How to identify groundwater caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions

Supplement:

Table S1: Recording and atmospheric parameter for applied data (Trans = Transmissivity, Up = Upwelling Radiances [W·m⁻²·sr⁻¹·μm⁻¹], Down = Downwelling Radiances [W·m⁻²·sr⁻¹·μm⁻¹])

<table>
<thead>
<tr>
<th>No</th>
<th>Date of Recording</th>
<th>Time (GMT)</th>
<th>Season</th>
<th>Lat</th>
<th>Lon</th>
<th>Trans</th>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.02.2000</td>
<td>08:04</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.83</td>
<td>1.12</td>
<td>1.84</td>
</tr>
<tr>
<td>2</td>
<td>03.04.2000</td>
<td>08:03</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.87</td>
<td>0.99</td>
<td>1.64</td>
</tr>
<tr>
<td>3</td>
<td>21.05.2000</td>
<td>08:03</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.89</td>
<td>0.88</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>22.06.2000</td>
<td>08:03</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.81</td>
<td>1.54</td>
<td>2.52</td>
</tr>
<tr>
<td>5</td>
<td>25.08.2000</td>
<td>08:02</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.66</td>
<td>2.84</td>
<td>4.41</td>
</tr>
<tr>
<td>6</td>
<td>28.10.2000</td>
<td>08:01</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.79</td>
<td>1.52</td>
<td>2.47</td>
</tr>
<tr>
<td>7</td>
<td>31.12.2000</td>
<td>08:01</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.88</td>
<td>0.78</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>21.03.2001</td>
<td>08:01</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.85</td>
<td>1.08</td>
<td>1.81</td>
</tr>
<tr>
<td>9</td>
<td>24.05.2001</td>
<td>08:01</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.86</td>
<td>1.08</td>
<td>1.85</td>
</tr>
<tr>
<td>10</td>
<td>25.06.2001</td>
<td>08:00</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.79</td>
<td>1.74</td>
<td>2.78</td>
</tr>
<tr>
<td>11</td>
<td>11.07.2001</td>
<td>08:00</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.78</td>
<td>1.84</td>
<td>2.97</td>
</tr>
<tr>
<td>12</td>
<td>13.09.2001</td>
<td>07:59</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.72</td>
<td>2.26</td>
<td>3.55</td>
</tr>
<tr>
<td>13</td>
<td>19.01.2002</td>
<td>08:00</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.92</td>
<td>0.53</td>
<td>0.89</td>
</tr>
<tr>
<td>14</td>
<td>08.03.2002</td>
<td>08:00</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.93</td>
<td>0.53</td>
<td>0.90</td>
</tr>
<tr>
<td>15</td>
<td>24.03.2002</td>
<td>08:00</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.86</td>
<td>1.04</td>
<td>1.73</td>
</tr>
<tr>
<td>16</td>
<td>09.04.2002</td>
<td>08:00</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.86</td>
<td>0.99</td>
<td>1.63</td>
</tr>
<tr>
<td>17</td>
<td>14.07.2002</td>
<td>08:00</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.69</td>
<td>2.56</td>
<td>4.01</td>
</tr>
<tr>
<td>18</td>
<td>18.10.2002</td>
<td>07:59</td>
<td>Summer</td>
<td>31.8</td>
<td>35.4</td>
<td>0.68</td>
<td>2.39</td>
<td>3.76</td>
</tr>
<tr>
<td>19</td>
<td>19.11.2002</td>
<td>07:59</td>
<td>Winter</td>
<td>31.8</td>
<td>35.4</td>
<td>0.94</td>
<td>0.46</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Table S2: Comparison of Recording Dates, Rainfall Events and minimum values of SRT-CAT – grey-shaded are all images that are indicated as surface discharge influenced by exhibiting at least one value below the threshold of -0.053 - Abbreviations: TD – Time difference [days], TR – Total amount of rain per event [mm], ED – Event duration [days], MI – Maximum intensity [mm], Min IF – Minimum value after SRT-CAT

