plot, and
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by log-log transforming the x axis, it is possible to focus onthe tail behavior of the distribution. Even though in this study

return level plots were obtained for each rainfall accumulation, warning region and regional statistic, here we only show maps

of the return levels corresponding to given return periods,rainfall accumulation and regional statistic for each warning region.

Since we need to get rainfall amounts corresponding also to sub-annual return periods, the monthly maxima of each regional

statistic and warning region have been extracted from the 10-years data set. In fact, NowPAL must be able to issue alerts also5

for heavy rainfall episodes which are relatively frequent and not necessarily extreme. Our assumption is that the GEV param-

eters are constant within each warning region, and it is motivated by the need to derive rainfall thresholds corresponding to

specific return periods for the regions. The local maxima used for the statistical analysis have not necessarily been measured

at the same place, but they might have occurred at different locations within the region of interest. As soon as they belong to

the same warning region, they constitute the empirical observations for that region, and their actual position within the region10

is not taken into account. With this regional approach, the limited length of the monthly block is compensated by the large

number of pixels within each region which might originate the regional maximum. In order to guarantee the temporal indepen-

dence of maxima of blocks as short as months, a minimum lag time of 48 hours among maxima occurring in two successive

months but close in time was imposed for accumulations ranging from 1 hour to 1 day. In fact, Fukutome et al. (2015) and

Barton et al. (2016) found that this is the maximum declustering run length in Switzerland for hourly and daily precipitation15

respectively. For 2-days rainfall accumulations, such lagtime was extended to 72 hours. In case of maxima of two separate

months occurring within this lag time, the largest was assigned to the corresponding month, while the smallest was substituted

with the second maximum of the other month. Moreover, the analysis was performed separately for the warm (May to October)

and cold (November to April) seasons in order to reduce the effect of seasonality on the choice of maxima. Thus, a total of 6

(months) x 10 (years) = 60 monthly maxima are considered for each season.20

3 Regional extreme rainfall analysis

In this section the main results of the regional extreme rainfall analysis are reported.

3.1 Return level plots

As introduced in section 2.3, the GEV distribution has been fitted to seasonal monthly maxima of rainfall for each warning25

region, regional statistic and for several temporal accumulations. As an example, figure 4 shows the GEV fitted to summer

maxima of 1-hour mean rainfall measured in the Schaffhausenwarning region (273 km2), and the return level curve with

empirical observations for the maximum of regional rainfall computed after a spatial aggregation of the original field with a

moving window of 3x3, 5x5 and 7x7 km2. As expected, return levels decrease with increasing the size of the moving window

used to smooth the original rainfall field, with the regionalmean providing the smallest return levels. For example, a storm30

which produces about 20 mm of rainfall on average in the region has the same 3-years return period as a storm which causes

about 70 mm of rainfall in a 9 km2 area within the region. Another feature of the regional return level plot, which is common
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also to other Swiss regions, is that the confidence of the GEV fitting increases with increasing the averaging area, with the

mean rainfall providing the smallest confidence interval.

3.2 Return level maps

Return level plots for a given rainfall accumulation, like that shown in figure 4, provide a fast tool to associate a rainfall amount

to each warning region for a particular return period and regional statistic. Maps showing for each warning region the return5

level corresponding to 3, 6 and 12 months return periods for 3, 6, 12 and 24 hours rainfall for summer are presented in figure

5. It should be noted that the maps of the first line of figure 5 are not quantitatively comparable with the other maps, since

they were derived from radar and not from CombiPrecip as the other maps of the figure (see section 2.1). The regional statistic

used to obtain the maps ismax(R5(toti)j), i.e. the maximum of regional rainfall over an area of 25km2; thus, the original

rainfall field was spatially aggregated with a moving windowof 5x5 km2 before extracting the monthly maximum within10

each region. The borders of the regions for which more than half of the pixels were identified as affected by residual ground

clutter are indicated with a thicker contour in the map, indicating that the corresponding return levels were derived only from

