A review of droughts in the African continent: a geospatial and long-term perspective

I. Masih¹, S. Maskey¹, F.E.F. Mussá¹² and P. Trambauer¹

[1] UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands

[2] Eduardo Mondlane University, Faculty of Engineering, Av. de Moçambique km 1.5, C. Postal 257, Maputo, Mozambique

Correspondence to: I. Masih (i.masih@unesco-ihe.org)

Abstract

This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013 as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 years. The extreme droughts of 1972-73, 1983-84 and 1991-92 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa (Sahel), 2010-11 drought in East Africa (Horn of Africa) and 2001-03 drought in Southern and Southeast Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial East Africa regions. Complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), Sea Surface Temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future
predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and North Africa regions.

However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread droughts in future. This evident challenge is likely to aggravate due to slow progress in drought risk management, increased population and demand for water and degradation of land and environment. Thus, there is a clear need for increased and integrated efforts in drought mitigation to reduce the negative impacts of droughts anticipated in future.

Key words: Drought, Africa, geospatial coverage, temporal variability, causes of drought, drought mitigation

1 Introduction

Drought is a recurrent climatic phenomenon across the world. It affects human being in a number of ways such as causing loss of life, crop failures, food shortages which may lead to famine in many regions, malnutrition, health issues and mass migration. It also causes huge damage to the environment and is regarded as a major cause of land degradation, aridity and desertification. The impacts of droughts are witnessed at a range of geographical scales. For instance, individual families or communities may lose their livelihoods and source of water, subject to acute food shortages and health issues and the country’s economy may be severely impacted. The available estimates on drought impacts suggest that, during the period 1900-2013, there were 642 drought events reported across the world resulting in huge toll to humanity killing about 12 million people and affecting over 2 billion (EM-DAT, 2014). The total economic damages are estimated at 135 billion US$ (Table 1).

Drought remains a major disaster causing huge damages to people, environment and economy, despite making considerable progress on monitoring, forecasting and mitigation of droughts across the world. The lack of desired level of success could be attributed to many reasons. Drought is a complex phenomenon, which varies every time in terms of its onset, intensity, duration and geographical coverage. The capacity of people facing this hazard may be limited to avoid adverse impacts compounded by shortcomings in government capacity (e.g. financial, institutional and political) to provide short-term relieve and install long-term
drought mitigation measures. There is an urgent and dire need to progress on various fronts of drought mitigation such as early warning and forecasting, building resilience of the societies, short-term relief efforts, long term planning and capacity building (e.g. Calow et al., 2010; Clarke et al., 2012; Dondero, 1985; Falkenmark and Rockström, 2008; GFDRR, 2011; IFAD, 2010; 2011a and 2011b; Logar et al., 2013; Mishra and Singh, 2010; Msangi, 2004; Sehmi and Kundzewicz, 1997; Tadesse et al., 2008; Tøttrup et al., 2012; UNISDR, 2004 and 2010; Vicento-Serrano et al., 2012; Vogel et al., 2010; World Bank and GFDRR, 2010).

Understanding gained from detailed analysis of historic drought events offers enormous possibilities to carry out better drought management planning and to mitigate impacts of droughts (Vicente-Serrano et al., 2012). A sound science based geospatial analysis of the past drought events and their causes can facilitate the improvement of drought mitigation and preparedness plans. This can also guide in determining the spatial and temporal variability of drought hazard and the vulnerability of water resources, vegetation systems and society to drought. The analysis of historical droughts can provide information on deficits in water demand and likely impacts on water resources and environment, which is essential for drought risk reduction, planning new projects and reviewing the existing ones. Such studies can also provide necessary information on periodic nature of droughts and their relationship with increasing water demand or climate change (Mishra and Singh, 2010). Moreover, the outlook of the current and future drought events in the historic context could facilitate in applying low-risk and long-term plans to use, conserve and sustain water and other natural resources (Touchan et al., 2008). The current efforts by scientific community in this direction are very limited and require further attention (Mishra and Singh, 2010; Touchan et al., 2008; Vicente-Serrano et al., 2012; Vogel et al., 2010). The available scientific studies do not provide enough geospatial and long-term temporal coverage of the past drought events at global and continental levels. However, the increasing number of available studies offers great opportunity to conduct such an analysis. The major focus of this paper is to review the available literature in the context of Africa where impacts of droughts are more severe and result in significant loss of life, negative effects on people and damages to the economy and environment. Most countries in Africa also lack necessary capacity and resources to make required progress to address this catastrophic hazard (e.g. GFDRR, 2011; Tadesse et al., 2008; Vogel et al., 2010).
A recent global review on droughts and aridity by Dai (2011) indicated that large scale droughts have frequently occurred during the past 1000 years across the globe. This review briefly reported few of these severe and multi-year droughts in North America, China and Africa, but does not provide the detailed review of the historic droughts across the world. For Africa, the focus was on the severe, widespread and prolonged droughts occurred during 1970s and 1980s in West Africa (Sahel region). The study mainly focused on aridity changes from 1950 to 2008 and provided foresight for the 21st century. One of the important conclusions of this paper is that the global aridity and drought areas have increased substantially during the 20th century and attributed to widespread drying since 1970s over Africa, southern Europe, East and South Asia, eastern Australia and many parts of the northern mid-high latitudes. The aridity trends are projected to continuously increase in the 21st century. However, study of Sheffield et al. (2012) shows that drought patterns are increasing over last 60 years, though not as alarming as usually projected. Mishra and Singh (2010) conducted a comprehensive review on drought concepts and a critical evaluation of the most widely used indicators for drought assessment. But the review remains limited in terms of description of the historic droughts and only briefly mentions few of them with their main impacts. For Africa, the study only enlisted the severe droughts in Sahel occurred during 1910s, 1940s, 1960s, 1970s and 1980s. These droughts caused huge socio-economic and environmental impacts in this semi-arid region resulting in massive scale migration, famine and environmental degradation (desertification), especially during the last two drought episodes. The study noted that growing demand for water, limited sources of water and changes in spatio-temporal patterns of climate are aggravating the drought impacts in the world.

