Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
doi:10.5194/hess-2016-79
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
08 Mar 2016
Review status
This discussion paper has been under review for the journal Hydrology and Earth System Sciences (HESS). The revised manuscript was not accepted.
Combining cross-hole geophysical and vadose zone monitoring systems for vadose zone characterization at industrial contaminated sites
Natalia Fernández de Vera1, Jean Beaujean2, Pierre Jamin1, David Caterina2, Marnik Vanclooster3, Alain Dassargues1, Ofer Dahan4, Frédéric Nguyen2, and Serge Brouyère1 1Department of Hydrogeology and Environmental Geology, University of Liège, Liège, 4000, Belgium
2Department of Applied Geophysics, University of Liège, Liège, 4000, Belgium
3Earth and Life Institute - Environmental Sciences, Université Catholique de Louvain, Louvain-La-Neuve, 1348, Belgium
4Department of Hydrology & Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker Campus, Negev 84990, Israel
Abstract. Water flow and solute transport through a fractured vadose zone underneath an industrial contaminated site in Belgium were studied with a new methodological concept. The Vadose Zone Experimental Setup (VZES) combines a vadose zone monitoring system (VMS) with cross-borehole geophysics. The VMS provides continuous chemical and hydraulic information at multiple depths in the vadose zone. When combining such information with multidirectional subsurface imaging from geophysical measurements, flow and transport can be characterized at a scale that covers the spatial variability of the subsurface. The setup was installed on site and monitoring was carried out under natural recharge conditions. Results reveal quick rises in water content as a response to rainfall events in the upper and intermediate part of the vadose zone (down to 3.65 m depth). Macropore, micropore, matrix and preferential flow mechanisms are identified at these depth ranges. At greater depths, flow dynamics is slower and dominated by matrix flow. The governance of water flow mechanisms at different directions is controlled by the heterogeneous distribution of geological materials. Results from sampled waters across the vadose zone reveal that the chemistry of water collected from matrix is different from that collected from fractures. In addition, analysis of heavy metals indicates that Ni is leaching across the vadose zone, and its release might be a consequence of pyrite oxidation from backfilled materials. Results obtained from VZES indicate that the combination of different techniques providing in situ quantitative and qualitative information improves conceptual models of flow and transport in a heterogeneous subsurface.

Citation: Fernández de Vera, N., Beaujean, J., Jamin, P., Caterina, D., Vanclooster, M., Dassargues, A., Dahan, O., Nguyen, F., and Brouyère, S.: Combining cross-hole geophysical and vadose zone monitoring systems for vadose zone characterization at industrial contaminated sites, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-79, 2016.
Natalia Fernández de Vera et al.
Natalia Fernández de Vera et al.

Viewed

Total article views: 337 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
235 77 25 337 26 29

Views and downloads (calculated since 08 Mar 2016)

Cumulative views and downloads (calculated since 08 Mar 2016)

Saved

Discussed

Latest update: 27 May 2017
Publications Copernicus
Download
Short summary
Soil and groundwater remediation at industrial contaminated sites require suitable field instrumentation for subsurface characterization. The proposed method provides chemical, hydraulic information and images from the subsurface via customized sensors installed in boreholes. Their installation at a brownfield allows flow and transport characterization of water and contaminants across a heterogeneous subsurface. The results proof the effectiveness of the method for characterization purposes.
Soil and groundwater remediation at industrial contaminated sites require suitable field...
Share