a small part of the region. Only for one region (shaded in black in the figure) on the Jura mountains it was not possible to

derive return levels, as more than 95% of it was affected by residual ground clutter. Since monthlymaxima are considered

for each 6-months season, the rainfall amount corresponding to a return period of 3 months is expected to occur on average15

twice a summer, while the rainfall with 6 months return period occurs on average every summer; similarly, 12-months return

period is associated to a rainfall amount expected on average every two summers. Figure 5 shows that the largest return levels

occur south of the Alps in the Ticino region for 6-hours or longer precipitation accumulations, whereas for 3-hours rainfall the

largest values are observed North of the Alps, in particularin the Western Bernese Alps as well as in the Jura mountains and

north-east Switzerland. The central Alpine chain exhibitsreturn levels lower than the southerly and northerly Alpineslopes, in20

particular Cantons Valais and Grisons show very low return levels for accumulations longer then 3 hours. It could be argued

that the maxima of rainfall of these two latter region are underestimated because the 3GEN of radars had low visibility there;

however, this is not the case since CombiPrecip data are usedin the analysis. The Jura mountains, on the other hand, show

larger values than the Swiss Plateau, with rainfall totals comparable with those oberved over the Northern Alps. The effect of

varying the regional statistic on the return levels is shownin figure 6 for 1 hour radar rainfall accumulation for return periods of25

3, 6 and 12 months. The regional statistics employed for the analysis aremax(R1(toti)j), max(R3(toti)j), max(R7(toti)j)

andR(toti)j . As it was also observed in figure 4, return levels increase with decreasing the averaging area, with the mean

rain providing the lowest values. The spatial distributionof the return levels for 1 hour rainfall is generally similarto those

of 3-hours precipitation, with some regions of Engadin in the Canton Grisons showing values as large as the Western Bernese

Alps. The spatial distribution of the hourly and daily return levels shown in figures 5 and 6 mirrors the findings of previous30

alpine climatologies (e.g., Frei and Schär, 1998; Isotta etal., 2014; Fukutome et al., 2015). Figure 6, moreover, showsthat

the regional statistic considered for the extreme value analyis has a huge impact on the thresholds which should be used by

NowPAL to issue alerts, and therefore it should be carefullychosen when designing a regional alert system, depending onthe

nowcasting application and specific customer needs.
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4 NowPAL algorithm description

This section describes in detail the real-time NowPAL algorithm, whose structure is schematically illustrated in figure 7.

NowPAL is designed to monitor rainfall accumulations within the regions of interest and to automatically issue the alerts if the

thresholds are exceeded depending on the requirements of the customers. Indicating withN the rainfall accumulation periods

in which the customers are interested, withpi = p1,p2, ..,pN the minutes of the past and withfi = f1,f2, ..,fN the minutes of5

the future of the rainfall accumulations,toti = pi + fi represent the number of minutes for which total rainfall accumulations

are computed. IfM is the number of pre-defined geographical regions associated to each customer,regj = reg1, reg2, .., regM

are the regions which will be monitored for a specific client;thus, an alertalij corresponds to each temporal period oftoti

minutes for the regionregj , in case of threshold exceedance. The system runs everyτi minutes, by taking the most updated

past and forecast rainfall fields for total rainfall computation.10

4.1 Computation of rainfall totals

This subsection briefly describes the part of the NowPAL algorithm responsible for computing past, forecast, and total rainfall

accumulation fields.

In order to derive past rainfall accumulations, NowPAL makes use of the radar QPE or CombiPrecip rainfall maps of the

last pN minutes (see section 2.1). Before computing summations, the algorithm checks if 5-minutes radar images are miss-15

ing within the longest accumulation period. The gaps due to missing images are filled by replicating the last available rain-

fall field, assuming that within a short period the rainfall field does not significantly change (Eulerian persistence approach,

Germann and Zawadzki, 2004). In case of a gap caused by consecutive missing images, the second missing image is assumed

to be the average of the last two available radar images, excluding those replicated with Eulerian persistence. Similarly, the

third missing rainfall field is created by averaging the three last images not already replicated in this process. This action is20

performed till a configurable number of times (e.g. 3 in the current version of the system). Once the data gaps have been filled,

some plausibility controls are performed, with the aim to check whether the rainfall values measured every 5-minutes bythe

radar or estimated by CombiPrecip are within a range of plausible values. The average rainfall and the fraction of area with

rainfall larger than a configurable threshold within the Swiss radars domain and within circles around the radars have tobe

lower than configurable thresholds, as specified in a configuration file. The images which do not show plausible rainfall values,25

which might be due to radar artifacts or other errors, are discarded and substituted with the previous ones, following the Eu-

lerian persistence approach described above. Then the temporal consistency between successive radar or Combiprecip images

is checked: some statistical indices between the last radarimage and the previous one, and between the previous one and the

one before are computed (correlation, bias, variation of fraction of area with rainfall larger than a configurable threshold).

These statistical indices are computed taking into accountthe rainfall measured only within Switzerland. Then, the difference30

between the indices relative to the two pairs of images is computed and evaluated: if it is larger than configurable thresholds,

the last radar image is discarded and substituted with the Eulerian persistence approach. It is worth highlighting thatEulerian

replacement of missing and not-plausible images occurs very rarely, as more than 99.9% of 5-minutes radar images of a year
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are regularly produced in real-time, and they contain plausible rainfall values. The past rainfall accumulationsR(pi) are then

computed at the pixel level, by taking into account for each accumulation period also the radar images replicated or substituted

with Eulerian persistence. Four quality flags, accounting for files availability and the outcome of the Eulerian replacement of

missing and low-quality files, are associated to the past rainfall accumulation image and reported in the final alert bulletin.

Section 2.2 already introduced the nowcasting tools which provide forecast rainfall fields for NowPAL. In this step of the algo-5

rithm the most recent available forecasts for the nextfN minutes are taken into account to compute the temporal aggregation.

Similarly to what is done for past rainfall accumulations, the forecast rainfall data are also checked for possible missing images

and quality controlled, and the same approach of Eulerian persistence substitution developed for past rainfall accumulations is

implemented also for forecasts. Then, forecast rainfall accumulationsR(fi) are computed as a simple summation at the pixel

level, and five quality flags, giving information about files availability, quality controls outcome and the delay of the forecast10

with respect to current time, are assigned to these fields andreported in the final alert bulletin.

Finally, total rainfal fieldsR(toti) are obtained by summing at the pixel level the most updated past and forecast rainfall

accumulations.

4.2 Issuance of regional alerts

This subsection briefly describes the part of the algorithm responsible for issuing alerts for pre-defined geographicalregions.15

A number of consecutive actions is done by the system:

1. Total rainfall field smoothing. In this step the algorithmperforms a spatial aggregation of the total precipitation field with

a square moving window of configurable size, producingRS(toti), a smoothed total rainfall field which is used by the

system if the regional statistic chosen to evaluate regional rainfall is max(RS(toti)j) (see section 2.3). In the current

configuration of NowPAL, aimed to issue alerts for the Swiss warning regions, the area of the square moving window is20

set to 5x5 and 7x7 km2, with the largest window being used for the longest accumulations.

2. Computation of regional statistics. In this step the regional statisticsstat(R(toti)j) introduced in section 2.3, representa-

tive of the total rainfall distributionR(toti)j over each regionj, are computed. If the required statistic ismax(RS(toti)j),

the maximum ofRS(toti) within each region is derived. Moreover, some additional statistics are also computed, in order

to provide further information about the regional rainfalldistribution; these include the percent ofRS(toti)j caused by25

RS(pi)j , the fraction and the area of each region with rainfall larger than a configurable threshold, the average regional

rainfall, the maximum and the total of regional rainfall.

3. Validation of regional rainfall. In this step of the algorithm,RS(toti)j is quality controlled through a plausibility test: for

each region, a maximum value of mean hourly rainfall accumulation is allowed. Moreover, also a coefficient from 0 to 1

should be defined, as this number is multiplied by the maximummean hourly rainfall and by the number of hours oftoti,30

to obtain the maximum possible mean regional rainfall for accumulations longer than hourly. This regional plausibility

control also results in a quality flag which is reported in thefinal alert bulletin.
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4. Evaluation of regional statistics. The regional statistics stat(R(toti)j) are then compared with the thresholds values in

order to assess if alerts need to be issued in case of threshold exceedance. This step results in a Temporary Alert Bulletin

TABi, which is a list of the regions with the relative alert levels, regional and additional statistics.TABi is produced

for eachR(toti) total rainfall accumulation, and it is updated everyτi minutes.

5. Temporal filtering of alerts. Since during a heavy precipitation event the thresolds corresponding to the alerts might be5

continuously exceeded for a particular region for a long period, the aim of temporal filtering is to identify the alerts

reported inTABi which should receive special attention by the customer because they can be considered as new. For

this scope, alatency timelati has to be defined for each total rainfall accumulationtoti, representing the temporal period

during which NowPAL checks if an alert has been previously issued for the same region; if this is the case, the system

considers the latest alert as new only if its level is larger from that of the previous alerts found inTABi, or if the latency10

time since the last new alert has passed. Then a special flag isassigned to alerts recognized as new, and reported in a

Final Alert BulletinFABi for each alert. By disseminating only the alerts identified as new inFABi, NowPAL can thus

control how often the customers should be alerted in case of continous rainfall threhsold exceedance.

Figure 8 provides an example of visualization of the alerts issued by NowPAL for the 159 Swiss warning regions. Different

colors denote the level of the alerts, whereas the regions with a thick border are those for which a new alert is identified at the15

current time.

5 Urban case study

This section presents a case study for the urban flood which occurred in the city of Schaffhausen in Switzerland on 2 May

2013. The aim of this short analysis is to provide a concrete example to make the reader familiar with the regional alerting tool

presented in this paper.20

On 2 May 2013, a moist south-westerly large-scale circulation associated with an upper level trough favoured the development

of multicell thunderstorms in Switzerland, with damages being reported in many Swiss Cantons. As shown in figure 9, between

16:00 and 16:30 UTC, a mesoscale convective system rapidly developed over the city of Schaffhausen, which was heavily af-

fected by intense precipitation. Widespread flooding through the city and the surrounding areas was reported, resulting in 25

milions of Swiss Francs damages. From 16:20 to 17:20 UTC, thelocal rain gauge measured a total rainfall of 51.4 mm, with25

46.6 mm falling in 30 minutes and a peak intensity of 32.8 mm within 10 minutes (16:40 to 16:50 UTC); small hail has also

been observed. NowPAL was run for the area of Schaffhausen municipality (44 km2, see figure 9), by combining the radar

and MAPLE data which would have been available in real-time;both fields are produced within 3 minutes after the nominal

time. The accumulation period is 1 hour (30 min past + 30 min future), and the rainfall thresholds are 20, 30, 40 and 50 mm,

corresponding to warm-season return periods of 6 months, 1,2 and 4 years formax(R7(toti)j) within the larger Schaffhausen30

warning region. The regional statistic accounting for the total rainfall measured within the Schaffhausen municipality was set

to the mean, updating frequency was 5 minutes and latency time 10 minutes. Figure 10 shows the behavior over time of radar
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5-min rain rate, 30-minutes past (radar) and forecast (MAPLE) accumulation, and 1-hour total rainfall for Schaffhausen. TAB

and FAB alert levels are also reported, with the new alerts ofFAB highlighted in bold. NowPAL issued an alert level 1 at

16:10, when total rainfall exceeded the lower threshold of 20 mm. Alert level increased to 3 at 16:15, and to 4 at 16:20. Forthe

largest part of the storm, MAPLE predictions were contributing most to total precipitation accumulation, and they wereindeed

overestimating rainfall quantity. The maximum mean rainfall intensity was observed between 16:45 and 17:00. Then rainfall5

intensity started to slowly decrease, as well as MAPLE forecasts. At 17:10 alert level dropped to 3. After 17:15, past radar

rainfall accumulation was larger than MAPLE forecasts. Theeffect of temporal filtering of alerts can also bee seen in figure

10. For example, even though at 17:15 the last radar observations and MAPLE forecasts were corresponding to alert level 2,

alert level 3 was reported in FAB because the latency time wasnot yet expired (see section 4.2). During this storm, end-users

would have received the alert levels marked in bold in the figure, in order to deal with a manageable amount of information.10

Nowcasting of thunderstorms is done at MeteoSwiss by TRT, anautomatic algorithm for the detection, tracking, characterisa-

tion and extrapolation of convective cells (Hering et al., 2008). The system includes a thunderstorm severity ranking product,

which, based on cell attributes such as vertically-integrated liquid water, mean of 45 dBZ echo top altitude, maximum re-

flectivity and cell size above 55 dBZ, classifies each cell in the four categories very weak, weak, moderate and severe. If a

thunderstorm is classified as moderate for two consecutive 5-minutes radar scans, a warning is issued for the regions affected15

by the cell in the following hour according to radar extrapolation. Unfortunately, MeteoSwiss did not issue any thunderstorm

warning on 2 May 2013 for Schaffhausen, as the storm did not reach the category moderate. This means that the convective cell

was not as vertically developed as severe thunderstorms usually are, although it produced a large quantity of rainfall and small

hail particles. The Schaffhausen storm is typical of those that are not correctly classified as severe by common thunderstorm

radar tracking systems, because of their limited vertical depth and convective features. For these storms, which constitute a real20

challenge for forecasters, nowcasting systems based on extrapolation of radar images, such as INCA or MAPLE, are the most

valid solution. The case study presented here shows that NowPAL is needed to combine these forecasts with information about

recent past accumulation, possibly increasing the lead time of warnings.

6 Conclusions

This paper presented a regional extreme rainfall analysis based on 10 years of radar data for the 159 Swiss warning regions and25

introduced NowPAL, a tool for issuing regional heavy precipitation alerts. The statistical analysis and the nowcasting system

are strictly related, since the first is aimed to provide the rainfall thresholds needed by the second to issue the alerts.Thus,

the paper offers an intuitive and practical solution for both implementing a regional rainfall alert system and for choosing the

rainfall thresholds corresponding to the alert levels.

Warm and cold seasons monthly maxima of several statisticalquantities describing the rainfall within the regions werefitted30

to a Generalized Extreme Value distribution for 1, 3, 6, 12 and 24 hours rainfall aggregations. Return level plots, showing the

precipitation amounts correponding to monthly return periods, were obtained for each accumulation period, warning region

and for several regional statistics, i.e. the statistical quantities used to describe the regional rainfall distribution. Thus, the high
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spatial resolution of radar precipitation fields is fully exploited in this analysis. A large variability of return levels was found

between the Swiss warning regions, and it was shown that their spatial distribution depends on the duration of the aggregation

period, independent on the regional statistics. For accumulations of 3 hours or shorter, the largest return levels are found in the

Western Bernese Alps and in the Alps of Cantons Fribourg and Vaud, whereas for longer durations, Ticino exhibits the largest

values. The inner Alpine chain shows the lowest values, in agreement with previous climatologies.5