<table>
<thead>
<tr>
<th>No</th>
<th>Date of recording</th>
<th>Date of last rain</th>
<th>TD</th>
<th>TR</th>
<th>ED</th>
<th>MI</th>
<th>Min IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.02.00</td>
<td>14.02.00</td>
<td>1</td>
<td>47.5</td>
<td>3</td>
<td>41.1</td>
<td>-0.104</td>
</tr>
<tr>
<td>2</td>
<td>03.04.00</td>
<td>30.03.00</td>
<td>4</td>
<td>-*</td>
<td>-*</td>
<td>12</td>
<td>0.020</td>
</tr>
<tr>
<td>3</td>
<td>21.05.00</td>
<td>21.03.00</td>
<td>17</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.006</td>
</tr>
<tr>
<td>4</td>
<td>22.06.00</td>
<td>21.03.00</td>
<td>49</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.018</td>
</tr>
<tr>
<td>5</td>
<td>25.08.00</td>
<td>21.03.00</td>
<td>31</td>
<td>39.9</td>
<td>1</td>
<td>39.9</td>
<td>-0.021</td>
</tr>
<tr>
<td>6</td>
<td>28.10.00</td>
<td>26.10.00</td>
<td>2</td>
<td>7.2</td>
<td>4</td>
<td>4.1</td>
<td>-0.135</td>
</tr>
<tr>
<td>7</td>
<td>31.12.00</td>
<td>30.12.00</td>
<td>1</td>
<td>-*</td>
<td>-*</td>
<td>3</td>
<td>-0.318</td>
</tr>
<tr>
<td>8</td>
<td>21.03.01</td>
<td>16.03.01</td>
<td>5</td>
<td>-*</td>
<td>-*</td>
<td>1</td>
<td>0.019</td>
</tr>
<tr>
<td>9</td>
<td>24.05.01</td>
<td>17.05.01</td>
<td>7</td>
<td>-*</td>
<td>-*</td>
<td>1</td>
<td>-0.019</td>
</tr>
<tr>
<td>10</td>
<td>25.06.01</td>
<td>03.05.01</td>
<td>29</td>
<td>50</td>
<td>1</td>
<td>50</td>
<td>-0.076</td>
</tr>
<tr>
<td>11</td>
<td>11.07.01</td>
<td>03.05.01</td>
<td>45</td>
<td>50</td>
<td>1</td>
<td>50</td>
<td>0.007</td>
</tr>
<tr>
<td>12</td>
<td>13.09.01</td>
<td>03.05.01</td>
<td>109</td>
<td>50</td>
<td>1</td>
<td>50</td>
<td>-0.040</td>
</tr>
<tr>
<td>13</td>
<td>19.01.02</td>
<td>18.01.02</td>
<td>1</td>
<td>-*</td>
<td>-*</td>
<td>1</td>
<td>-0.149</td>
</tr>
<tr>
<td>14</td>
<td>08.03.02</td>
<td>07.03.02</td>
<td>1</td>
<td>-*</td>
<td>-*</td>
<td>5</td>
<td>0.020</td>
</tr>
<tr>
<td>15</td>
<td>24.03.02</td>
<td>22.03.02</td>
<td>2</td>
<td>-*</td>
<td>-*</td>
<td>2</td>
<td>-0.013</td>
</tr>
<tr>
<td>16</td>
<td>09.04.02</td>
<td>06.04.02</td>
<td>3</td>
<td>-*</td>
<td>-*</td>
<td>2</td>
<td>-0.020</td>
</tr>
<tr>
<td>17</td>
<td>14.07.02</td>
<td>15.05.02</td>
<td>60</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.012</td>
</tr>
<tr>
<td>18</td>
<td>18.10.02</td>
<td>16.10.02</td>
<td>2</td>
<td>-*</td>
<td>-*</td>
<td>10</td>
<td>-0.062</td>
</tr>
<tr>
<td>19</td>
<td>19.11.02</td>
<td>18.11.02</td>
<td>1</td>
<td>-*</td>
<td>-*</td>
<td>2</td>
<td>-0.136</td>
</tr>
</tbody>
</table>

* Information derived from TRMM data where total amount per event and event duration are inappropriate to infer
Table S3: Recording dates vs. rain occurrence and intensity for all rain stations and TRMM_34B2 data – Abbreviations: RD – Recording date of image, TD - Time difference between RD and the respective station/TRMM [days], MI - maximum intensity of the rain event [mm]

<table>
<thead>
<tr>
<th>RD</th>
<th>Gilgal</th>
<th></th>
<th>Jerusalem</th>
<th></th>
<th>Amman</th>
<th></th>
<th>TRMM_3B42</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TD</td>
<td>MI</td>
<td>TD</td>
<td>MI</td>
<td>TD</td>
<td>MI</td>
<td>TD</td>
<td>MI</td>
</tr>
<tr>
<td>15.02.00</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>41.1</td>
<td>1</td>
<td>8.9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>03.04.00</td>
<td>13</td>
<td>3</td>
<td>10</td>
<td>21.1</td>
<td>10</td>
<td>7.9</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>21.05.00</td>
<td>61</td>
<td>3</td>
<td>58</td>
<td>21.1</td>
<td>17</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22.06.00</td>
<td>93</td>
<td>3</td>
<td>90</td>
<td>21.1</td>
<td>49</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25.08.00</td>
<td>157</td>
<td>3</td>
<td>154</td>
<td>21.1</td>
<td>31</td>
<td>39.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28.10.00</td>
<td>3</td>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>2</td>
<td>4.1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>31.12.00</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>24.1</td>
<td>6</td>
<td>7.6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>21.03.01</td>
<td>12</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>25</td>
<td>0.8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>24.05.01</td>
<td>21</td>
<td>9</td>
<td>22</td>
<td>0.8</td>
<td>22</td>
<td>5.1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>25.06.01</td>
<td>53</td>
<td>9</td>
<td>43</td>
<td>0.8</td>
<td>29</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.07.01</td>
<td>69</td>
<td>9</td>
<td>59</td>
<td>0.8</td>
<td>45</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.09.01</td>
<td>133</td>
<td>9</td>
<td>123</td>
<td>0.8</td>
<td>109</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19.01.02</td>
<td>9</td>
<td>23</td>
<td>9</td>
<td>64</td>
<td>7</td>
<td>23.1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>08.03.02</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>1.3</td>
<td>10</td>
<td>0.8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>24.03.02</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6.1</td>
<td>3</td>
<td>17</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>09.04.02</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>33.8</td>
<td>4</td>
<td>70.1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>14.07.02</td>
<td>60</td>
<td>2</td>
<td>101</td>
<td>33.8</td>
<td>100</td>
<td>70.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18.10.02</td>
<td>2</td>
<td>3.5</td>
<td>4</td>
<td>0.8</td>
<td>54</td>
<td>50</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>19.11.02</td>
<td>14</td>
<td>15</td>
<td>29</td>
<td>0.5</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

* Information derived from TRMM data where total amount per event and event duration are inappropriate to infer
Fig. S1: Last rain occurrence according to TRMM prior to Landsat data recording
Table S4: Explanation of Volume calculation

<table>
<thead>
<tr>
<th>Processing steps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data basis:</td>
<td>geo-referenced aerial photographs (2007) – GSD: 1 m</td>
</tr>
<tr>
<td>Determination of fan area:</td>
<td>manual digitalisation using the cliff as western boundary and the DS as eastern boundary</td>
</tr>
</tbody>
</table>
| Volume calculation: | 1. creating an upper plane representing the current topographical surface by extracting the before determined fan area from the ASTER GDEM
| | 2. creating a tilted lower plane by applying the calculation: \(X_i Y_i - (X_i Y_i - \text{Min}) \) on the upper plane
| | 3. calculating the volume using the “Cut Fill” function of ArcGIS. using upper and lower plane as input parameter |

Table S5: Parameter used for pore runoff calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{total}})</td>
<td>(14.07 \cdot 10^6)</td>
<td>(h_a)</td>
<td>-384</td>
</tr>
<tr>
<td>(n_{\text{pores}})</td>
<td>30% *</td>
<td>(h_b)</td>
<td>-420</td>
</tr>
<tr>
<td>Material</td>
<td>Gravel</td>
<td>(L)</td>
<td>1000</td>
</tr>
<tr>
<td>(K_f)</td>
<td>(10^{-2}) *</td>
<td>(A)</td>
<td>(33 \cdot 10^3)</td>
</tr>
</tbody>
</table>

*Values after Hölting and Coldewey 2005