There are a growing number of studies addressing various drought related issues for Africa. Most of these studies focused on a specific region i.e., Southern Africa (e.g. Clarke et al., 2012; Cornforth, 2013, Dube et al., 2000, 2002 and 2003; Green, 1993; Jager et al., 1998; Manatsa et al., 2008; O'Meagher et al., 1998; Richard et al., 2001; Unganai et al., 1998; Vogel et al., 2010), Sahel (West Africa) (e.g. Giannini et al., 2008; Govaerts et al., 2008; Kasei et al., 2010; Lebel et al., 2009; Lodoun et al., 2013; Traore et al., 2007; Zeng, 2003), East Africa (Horn of Africa) (e.g. Anderson et al., 2012; Dutra et al., 2013; Syroka and Nucifora, 2010) and Northwest Africa (e.g. Touchan et al., 2008 and 2010). There are few studies which attempt to cover more than one region (e.g. Calow et al., 2010; Herweijer and Seager, 2008; Rojas et al., 2011; Naumann et al., 2012; Tadesse et al., 2008; Verschuren, 2004). These and
many other studies are comprehensively reviewed and discussed in the following sections. Most of them investigate one or more drought related subjects i.e., the study of a specific drought event or historic droughts in a country or regional perspective, methodological developments on drought indicators, causes of droughts, forecasting and early warning systems, impact analysis and drought risk reduction, drought planning and management and capacity building. None of them provide a long-term analysis of droughts considering past, present and future perspective at the continental scale.

There are a growing number of continental and global data sets on drought. For instance, there are specific continental drought monitoring and forecasting systems that deal with specific drought related information in real time as well as historical data. The examples are the African drought monitor: http://hydrology.princeton.edu/adm (Sheffield et al., 2013) and the DEWFORA African drought observatory: http: edo.jrc.ec.europa.eu/dewfora/ (Barbosa et al., 2013). Moreover, the EM-DAT data base (http://www.emdat.be/databse) provides information on historic droughts recorded across the world along with their impacts.

Significant advances have been made on the global scale estimation of various drought related indicators (e.g. Standardized Precipitation and Evaporation Index, SPEI) (Vicento-Serrano et al., 2010). Several remote sensing based data and products have been developed over time (e.g. Rojas et al., 2011; Sheffield et al., 2013). These efforts have resulted in significant increase in the scientific literature and data bases, which can facilitate continental scale analysis of droughts in terms of severity, spatial and temporal coverage.

The main objective of this study is to review available information and literature and conduct a detailed geospatial and long-term analysis of droughts across the African continent. We examine the major causes of droughts reported in the literature and present findings and important discourses on drought trends (including frequency, intensity and geospatial coverage), temporal variability, desiccation (aridity) and causes of drought.

2 Materials and Methods

2.1 Study Area

This study focuses on the whole African continent. However, analysis and discussion is also presented in the regional and country perspectives. It is important to note the differences in grouping various countries in different regions. For instance, EM-DAT groups African
countries into North, Middle, South, East and West Africa). On the other hand, many regional
studies are focused on Sahel (includes countries in West Africa between Sahara desert and
Guinea coast rainforest, about 18°N to 15°N), Horn of Africa (Ethiopia, Somalia, Kenya),
Equatorial East Africa, Southern Africa. The special reference to countries in a given region is
made wherever deemed necessary. In this study, the continent is grouped into North, West
(Sahel), East, Middle and Southern Africa regions (Table 2).

The rainfall depicts very high spatial and temporal variability across the African continent
(Figure 1). North Africa region receives very low rainfall and have a desert climate. The
highest rainfall occurs in Middle African countries and some countries along with west coast
of West Africa. These countries have (sub)-humid climatic characteristics. The highest spatial
and temporal variability of rainfall is found across most of the countries having semi-arid
climate within West, East and Southern Africa regions. Variations within a country are also
important to note, for instance, the eastern part of Ethiopia receives much less rainfall (semi-
arid) compared to the Ethiopian Highlands (sub-humid) in the western part. There are distinct
differences in intra-annual variability across the regions. Southern Africa receives most of the
rainfall during October-March, whereas Sahel rainfall is concentrated during July-August
summer monsoon period. Most countries in the Horn of Africa and Equatorial East Africa
regions receive rainfall in two seasons: October-December (short rainfall season) and March-
May (long rainfall season). The Northwest Africa receives most of the rainfall during
October-April.

2.2 Data and Methods

The main data and information sources for this study are collected from the literature (e.g.
published, peer and non-peer reviewed, unpublished sources). More than 100 literature
sources were studied in detail, after initial skimming of over 500 articles searched from
relevant international journals (individual journals and search engines), African Journals,
donor reports and other sources. The list of reviewed material is not exhaustive, though an
effort has been made to conduct a compressive coverage.

The global data set on droughts from EM-DAT website (http://www.emdat.be/database) were
accumulated for the available period 1900-2013. This data set provides
country/regional/continental level estimates on drought events, people killed and affected and economic damage. Additionally, a global database on SPEI was used to analyse droughts with the aim to substantiate the findings of this review (http://sac.csic.es/spei/home.html). It is acknowledged that a number of drought indicators are available, each with own strengths and weaknesses (e.g. Mishra and Singh, 2010; Dai, 2011; Zargar et al., 2013). For example, the Decile Index (Gibbs and Maher, 1967) is easy to compute, however it requires a long time series of data to have accurate results. With the Palmer Drought Severity Index (Palmer, 1968), abnormality of agricultural droughts can be identified and it also shows historical aspects of current conditions. The disadvantage of this method is that as it depends on soil moisture data and its properties which are often very difficult to assess, especially at a larger spatial scale and in spatially distributed manner. The widely used Standardized Precipitation Index (Mckee et al., 1993; Zargar et al., 2011) seems to have advantages because it is a simple method that requires few data (only precipitation) for its computation. The SPEI is a widely used drought indicator which uses precipitation and potential evapotranspiration for its computation. It has the ability to monitor onset, intensity and duration of drought. The indicator is very suitable to study geospatial and temporal variation of drought including the impact of global warming. This indicator is primarily related to meteorological drought and do not offer as such estimates on agricultural, hydrological and socio-economic aspects of droughts, though it could be seen as a proxy to these droughts as eventually they are caused by the deficit in precipitation. The detail discussion on various drought indicators and their comparison basic concepts and various perceptions on drought can be found in the literature (e.g. Dai, 2011; Mishra and Sing, 2010; Ntale and Gan, 2003; Smakhtin and Schipper, 2008; UNISDR, 2004; Zargar et al., 2011).

3 Results and Discussion

3.1 Geospatial and Temporal Pattern of Droughts during 1900-2013

The summary of the selected literature reviewed is presented in Table 2, indicating drought years, geographical location and key relevant findings. While preparing this Table, an effort was made to avoid duplication of similar studies and yet provide geospatial and temporal
coverage. Another important consideration was to examine important discourses most relevant to the topic of this paper. There are a rapidly growing number of studies on various drought related issues, especially during the last decade. The available studies cover most parts of Africa, though coverage is low for middle Africa which is understandable as in this region climate is humid and droughts are not as catastrophic as in the other regions.

Meteorological drought remains the main subject of most studies followed by agricultural drought. Studies examining hydrological droughts and the impacts of human uses of water on the assessment and intensification of these droughts are limited.

Table 3 provides a summary of the drought events recorded in the EM-DAT data base along with the number of people killed and affected and estimated economic damage. This widely used data base provides very useful information for this study. However, caution is required while using it for a specific purpose due to several reasons. First, the available information underestimates the total number of drought events per country and consequent impacts. Generally much lower number of droughts is recorded for many countries (e.g. Morocco, Tunisia, Algeria, Sudan, Zimbabwe and South Africa) for the period 1900-2013, which prohibits formulating century scale picture of drought patterns for these countries. The information before 1960s is not available for most of the countries. Similarly, no information is available for many recorded drought events on number of people killed and affected and economic damage. Thus, aggregated values of these indicators, which are often used, give much lower estimates of drought affects. Second, in the aggregation of the number of events, the method used by EM-DAT and many users takes a country level perspective. In this way, a drought event occurred during one year in many countries in a region is counted more than once. This should be properly examined, especially when studying the region with similar climatic regimes. In the scientific literature, regional and multi-year droughts are often referred as one drought event (Table 2). This difference limits a straightforward comparison of the droughts given in Table 2 and 3.

A number of inferences are drawn from the analysis of the available data and scientific evidence reviewed in this paper (Table 2 and Table 3). The frequency, intensity and geospatial coverage of droughts have significantly increased across the whole African continent during the second half of the 1900-2013 period. This inference is supported by studies conducted at continental scale (e.g. Dai 2011 and 2013) as well as by most of the regional and country level studies (e.g. Quassou et al., 2007, Touchan et al., 2008 and 2011,
Elagib and Elhang, 2008; Kasei et al., 2010; Manatsa et al., 2008; Richard et al., 2001). The available data (though limited in temporal coverage) from EM-DAT also supports this observation (Table 2).

This point is further substantiated by Figures 2, 3 and 4. The drought shown in Figure 2 and 3 were reported by most of the reviewed literature and thus were chosen for the illustration. Figure 2 shows the geospatial coverage of the four most extreme droughts occurred during past 50 years. Three out of these four droughts (1972-73, 1983-84 and 1991-92) were most severe and could be regarded continental in nature as they spanned over many sub-regions and covered wide areas of the African continent. None of the previous droughts during 20th century were as wide spread and intense compared to them (Figure 3). Figure 4 show the area of the African continent under different drought categories based on SPEI data analysis conducted in this study. On this data, the widely used non-parametric Spearman Rank test (e.g. Masih et al., 2011) was applied to test the statistical significance of the trends. The results revealed statistically significant increase (at 99% significance level) in the area under all categories of drought (e.g. moderate, severe and extreme droughts) for the African continent during 1901-2011. Figure 4 exhibits these findings and the visual inspection also indicates the increasing trend in the geospatial extent of the African continent under drought.

Most African countries observe single and multi-year droughts when seen from purely hydro-climatic point of view. For instance, number of severe droughts that occurred in Northern and Southern Africa during the 20th century are comparable to those observed in Eastern and Western Africa where comparatively more droughts are reported in literature and available data bases (Table 2 and Table 3). However, distinct geospatial and temporal patterns exist in the drought episodes mainly driven by the diverse nature of the climate and drought inducing physical mechanisms (discussed later in this paper). It can be inferred from the studies reviewed in this paper (Table 2) that the multi-year and prolonged droughts are more common in Sahel compared to any other regions (e.g. Mishra and Singh, 2010; Rojas et al., 2011). In contrast, studies for the East Africa region report mostly very severe seasonal droughts often not spanning over many years (e.g. Dutra et al., 2013).

The geospatial spread of drought depicts large variation within a country or a basin, beside regional heterogeneity. This point is clearly indicated by Figure 2 and 3 and also highlighted by other studies (e.g. Anderson et al., 2012; Moeletsi and Walker, 2012; Mussá et al., 2014; Rojas et al., 2009; Rulinda et al., 2012; Trambuer et al., 2014). The increasingly available
information and tools based on remote sensing, analysis of global climatic data sets (e.g. global SPEI products) and hydrological and climatic modelling offer great opportunity to identify these geospatial differences and drought hot spots. For instance, a remote sensing based study by Rojas et al. (2009) identified hot spots regions at sub-national level depicting higher probabilities of facing agricultural droughts. The studies indicate that the semi-arid and sub-humid regions of Africa are the most drought prone regions (e.g. World Bank and GFDRR, 2010). These countries are highly vulnerable to drought owing to high climatic variability and also due to other reasons such as poverty, high dependency on rainfed agriculture and weak infrastructure to manage resources and recover from disasters. Moreover, vulnerability to drought varies per country. For instance the economic impact of the 1991-92 drought was much higher on the GDP of Malawi and Zimbabwe compared to South Africa and Botswana (Benson et al., 1998). The lowest negative impacts in Botswana on people livelihoods and food security during drought periods of 1982-87 and 1992 were mainly attributed to a small and largely accessible national population, availability of domestic and international resources, existence of rural infrastructure, government commitment, district-level capacity and a timely and fairly comprehensive food security and nutrition monitoring system (Belbase and Morgan, 1994).

There is increasing availability of drought monitoring and forecasting tools for decision making which can provide real time monitoring and forecasting of drought across the region (e.g. Tadesse et al., 2008; Anderson et al., 2009; Dutra et al., 2013; Vicento-Serrano et al., 2012). However, the use of these tools in decision making is still limited and could be promoted. For instance, despite inherent uncertainties in the available drought monitoring and forecasting systems, the 2010-11 drought in the Horn of Africa was well predicted by European Centre for Medium-Range Weather Forecasts (ECMWF). But this information was not timely used for better preparedness and mitigation of the drought, which finally caused heavy toll affecting about 12 million people (Dutra et al., 2013).

3.2 Past, present and future pattern of droughts

There are few studies available to date which offer possibility of comparing droughts observed during 1900-2013 (instrumental era) with those witnessed in the past centuries. This comparison is important as African climate displays high decadal and century scale
variability. The work of Touchen et al. (2008 and 2011) provides a long term perspective on
droughts in Northwest Africa (Morocco, Algeria and Tunisia). They used tree-ring records to
construct the Palmer Drought Severity Index (PDSI) for the period A.D. 1179 to 2002. These
studies reveal that the frequency of occurrence of a single drought event was 12 to 16 times
per century before the 20th century, which was increased to 19 during the 20th century. The
most severe multi-year drought occurred during 1999-2002, whereas 1847 and 2002 were
identified as the driest single years with PDSI values of -3.74 and -3.90, respectively. The
latter half of the 20th century is seen as the driest period in the last 9 centuries. This shift to
drier conditions was attributed to anthropogenic climate change.

A number of researchers studied historic droughts in Africa based on lake sediment analyses.
Evidence from the sediment analysis of the lake Bosumtwi, Ghana indicated several
prolonged periods of drought during the last three millennia, most recent ones around 200 to
300 years ago (Shanahan et al., 2009). Comparing 1970s droughts in Sahel with earlier
drought episodes occurred during the past three millennia, they concluded that more severe
and prolonged droughts were recorded in the past centuries. Verschuren et al. (2000)
investigated droughts over the period A.D 900 to 2000 based on sediment analysis of Lake
Naivasha Kenya in Equatorial East Africa. The period AD 1000 to 1270 (Medieval Warm
Period) was found to be the driest one over the last 1100 years. Additionally, dry conditions
were found around AD 1380-1420, 1560-1620 and 1760-1840 during relatively wet period of
AD 1270-1850 (Little Ice Age). These drought episodes were more severe than recorded
droughts in the 20th century. Bessems et al. (2008) noted extreme droughts in Equatorial East
Africa about 200 years ago based on the sediment analysis of three lakes (Chibwera and
Kanyamukali in western Uganda, and Baringo in central Kenya). The authors, Verschuren et
al. (2000), and Bessems et al. (2008), compared their findings with the available evidence
from the cultural history of east Africa and found consistency between two sets of
observations.

Endfield and Nash (2002) described the discourse on long-term desiccation of the African
continent emerged during 19th century. Their study is based on the analysis of the missionary
documents from southern Africa (Botswana and South Africa). The authors constructed a
chronology of intra-decadal climatic variability for the period 1815-1900 and showed that the
The study inferred that the discourse on long-term desiccation evolved during this period
was merely triggered by these episodes of droughts rather than underpinned by long-term climatic deterioration. Nevertheless, the discourse on desiccation still remains an important subject in the current drought research. The evidence presented in the previous section pointed out to the increased aridity and intensification of droughts, especially during the second half of the 20th century (e.g. Dai 2011; Elagib and Elhang, 2008; Kasei et al., 2010; Quassou et al., 2007; Manatsa et al., 2008; Touchan et al., 2008 and 2011; Richard et al., 2001). Dai (2013) predicted likelihood of increased droughts and aridity over central and southern Africa during the 21st century. On the contrary, the Sahel region may receive more rainfall. Large uncertainties exist in these findings and thus require caution in making regional or continental conclusions. Druyan (2011) reviewed 10 studies which are based on the simulations of atmosphere-ocean global climate models on future climate of Sahel. Some studies projected wetter conditions and some projected more frequent droughts, thus, no consensus was observed. The large uncertainties and differences in these predictions were attributed to model limitations and complexity of many physical mechanisms governing the precipitation trends.

3.3 Causes of droughts

Drought is a part of natural climatic variability in the African continent, which is quite high at intra-annual, inter-annual, decadal and century time scales (e.g. Nicholson, 2000). Many studies attempted to investigate the natural causes that could be associated with droughts in Africa (Caminade and Terray 2010; Dai 2011 and 2013; Dutra et al., 2013; Giannini et al., 2008 and 2013; Hastenrath et al., 2007; Herweijer and Seager, 2008; Jury et al., 1996; Kerr, 1985; Lebel et al., 2009; Manatsa et al., 2008; Nicholson, 2000; Richard et al., 2001; Shanahan et al., 2009; Tierney et al., 2013; Vicente-Serrano, 2012; Zeng, 2003). Some of them also focus on anthropogenic factors, such as climate change, aerosol emissions, land use practices and resulting land-atmosphere interactions, contributing to drought inducing mechanisms (e.g. Dai 2011 and 2013; Hwang et al., 2013; Lebel et al., 2009; Zeng, 2003). The review of these studies revealed that there are a number of factors contributing in inducing drought conditions. However, despite regional differences in the factors causing droughts in a specific region, ENSO and SSTs are regarded major influencing factors across the continent. For instance, Nicholson (2000) demonstrates that ENSO, SST and land-atmospheric feedback are the major governing factors on the rainfall variability in Africa. The
author states that these factors alone or in combination can change the atmospheric dynamics and circulation patterns, for instance, causing changes in the Hadley and Walker circulations or upper level jet streams.

Droughts in Southern Africa occur most of the time during the warm phase of ENSO (El Niño Southern Oscillation). Nicholson and Kim (1997) studied the correlation between precipitation and ENSO (El Niño Southern Oscillations) in the Pacific. They found that among the 20 extreme rainfall events analyzed, 15 events appeared to be modulated by the ENSO. Their results suggest that the southern part of Africa is negatively correlated with warm ENSO. Phillips et al. (1998) studied the possibility of using ENSO predictions to reduce the risks associated with rainfall variability in agricultural production in Zimbabwe. The analysis showed that during the El Niño phase a decrease on the precipitation was noticed, which is in agreement with the findings of (Nicholson and Kim 1997). Rouault and Richard (2005) studied the temporal and spatial extent of the droughts in South Africa based on the SPI (Standardized Precipitation Index) from 1900 to 2004. Their results show that 8 out of 12 droughts detected coincide with El Nino years, which confirms the strong relationship between the ENSO and the droughts events in southern Africa. However, some studies point that the occurrence of droughts during El Niño years does not happen always as there are many other local and global factors influencing the drought phenomenon. Richard et al. (2001) examined droughts during 1950 to 1988 in Southern Africa. They found that droughts during 1970-88 were intense and widespread compared to those during 1950-1969. The El Niño was the main governing factor for droughts during 1970-88. However, this observation require caution because droughts may not occur during El Niño periods, i.e., as happened during 1925-26 and 1997-98. For the droughts during 1950-1969, regional oceanic and atmospheric anomalies (e.g. southwest Indian Ocean SST) were named as the main causes. Manatsa et al. (2008) suggested that El Niño alone is not a sufficient predictor of droughts in Southern Africa. They recommend that March to June extreme positive Darwin Sea Level Pressure anomalies are ideal additional candidate for drought monitoring and forecasting in Zimbabwe and Southern Africa.

Contrary to Southern Africa, East Africa region faces droughts during cold phase of ENSO (La Niña). For instance, Dutra et al. (2013) indicated that strong La Niña event was the main cause of 2010-11 drought in the Horn of Africa. Lott et al. (2013) investigated whether the 2010-11 drought was caused by human intervention or not. They did not find any evidences
of human activities on this event and also attributed this with La Niña events. Tierney et al. (2013) also suggested that the recent drought in the Horn of Africa, was partly due to the prevailing La Niña conditions in the tropical Pacific. On the other hand, Hasternath et al. (2007) argue that the low rainfall in this region occurs during fast westerlies which are usually accompanied by anomalously cold waters in the northwestern and warm anomalies in the southeastern extremity of the equatorial Indian Ocean Basin. This mechanism was found responsible for 2005 drought in the Horn of Africa. Tierney et al. (2013) suggested that the Indian Ocean drives rainfall variability in East Africa by altering the local Walker circulation. Moreover, it is argued that warming of the central Indian Ocean accelerated by greenhouse gas and aerosol emissions after later half of the 20th century are correlated with the decline in precipitation over Eastern Africa (Funk et al., 2008; Williams and Funk, 2011). These studies suggested that warming of the central Indian Ocean drives changes in the local Walker circulation causing reduction in the seasonal rainfall and inducing drought conditions in the region.

Droughts in Sahel are caused by an array of complex processes and feedback mechanisms. Caminade and Terray (2010) stated that conditions that favour lower summer rainfall in Sahel are: when Atlantic Ocean north of equator is cool and the same is warm below the equator, El Niño events and increased vertical thermal stability from a warming troposphere. Most of the studies on Sahel droughts concur that the recent severe droughts in Sahel were caused by the ocean warming (southward warming gradient of the Atlantic ocean and steady warming of the Indian Ocean), southward shift of Inter Tropical Convergence Zone (ITCZ) (Caminade and Terry 2010; Dai, 2011; Giannini et al., 2008; Janicot et al., 1998; Kerr, 1985; Lebel et al., 2009; Zeng, 2003). The land-atmosphere feedbacks through natural vegetation and land cover change are also important factors. Anthropogenic contribution in land use change altering the land surface feedback mechanisms is also seen as a factor. Some studies were done with the objective of examining whether the climate in the Sahel region is sensitive to land use changes or not. For instance, Zheng and Eltahir (1997) investigated the interaction between vegetation and climate in the Sahel region by means of simulations of the West African monsoons with a simple zonally-symmetric model. Their results show that the impacts of land cover changes in the Sahel region along the border with Sahara are insignificant. However, deforestation along the southern coast of West Africa can cause significant reduction of the rainfall and affect on the monsoon circulation. Several studies suggested aerosol emissions were an important driver of the recent Sahel droughts (e.g. Desboeufs et al., 2010; Hwang et
al., 2013; Moulin and Chiapello, 2004; Prospero and Lamb, 2003). Furthermore, human induced green house gas emission is also considered as a contributory factor to oceans warming (e.g. Dai, 2013). Despite recognition of these anthropogenic factors, their relative contribution compared to natural factors in inducing Sahel droughts is debated and regarded as a secondary factor.

The limited studies are available on causes of droughts in Northwest Africa. The North Atlantic Ocean SST does influence on rainfall variability in the region but this relationship is rather weak and could not explain major droughts in the region (Li et al., 2003; Touchan et al., 2011). Similarly, ENSO is seen as a potential factor, but a strong relationship is not demonstrated by ENSO about modulating droughts in this region (Esper et al., 2007; Touchan et al., 2008). The North Atlantic Oscillation (NAO) indicates variable influence on the rainfall in the region, with negative correlation with western parts but no correlation with eastern parts (Touchan et al., 2013). However, no relationship is found between NAO and droughts in the region. Touchan et al. (2013) argued that anthropogenic green house gas emission is an important factor causing drying in this region. The review of these studies suggested that the causes of droughts in the Northwest Africa are not well established and require further research.

4 Conclusions

The climate of the African continent exhibits large geospatial and temporal variability. Droughts are recurrent features varying from failure of rains in one season or up to one or more years. The vulnerability to droughts is high due to poverty, large dependency on rainfed agriculture and other factors. Therefore, droughts continue to incur heavy toll to people, animals, environment and economy. The planning and management of droughts requires a paradigm change shifting from crisis management to risk management. Comprehensive studies on historic drought events could significantly guide in better planning and mitigation strategies of droughts. There is significantly increasing number of information and scientific studies on various aspects of drought. However, these studies do not provide a long-term and/or continental scale perspective. This study is a first of its kind to build such a perspective on droughts in Africa with the aim on conducting geospatial and long-term analysis of the
droughts. The study is underpinned by a comprehensive review of available information and scientific literature and analysis of the EM-DAT and SPEI data sets.

The analysis of droughts during 1900-2013 indicated that droughts have been intensified in terms of their frequency, severity and geospatial coverage over the last few decades. The droughts that occurred in 1972-73, 1983-84 and 1991-92 were most intense and widespread. All of the regions witnessed severe droughts in the last few decades, for instance, the 2010-11 drought in East Africa (Horn of Africa), 1999-2002 drought in North Africa, 2001-03 drought in Southern Africa and persistent droughts in Sahel during 1970s and 1980s. Few studies are available to construct drought chronologies before 20th century. However, studies based on lake sediment analysis indicated episodes of severe droughts prolonged for decades and even centuries in the past over West and Equatorial East Africa, which are also documented in the cultural histories of these regions. The studies underpinned by tree-ring chronologies in Northwest Africa indicated quite a number of moderate to severe droughts in the past, about 12-16 events per century which has increased to 19 during 20th century. Southern Africa also faced several single and multi-year droughts during 19th century, as indicated by the analysis of missionaries' correspondence.

Drought predictions based on the global climate models simulations show varying results and thus remain uncertain for most of the African continent. However, the results of simulation models suggested high likelihood of increased droughts in central and southern Africa. Despite considerable improvements in these models, they are still not able to accurately represent the large number of complex factors responsible for causing the droughts across various regions of the continent (e.g. ENSO and SSTs, wind and pressure anomalies, land-atmospheric feedback mechanisms). Their complex interactions induce uncertainty in the drought predictions.

The available evidence from the past clearly shows that the African continent is very likely to face extreme and widespread droughts in future. The vulnerability is likely to increase due to fast growing populations, increasing water demands and degradation of land and environmental resources. Addressing such a daunting and evident challenge calls for much more serious and committed action from communities, governments, regional bodies, international organizations and donors than that is witnessed at present. This review advances available information and scientific understanding of the droughts in Africa.
Acknowledgements

This study was carried out in the scope of the DEWFORA (Improved Drought Early Warning and Forecasting to strengthen preparedness and adaptation to droughts in Africa) project which is funded by the Seventh Framework Programme for Research and Technological Development (FP7) of the European Union (Grant agreement no: 265454).
References

Dai, A.: Increasing drought under global warming in observations and models, Nature Climate Change, 3, 52-58,

Lebel, T., Cappelaere, B., Galle, S., Hanan, N., Kergoat, L, Levis, S., Vieux, B., Descroix, L., Gosset, M., Mougín, E., Peugeot, C. and Seguis, L. AMMA-CATCH studies in the Sahelian...
doi:http://dx.doi.org/10.1016/j.jhydrol.2009.03.020., 2009.S.

northwest African rainfall. Geophysical Research, 108 (D19), 4594,

Lodoun, T., Giannini, A., Traoré, P. S., Somé, L., Sanon, M., Vaksmann, M., and
Rasolodimby, J. M.: Changes in seasonal descriptors of precipitation in Burkina Faso
associated with late 20th century drought and recovery in West Africa, Environmental

Lott, F., Christidis N., Stott, P. A.: Can the 2011 East African drought be attributed to

Manatsa, D, Chingombe, W., Matsikwa, H., and Matarira, C. H.: The superior influence of
Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for Southern
Africa, Theoretical and Applied Climatology, 92, 1–14, DOI 10.1007/s00704-007-0315-3,
2008.

Masih, I., Uhlenbrook, S., Maskey, S., and Smakhtin, V.: Streamflow trends and climate
linkages in the Zagros Mountain, Iran. Climatic Change 104: 317-338. DOI 10.1007/s10584-
009-9793-x, 2011.

McKee, T. B., Doesken, N. J. and Kleist J.: The relation of drought frequency and duration to
time scales. In: Department of Atmospheric Science & C. S. University (eds) Eighth
Conference on Applied Climatology, Anaheim, California, 1993.

Moeletsi, M. E., and Walker, S.: Assessment of agricultural drought using a simple water
balance model in the Free State Province of South Africa, Theoretical Applied Climatology,

Moulin, C., and Chiapello, I.: Evidence of the control of summer atmospheric transport of
African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000).

Mussá, F. E. F., Zhou, Y., Maskey, S., Masih, I., and Uhlenbrook, S.: Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa, Hydrology and Earth System Sciences Discussion (Submitted)

Richard, Y., Fauchereau, N., Poccard, I., Rouault, M., and Trzaska, S.: 20th century droughts in southern Africa: spatial and temporal variability, teleconnections with oceanic and

Table 1. Overview of number of droughts and their impact across the world during 1900-2014.

<table>
<thead>
<tr>
<th>Continent</th>
<th># of events</th>
<th># of people Killed</th>
<th># of people affected</th>
<th>Damage (× 10^3 USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>291</td>
<td>847,143</td>
<td>362,225,799</td>
<td>2,920,593</td>
</tr>
<tr>
<td>Americas</td>
<td>134</td>
<td>77</td>
<td>69,505,391</td>
<td>50,471,139</td>
</tr>
<tr>
<td>Asia</td>
<td>153</td>
<td>9,663,389</td>
<td>1,707,836,029</td>
<td>44,251,865</td>
</tr>
<tr>
<td>Europe</td>
<td>42</td>
<td>1,200,002</td>
<td>15,488,769</td>
<td>25,481,309</td>
</tr>
<tr>
<td>Oceania</td>
<td>22</td>
<td>660</td>
<td>8,034,019</td>
<td>12,303,000</td>
</tr>
<tr>
<td>Total</td>
<td>642</td>
<td>11,711,271</td>
<td>2,163,090,007</td>
<td>135,427,906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Drought enlisted by region/country/basin during 1900 to 2013</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touchan et al. (2008)</td>
<td>Northwestern Africa: Algeria and Tunisia. 1920s, 1940s, 1945, 1999-2002</td>
<td>The study uses tree-ring chronologies to investigate climate of North Africa region and have constructed PDSI for Algeria and Tunisia for the period AD 1456-2002. The study mentions 19 droughts occurred during 20th century compared to 12 to 16 droughts per century during earlier periods. However, specific years or decades in which they occur are not given. The multi-year drought of 1999-2002 is the most severe in the last 5 centuries.</td>
</tr>
<tr>
<td>West Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dai (2011)</td>
<td>West Africa, Sahel. 1970s, 1980s</td>
<td>These droughts were attributed to southward shift of the warmest SSTs in the Atlantic and warming in the Indian Ocean.</td>
</tr>
<tr>
<td>Giannini et al. (2008)</td>
<td>West Africa, Sahel. 1970s, 1980s</td>
<td>The study investigates the droughts in Sahel during 1970s and 1980s using global climate models. The results suggest that the origin of these droughts is global in scale and external to the region. These droughts are attributed to warming of tropical oceans, especially the pacific and Indian Oceans, superimposed on an enhanced warming of the southern compared to the northern hemisphere most evident in Atlantic. Land surface changes, driven by precipitation changes and also anthropogenic activities, may have acted to amplify these droughts.</td>
</tr>
<tr>
<td>Reference</td>
<td>Drought enlisted by region/country/basin during 1900 to 2013</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Mishra and Singh (2010)</td>
<td>West Africa, Sahel. 1910s, 1940s, 1960s, 1970s, 1980s</td>
<td>The study reviews drought concepts and provide a critical evaluation of most widely used indicators for drought assessment. But the review remains limited in terms of description of the historic droughts and only briefly mentions few of them with their main impacts and recommends further work in this direction.</td>
</tr>
<tr>
<td>Lebel et al. (2009)</td>
<td>West Africa, Sahel. 1970s, 1980s</td>
<td>A wealth of data is collected under AMMA-Catch case sites in Mali, Niger and Benin on land surface processes and atmospheric dynamics. This will help to better understand the interactions between atmospheric, oceanic and terrestrial systems enabling a better understanding and prediction of rainfall in this region.</td>
</tr>
<tr>
<td>Shanahan et al. (2009)</td>
<td>West Africa, Lake Bosumtwi, Ghana. 1970s Sahel drought</td>
<td>The study indicates that the severe droughts of Sahel in 1970s is not anomalous in the context of past three millennia and monsoon is capable of longer and more sever future droughts. The findings are based on sediment analysis from Lake Bosumtwi in Ghana.</td>
</tr>
<tr>
<td>Zeng (2003)</td>
<td>West Africa, Sahel. Late 1960s onward.</td>
<td>The study shows lower rainfall in Sahel since 1960s but the exact drought years are not mentioned. The study focuses on reviewing the existing evidence on causes of droughts in Sahel. The study shows that combination of various factors are responsible of droughts in Sahel and are not yet fully understood and thus could not be adequately predicted. Therefore, combination of improved climatic predictions, sensible land use practices and green house gas emission reductions are very important for the future of this region.</td>
</tr>
</tbody>
</table>

East Africa

<table>
<thead>
<tr>
<th>Reference</th>
<th>Drought enlisted by region/country/basin during 1900 to 2013</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al. (2012)</td>
<td>East Africa: 2010-2011 drought in Ethiopia, Somalia and Kenya</td>
<td>The study demonstrated the usefulness of remotely sensed data and hydrological modeling for tracking the progression and severity of drought.</td>
</tr>
<tr>
<td>Dutra et al. (2013)</td>
<td>Horn of Africa: 2010-11 in Ethiopia and Somalia</td>
<td>The study shows that drought was caused by failure of rainfall in both October-December (short rainfall) and March-May (long rainfall) seasons. The drought was attributed to La Nina conditions. This drought was well forecasting by the ECMWF forecasting system.</td>
</tr>
<tr>
<td>Hastenrath and Polzin (2007)</td>
<td>East Africa. Kenya. 2005</td>
<td>Drought was attributed to increased pressure in the west and accelerated westerlies (wind) anomalies</td>
</tr>
<tr>
<td>Reference</td>
<td>Drought enlisted by region/country/basin during 1900 to 2013</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Ntale and Gan (2003)</td>
<td>East Africa. Kenya and Tanzania. 1949-50.</td>
<td>The study reviewed various drought indicators and compared the performance of Palmer drought severity index (PDSI), Bhalme-Mooley Index (BMI) and Standardized Precipitation Index (SPI). Different indicators may yield different drought results. SPI was recommended for East Africa region.</td>
</tr>
<tr>
<td>Tierney et al. (2013)</td>
<td>East Africa, Horn of Africa. 2010-11</td>
<td>This drought was regarded as the worst during past 60 years. The study concluded that the Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales.</td>
</tr>
</tbody>
</table>

Southern Africa

<table>
<thead>
<tr>
<th>Reference</th>
<th>Drought enlisted by region/country/basin during 1900 to 2013</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msangi (2004)</td>
<td>Southern Africa. 1902, 1909-11, 1917-18, 1921-22, 1925, 1929, 1933-34, 1939-1940, 1953, 1969, 1972-73, 1976, 1980-82, 1984-85</td>
<td>Information on drought years and respective country is not given. The study mainly focused on analyzing the drought management efforts by international and regional organizations, national institutions and NGOs and communities. The study stressed the need of adopting people centered mitigation measures and calling for informed global action as the success lies with people in the south and those in the north.</td>
</tr>
<tr>
<td>Mussá et. al. (2013)</td>
<td>South Africa: Crocodile River catchment. 1945, 1951, 1958, 1966, 1970/71, 1978, 1983-84, 1992-95 and 2003-04</td>
<td>The main focus of the study is to analyze whether groundwater can be used as an emergency source of water in cases of severe droughts in the Crocodile catchment. The study used the SPI and SRI drought indicators to identify meteorological and hydrological droughts, respectively. It implies that the 1992-95 drought was the most severe one in the last 70 years where the upper and lower areas of the catchments were the most affected.</td>
</tr>
<tr>
<td>Reference</td>
<td>Drought enlisted by region/country/basin during 1900 to 2013</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Vogel et al. (2010)</td>
<td>Southern Africa. 1982-93, 1991-92, 1994-95, 2001-03</td>
<td>This study stresses the need of learning from past drought events to better manage in future. The response to drought and general management options practiced in SADC countries are reviewed, in special reference to indicated droughts.</td>
</tr>
<tr>
<td>More than one region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calow et al. (2010)</td>
<td>2002-03, 2004-05 and 2005-06 droughts in Ethiopia. 1991-92 drought in Lesotho, Malawi, South Africa and Zimbabwe, Ghana.</td>
<td>The study shows the impacts of droughts on groundwater resources and consequently on water supply security. The communities enter into spiral of water insecurity when shallow groundwater supplies fail and additional demand on remaining resources causes mechanical failures. Declining access to food and access to safe water are interrelated, but the later usually receive less attention in drought management. Groundwater can act as buffer during droughts by increasing the coverage of groundwater supplies to rural communities underpinned by sound hydrological and socio-economic information.</td>
</tr>
<tr>
<td>Couttenier and Soubeyran (2013)</td>
<td>Sub-Saharan Africa. 1980s.</td>
<td>No country or year specific information presented, though droughts in Sudan in 1980s and in Uganda during 1980s and 2003-5 are linked to civil war. Overall, link between drought and civil war was described as weak.</td>
</tr>
<tr>
<td>Reference</td>
<td>Drought enlisted by region/country/basin during 1900 to 2013</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Tadesse et al. (2008)</td>
<td>Sub-Saharan Africa: 1972-74 and 1984-85 (Sahel and East Africa), 1992-93 (southern Africa), 2000-02 (Horn of Africa)</td>
<td>The droughts resulted in severe food shortages and famine are mentioned. The need of moving from a crisis management to risk management approaches is stressed and the use of the available drought and food security monitoring tools is recommended to reduce the impacts of droughts.</td>
</tr>
</tbody>
</table>
Table 3. Summary of drought events recorded for 1900-2013 in EM-DAT data base.

<table>
<thead>
<tr>
<th>Region/Countries</th>
<th>Drought Years</th>
<th># of events</th>
<th># of People Killed</th>
<th># of People affected</th>
<th>Economic Damage ($ \times 10^3$ USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall African</td>
<td>291</td>
<td>847143</td>
<td>362225799</td>
<td>2920593</td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>18</td>
<td>150012</td>
<td>31153400</td>
<td>900100</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>1981, 2005</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tunisia</td>
<td>1977, 1988</td>
<td>2</td>
<td>0</td>
<td>31400</td>
<td>0</td>
</tr>
<tr>
<td>Middle Africa</td>
<td>25</td>
<td>3058</td>
<td>11379800</td>
<td>845000</td>
<td></td>
</tr>
<tr>
<td>Cameroon</td>
<td>1971, 1990, 2001, 2005</td>
<td>4</td>
<td>0</td>
<td>586900</td>
<td>1500</td>
</tr>
<tr>
<td>Central Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republic</td>
<td>1983</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Congo</td>
<td>1983</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sao Tome et Principe</td>
<td>1983</td>
<td>1</td>
<td>0</td>
<td>93000</td>
<td>0</td>
</tr>
<tr>
<td>Zaire/Congo Dem Rep</td>
<td>1978, 1983</td>
<td>2</td>
<td>0</td>
<td>800000</td>
<td>0</td>
</tr>
<tr>
<td>West Africa</td>
<td>94</td>
<td>170012</td>
<td>74500255</td>
<td>507354</td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>1969, 1980</td>
<td>2</td>
<td>0</td>
<td>2215000</td>
<td>651</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>1980</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ghana</td>
<td>1971, 1977, 1980</td>
<td>3</td>
<td>0</td>
<td>12512000</td>
<td>100</td>
</tr>
<tr>
<td>Guinea</td>
<td>1980, 1998</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liberia</td>
<td>1980</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1981</td>
<td>1</td>
<td>0</td>
<td>3000000</td>
<td>71103</td>
</tr>
<tr>
<td>Region/Countries</td>
<td>Drought Years</td>
<td># of events</td>
<td># of People Killed</td>
<td># of People affected</td>
<td>Economic Damage (× 10^3 USD)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Togo</td>
<td>1971, 1980, 1989</td>
<td>3</td>
<td>0</td>
<td>550000</td>
<td>500</td>
</tr>
<tr>
<td>Burundi</td>
<td>1981</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eritrea</td>
<td>1993, 1999, 2008</td>
<td>3</td>
<td>0</td>
<td>5600000</td>
<td>0</td>
</tr>
<tr>
<td>Mauritius</td>
<td>1999</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>175000</td>
</tr>
<tr>
<td>Southern Africa</td>
<td></td>
<td>32</td>
<td>500</td>
<td>24300115</td>
<td>1056739</td>
</tr>
</tbody>
</table>
Figure 1. Map of the African continent with country names and rainfall pattern. (Data source: ERA-Interim corrected with GPCP v2.1, period: 1979-2010. See Trambauer et al. (2014) for detailed explanation)
Figure 3. Geospatial coverage of selected droughts 1910-11, 1931-32, 1940-41 and 1948-49 indicated by 12 months SPEI (October to September). (Data source: Global SPEI database available at http://sac.csic.es/spei/database.html, version 2.2 retrieved in Jan 2014).
Figure 4. Fraction of the African continent under different drought conditions computed from the 12 month SPEI dataset. (Data source: Global SPEI database available at http://sac.csic.es/spei/database.html, version 2.2 retrieved in May 2014). Note: Moderate dry (-1.5 < SPEI < -0.5); Severe Dry (-2.0 < SPEI < -1.5); Extreme Dry (SPEI < -2.0).