Return levels are used as rainfall thresholds and associated to different alert levels by NowPAL. In fact, our assumption is that

an alert of a given level, corresponding to a specific return period, should be expected the same number of times during a season

in every warning region. Under this assumption, the extremerainfall analysis objectively provides the threshold values for each

warning region, for a given regional statistic. The alerts of NowPAL can be based on the precipitation observed or forecast

over the region, or on the sum of measured and predicted regional rainfall. The latter quantity has a fundamental importance10

for nowcasting applications for which antecedent rainfallis as important as predicted precipitation, such as urban orsmall

river floods predictions. The dependance of return levels onregional statistic indicates that the latter is a key element of a

regional alert system, which should be carefully chosen. Inorder to answer the needs of end-users which might be interested

in monitoring different aspects of precipitation, in fact,the system should be able to monitor rainfall in real-time over several

spatial and temporal scales. The algorithm, which was described in detail in the paper, also includes a practical methodto15

control the number of alerts issued in case of continuous threshold exceedance during a prolonged precipitation event.For

all these reasons, NowPAL was designed as a fully configurable system, which can be adapted to the different needs of the

end-users.

NowPAL finds a natural application in the prediction of urbanflooding. In order to make the reader familiar with the systemfor

this kind of application, the urban flood which occurred in the city of Schaffhausen in 2013 was analysed in detail. Even though20

a verification of NowPAL alerts is not within the scopes of thepaper, since it performance strongly depends on the qualityof

the ingested QPE and the skill of the adopted forecasting system, the analysis shows that the tool offers a practical method

to efficiently combine in real-time past and forecast rainfall fields and to continuously monitor total rainfall accumulation

over a city. Moreover, the case study suggests that the system might have complementary skill with respect to radar-based

thunderstorm nowcasting systems for storms which do not show a clear convective signature because of their limited vertical25

development. For such storms, combining two-dimensional measured and forecast precipitation fields can add lead time to the

heavy rainfall warnings.

A comparison of extreme rainfall analyses derived from radar and rain gauges deserve future investigations. Even though rain

gauges typically provide longer and more homogeneous data records with respect to radar, they suffer from limited spatial

representativeness. Radar data with 1km2 spatial resolution, on the other hand, offer the opportunity to investigate in detail30

not only the geographical variability of extreme precipitation, but also the behavior of extremes over different spatial scales.

Thus, extreme rainfall statistics derived from radar and rain gauges provide complementary information, and the specific

application should drive the choice about the source of datato take into consideration. The NowPAL system presented here is

an excellent example of a nowcasting application which requires a radar-based statistical analysis, for which rain gauges would

have provided only very limited information.35
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Figure 2. The 159 Swiss warning regions for which an extreme rainfall analysis is performed in this study.
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Figure 3. Zoom between Italy and Switzerland of the mask used to remove pixels affected by residual ground clutter in 3GEN radar data. 3

hours rainfall accumulations for three different time steps are shown inthe left column, while the right column shows the same field with the

pixels affected by residual ground clutter shaded in black. The location of the Monte Lema radar is indicated by the radar symbol.
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Figure 4. Histogram of summer monthly maxima of mean rainfall in the Schaffhausen region (273 km2) with GEV fit (left), and correspond-

ing return level plot for several regional statistics (right).
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Figure 5. Maps of summer return levels for the Swiss warning regions corresponding to 3, 6 and 12 months return periods, for 3, 6, 12 and

24 hours rainfall accumulations.
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Figure 6. Maps of summer 1 hour return levels for the Swiss warning regions corresponding to 3, 6 and 12 months return periods, for several

regional statistics.
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Figure 7. Flowchart of NowPAL algorithm.

Figure 8. Example of NowPAL output: map of Swiss warning regions with corresponding alert levels for 1-hour accumulation.
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Figure 9. Time serie of radar images showing the storm that hit the city of Schaffhausen on 2 May 2013. The first panel shows the large-scale

rainfall pattern, with the box indicating the area of the other panels, a smallerregion centered on Schaffhausen municipality (44 km2), whose

boundaries are also shown in bold.

Figure 10. Behavior over time of 5-min rain rate, 30-minutes past (radar) and forecast (MAPLE) accumulation, and 1-hour total rainfall

averaged over the Schaffhausen municipality. NowPAL TAB and FAB alert levels are also indicated, with the new alerts of FAB highlighted

in bold. See text for details.
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