1. Page 4 line 12-15, please check the sentence. It is kind of reduplicate; You have already said this in the Abstract.

The sentences in **Page 4 line 12-15** has been revised as: “The approach for environmental flow decision making was comprised by three steps (Fig.1): analyze the water use conflicts between agriculture and ecosystem, and also the water volume maybe lost in agricultural sector due to the maintenance of environmental flows; evaluate the trade-offs between different water use options using the BNs, the outcomes of which were the probability of economic losses under different water allocations scenarios; calculate the environmental flows based on risk assessment using the inflection point analysis method.”

2. How did the ecosystem water requirements be calculated, in this case the requirements of freshwater inflows into the Yellow River Estuary, should be detailed. The citation of a previous work by one of the co-authors (Sun et al. 2008) is not enough as the initial e-flows are the key component of the agricultural water shortage analysis.

In this study, initial environmental flows are defined as water requirements for desired ecological objectives, which can be considered as an initial step towards providing a boundary of the recommended environmental flows in practice. The recommended environmental flows may not be ideal for ecosystem health, they are suitable for preserving balancing of water usages between human being and ecosystems, which can be accepted by different stakeholders. We added the following sentences in the revised manuscript after **page 6 line 18** to describe the approach of initial environmental flow assessment:

“The initial environmental flow \(W_e \) can be determined based on different ecological objectives for ecosystem protections. Sun et al. (2008) develop a method for quantifying the environmental flows integrating multiple ecological objectives in estuaries.

\[
W_e = \sum_{i=1}^{n} W_i + \text{MAX}(W_{j1}, W_{j2}, ..., W_{jm}) \tag{6}
\]

where \(W_e \) are environmental flows in the estuary (m³), \(\text{MAX}(a, b) \) denotes the maximum of variables \(a, b \), \(W_i \) is the consumptive water volumes (m³), \(W_j \) is the non-consumptive water volumes (m³), \(n \) and \(m \) indicate the number of the objectives of consumptive and non-consumptive water volumes, respectively. The rule of summation is generally used for calculating consumptive water requirements, while the rule of
compatibility (i.e., maximum principle) is adopted for estimating non-consumptive ones. In the environmental flows assessments of the Yellow River Estuary, the water needed to ensure replacement of evaporative loss and maintenance of appropriate surface area and depth for wetland habitat stability is considered consumptive. Water needed to maintain the salinity balance and provided adequate transport of sediment and nutrients is identified as non-consumptive, constituting runoff to the ocean.”

The following equations number was already modified.

3. Page 4 line 20, please check “70% of natural water resources are diverted”
Check this, because “natural water resource” is different from the concept of “freshwater withdrawals from rivers and groundwater” and “global storage capacity”.

In the original manuscript, "Natural water resources" was misused. Natural water resource is different from the concept of “freshwater withdrawals from rivers and groundwater” and “global storage capacity”. Molden (2007) concluded that the production of food and other agricultural products takes 70% of the freshwater withdrawals from rivers and groundwater. According to Lehner et al. (2011), the Global Reservoir and Dam database captures more than 75% of the total global storage capacity.

In the revised manuscript, we have changed the sentences in Page 4 line 20, “Approximately 70% of natural water resources are annually diverted from global river systems to supply agricultural irrigation (Molden, 2007)” to “Approximately 70% of freshwater, withdrawals from rivers and groundwater, is annually diverted from global river systems to supply agricultural irrigation (Molden, 2007)”.

4. Page 6 line 1: What is water-saving coefficient”? Is it different from “water use efficient”?

There are has different definitions for “Water use efficient” depending on the time and space scales of the processes and system aggregation it refers to (Steduto and Albrizio, 2005). At the leaf scale, water use efficient can be defined as the ratio of photosynthesis to transpiration. At the canopy scale, it can be defined as the ratio of crop productivity to evapotranspiration. More conveniently and for agronomic assessment, water use efficient has been expressed as the ratio of biomass production to evapotranspiration (Zhao et al., 2007). Actually, the water-saving coefficient is different from water use efficient. It’s an indicator to represent the implementation effect of water-saving measures.
The reference referred in this representation: