Dear Editor Hannah Cloke,

Thanks for your and all reviewers’ recommendations. We improved the manuscript following the suggestions. The main changes are:

1. The introduction has been revised to improve the review of soil moisture and surface temperature assimilation, the background of this study, etc.
2. The order of figures has been changed, the Fig. 6, Fig. 7 and Fig. 8 have been combined and Table 3 has been deleted.
3. The discussion on bias estimation, observation error, definition of the state vector, COSMIC model and COSMOS has been extended.

Editor comments:

Thank you for your author responses. As you are aware, the reviewers have raised a number of concerns. I invite you to submit a revised manuscript which incorporates your suggested comments to address these reviewer concerns. Please take special care with the clarity of your manuscript so it is always entirely clear what you are undertaking. Where necessary this could involve a further sentence or two explaining background work/references of importance.

Response: the corresponding changes have been made following the reviewer comments.

Reviewer 1:

General comment: The major contribution of this work is to improve CLM performances by assimilating cosmic-ray data and LST data over irrigated site with Local Ensemble Transform Kalman Filter method. Basically, the idea is good. It is impressive to update soil moisture and temperature by jointly assimilation of cosmic-ray data and LST. Moreover, the turbulent heat fluxes are improved significantly. However, the manuscript is lacking in detail in a few areas and I’d not recommend the paper for publication unless substantial improvements are made to address the following concerns.

Response: thanks for the recommendation. We handled your comments, see below.
Major comments:

1. The introduction section needs to be carefully revised. The aim of this paper is to correct biases in CLM forcing, and improve model performances (e.g. soil moisture profile, ET) by assimilating cosmic-ray data and LST. However, the authors pay less attention on soil moisture and LST assimilation; only two sentences focus on soil moisture and temperature assimilation progresses were stated in the introduction part. The progresses should be enhanced in this part. Moreover, on page 9031, “In CLM, the surface fluxes are calculated based on the Monin–Obukhov similarity theory. The sensible heat flux is formulated as a function of temperature and leaf area index, and the latent heat flux is formulated as a function of the temperature and leaf stomatal resistances. The leaf stomatal resistance is calculated from the Ball-Berry conductance model (Collatz et al., 1991). The surface fluxes are therefore sensitive to the surface and soil temperature.” this sentence looks wired, why surface fluxes are sensitive to soil temperature, the previous sentences cannot lead to this conclusion. Then why calibrate LAI? It is stated abrupt. Any other persons focus on LAI calibration to improve ET? I recommend authors rewrite the introduction part to describe more logically.

Response: We improved the introduction in the revision for the soil moisture and LST assimilation. (line 116-134)

“The positive impact of soil moisture data assimilation was shown in several studies. Importantly, surface soil moisture could be used to obtain better characterization of the root zone soil moisture (Barrett and Renzullo, 2009; Crow et al., 2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010). It was also shown that the assimilation of soil moisture observations can be used to correct rainfall errors (Crow et al., 2011; Yang et al., 2009). Often a systematic bias between measured and modelled soil moisture content can be found; soil moisture estimation can be significantly improved using joint state and bias estimation (De Lannoy et al., 2007; Kumar et al., 2012; Reichle et al., 2008). Also studies on data
assimilation of remotely sensed land surface temperature products show a positive impact on the estimation of soil moisture, latent heat flux and sensible heat flux (Ghent et al., 2010; Xu et al., 2011). Also in these studies it was found that bias, in these cases soil temperature bias, of land surface models can be removed with land surface temperature assimilation (Bosilovich et al., 2007; Reichle et al., 2010). Other studies updated both land surface model states and parameters with soil moisture and land surface temperature data (Bateni and Entekhabi, 2012; Han et al., 2014a; Montzka et al., 2013; Pauwels et al., 2009). The assimilation of measured cosmic-ray neutron counts in a land surface model was successfully tested, but these studies focused on state updating alone (Rosolem et al., 2014; Shuttleworth et al., 2013).”

The update of soil temperature is defined as:

\[ \Delta T_{soil} = f(h)/-\lambda \]

where \( \lambda \) is the thermal conductivity.

The heat flux \( h \) into the soil surface from the overlying atmosphere is defined as:

\[ h = S_{soil} + L_{soil} - H_{soil} - \lambda E_{soil} \]

\( S_{soil} \) is the solar radiation absorbed by top soil, \( L_{soil} \) is the longwave radiation absorbed by soil, \( H_{soil} \) is the sensible heat flux from soil, \( \lambda E_{soil} \) is the latent heat flux from soil.

The update of vegetation temperature is defined as:

\[ \Delta T_v = \frac{\dot{S}_v - \dot{L}_v - H_v - \lambda_v E_v}{\frac{\partial \dot{L}_v}{\partial T_v} + \frac{\partial H_v}{\partial T_v} + \frac{\partial \lambda_v E_v}{\partial T_v}} \]

\( \dot{S}_v \) is the solar radiation absorbed by the vegetation, \( \dot{L}_v \) is the net longwave radiation absorbed by vegetation, \( H_v \) and \( \lambda_v E_v \) are the sensible and latent heat fluxes from vegetation.

The above equations show the sensitivity of vegetation temperature to the
surface heat fluxes. Measured land surface temperature is composed of the land surface temperature and vegetation temperature. Therefore, a mismatch of land surface temperature is statistically linked to a mismatch of land surface fluxes. On the other hand, land surface fluxes are also sensitive to soil moisture content. Therefore, land surface temperature shows a statistical correlation with soil moisture content and allows to update soil moisture content. In various papers, land surface temperature assimilation served to improve the estimation of surface fluxes (Ghent et al., 2010; Meng et al., 2009; Reichle et al., 2010; Xu et al., 2011).

The relation between the soil temperature / vegetation temperature and surface fluxes has been explained in the revision. (line 162-174)

“In CLM, land surface fluxes are calculated based on the Monin-Obukhov similarity theory. The sensible heat flux is formulated as a function of temperature and LAI, and the latent heat flux is formulated as a function of the temperature and leaf stomatal resistances. The leaf stomatal resistance is calculated from the Ball-Berry conductance model (Collatz et al., 1991). The updates of soil temperature and vegetation temperature are derived based on the solar radiation absorbed by top soil (or vegetation), longwave radiation absorbed by soil (or vegetation), sensible heat flux from soil (or vegetation) and latent heat flux from soil (or vegetation). Measured land surface temperature is composed of the ground temperature and vegetation temperature. Therefore a difference between measured and calculated land surface temperature can be adjusted by changing land surface fluxes. As land surface fluxes are sensitive to soil moisture content, land surface temperature is sensitive to soil moisture content.”


3) Reichle, R. H., Kumar, S. V., Mahanama, S. P. P., Koster, R. D., and Liu, Q.:


Our study was also based on the conclusions of Schwinger, J., et al., 2010: “results confirm that soil texture and LAI are key parameters that have a dominant influence on modeled LE under specific environmental conditions in CLM4.” More works have studied the sensitivity of land surface models to the leaf area index (Ghilain et al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk et al., 2003; Yang et al., 1999). Moreover, we used the MODIS LAI in CLM, whereas the MODIS products usually underestimate the LAI compared with field measurements, as was found in validation studies by the NASA [http://landval.gsfc.nasa.gov]: the underestimation by the MODIS LAI product is 0.66 * LAI (MODIS) for all biomes and 0.5 * LAI (MODIS) except for broadleaf forests. We improved the introduction in the revision. (line 180-188)

“Soil moisture, land surface temperature and LAI influence the estimation of latent and sensible heat fluxes (e.g., Ghilain et al., 2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk et al., 2003; Yang et al., 1999), and therefore this study focuses in addition on the calibration of LAI with help of the assimilation of land surface temperature. However, there are large discrepancies between the remotely retrieved LAI and measured values, and the MODIS LAI product underestimates in situ measured LAI by 44% on average [http://landval.gsfc.nasa.gov/], and therefore the LAI is also calibrated by data assimilation.”


2) Ghilain, N., Arboleda, A., Sepulcre-Canto, G., Batelaan, O., Ardo, J., and
2. In section 3, LAI was updated by assimilating LST and soil moisture, I’m not certain if it is correct to do this. Does LST and soil moisture are strong correlated to LAI? Please state their relationship clearly.

Response: the LST was used to update the LAI, not soil moisture or Cosmic-ray. This has been clarified in the revision (line 183-184). Details can be found in our response to question 1. The introduction in the revision has been improved.

3. In this study, the soil moisture related instrument, the cosmic-ray, is a ground measurement instrument. It can be used to measure soil moisture at plot scale about 600 m. it is hard and expensive to be applied at the continent scales. However, MODIS LST can be easily obtained globally. Thus, the limitation of assimilating cosmic-ray data should be discussed.

Response: the Cosmic-ray Soil Moisture Observing System (COSMOS) has been
designed as a continental scale network by installing 500 COSMOS probes across the USA (Zreda et al., 2012). Nevertheless, it is true that there are still some disadvantages of COSMOS compared with remote sensing. COSMOS is also expensive for extensive deployment to measure the continental/regional scale soil moisture. This discussion has been added in the revision. (line 642-647)

“Although the Cosmic-ray Soil Moisture Observing System (COSMOS) has been designed as a continental scale network by installing 500 COSMOS probes across the USA (Zreda et al., 2012), there are still some disadvantages of COSMOS compared with remote sensing. COSMOS is also expensive for extensive deployment to measure the continental/regional scale soil moisture.”


Minor comments
1. On page 9040, the augmentation method was used to update surface temperature, ground temperature, vegetation temperature and 10 layers of soil temperature by assimilating LST. However, surface temperature and vegetation temperature are diagnostic variables in CLM. To change them at the current time step may not influence model estimates in next time step. It is wasting time to add them as the updated variables. Remove them in the vectors.

Response: Thanks for the suggestion. CLM needs the initial state of the ground temperature, vegetation temperature and 15 layers of soil temperature. For example, the calculation of vegetation temperature in CLM is: $T_v^{n+1} = T_v^n + \Delta T_v$. Only the surface temperature is the diagnostic variable. Because we calculated the surface temperature with help of an observation operator for assimilation purpose only, it is the right state to be assimilated. In order to calculate the Kalman gain, we need the surface temperature to compare with the MODIS LST. For reasons of technical simplicity, we calculated the surface temperature out of Kalman filter and transferred the calculated surface temperature into Kalman
filter through the state vector. It means the identity matrix was used as the observation operator $H$ in the Kalman filter.

2. In section 2.2, please state what meteorology parameters are used as the forcing data in CLM, and how long is the time step of CLM run?

Response: The incident longwave radiation, incident solar radiation, precipitation, air pressure, specific humidity, air temperature and wind speed were used in CLM. The time step of CLM was hourly. (line 238-240)

3. The forcing data were perturbed by set of noises, what are the observation errors of cosmic-ray data and MODIS LST? How to perturb them?

Response: The observation data were not perturbed in LETKF because it is a square root Kalman filter. Only the classical ensemble Kalman filter (EnKF) needs to perturb the observations. The variance of Cosmic-ray was the measured neutron count value (Zreda, M., et al., 2012) and the variance of MODIS LST was assumed to be 1 K (Wan, Z. and Z. L. Li, 2008), and the error of MODIS LST has been verified (http://landval.gsfc.nasa.gov) by many studies. (line 460-464)

“The variance of the instantaneous measured neutron intensity is equal to the measured neutron count intensity (Zreda et al., 2012) and smaller for temporal averaging for daily or sub-daily applications. The instantaneous neutron intensity was assimilated in this study. The variance of MODIS LST was assumed to be 1 K (Wan and Li, 2008)”


4. The captain of figure 4 can be change as "Same as figure 3 but for 50 cm and 80 cm"

   Response: thanks, changed.

5. The figures 6, 7, and 8 can be combined into one figure, as they are all turbulent heat fluxes.

   Response: thanks, changed.

6. The ignorance of energy imbalance problem for eddy covariance system may cause some error in producing ET observation. This should be discussed.

   Response: the discussion has been added in the revision. (line 526-528)

   “The true evapotranspiration is therefore likely larger, but not much larger as the energy balance gap was limited (3.7%).”

Reviewer 2:

General comments

The paper provides an important contribution to the research on data assimilation in land surface modelling. The paper considers assimilation of cosmic-ray soil moisture data and land surface temperature in the Community Land Model (CLM). Assimilation of the data sources individually and jointly as well as in combination with estimation of leaf area index are evaluated with respect to soil moisture, evapotranspiration, and latent and sensible heat flux. The paper is, in general, well written and technically sound. However, some elaborations are needed; especially on the Kalman filter setup and evaluation (see detailed comments below).

Response: Thanks for your recommendation. We have improved the manuscript according to the responses below.

Detailed comments
1. Page 9031, line 10-13. Not clear. Inclusion of bias in the Kalman filter is usually defined either as a bias in the system equation or a bias in the observation equation. The specific source of error need not be known.

Response: Before we estimate the bias, we should determine whether the bias comes from the model, observation, or both. If the source of bias is not attributed to the right source, model predictions cannot be improved. In the Kalman filter equation, the model bias and the observation bias are handled differently: the model bias is removed in the model forecast $x^b = x^b - bias_{model}$; the observation bias is removed from the innovation part $K \times (y_{obs} - bias_{obs} - x^b)$.

In summary, the source of the bias should be defined before estimation. A comprehensive overview of bias estimation is given by Dee (2005). According to the description, “By design, bias-aware assimilation requires assumptions about the nature of the biases: first, the attribution of a bias to a particular source, and second, a characterization of the bias in terms of some well-defined set of parameters”. In this paper, no explicit model for observation bias or model bias was assumed, and no explicit bias estimation was done for simplicity. Nevertheless, the model states were corrected by the observations. We have clarified this part in the revision. (line 154-160)

“The bias can be attributed to the model structure, model parameters, atmospheric forcing or observation data, and the bias-aware assimilation requires the assumption that the bias comes from a particular source. If the source of bias is not attributed to the right source, model predictions cannot be improved (Dee, 2005). Therefore bias-blind assimilation in which the bias estimation was not handled explicitly was used for safety. Instead, it was investigated whether neutron counts measured by cosmic-ray probe were able to correct for the bias.”


2. Page 9031, line 13. Not clear what is meant by ‘bias blind assimilation’ and why
this is applied for ‘safety’.

Response: The bias blind assimilation is the traditional data assimilation without bias estimation. Dee et al. (2005) wrote: “If the source of a known bias is uncertain, bias-blind assimilation may be the safest option. The main scientific challenge is to correctly attribute a detected bias to its source, and then to develop a useful model for the bias. When different sources produce similar biases, the assimilation may correct the wrong source.” Because the study area is a very heterogeneous irrigated farmland, both the observation and model could be biased. In CLM, the main bias came from the atmospheric forcing input due to the lack of irrigated water amount, but the bias could also come from wrong soil properties (e.g. sand fraction, clay fraction and organic matter density) and other vegetation parameters (e.g. leaf area index, $Vcmax$). For example, three papers studied the sensitivity of the latent heat flux and sensible heat flux to the hydraulic parameters (Hou, et al., 2012) and vegetation parameters $Vcmax$ (Bonan, et al., 2011) in CLM4, and soil moisture and leaf area index (Schwinger, et al., 2010) in CLM4.

In each of these studies, the assumption was made that the other sensitive parameters were defined properly. In this study, we focused on the model bias introduced by the forcing data and the leaf area index, and neglected the other sources of bias. We have clarified the discussion in the revision. (see response to earlier reviewer question)


Response: CLM is Community Land Model, was included in the revision.

4. Page 9036, line 8-10. Are the measured data at the station in Switzerland representative for the Chinese case study?

Response: The data are used to remove temporal (secular or diurnal) variations caused by the sunspot cycle. We follow the standard approach applied by the COSMOS network globally, discussed in detail by Zreda et al. (2012). This reference is appropriately mentioned in the revision. (line 302-303)

“The temporal (secular or diurnal) variations caused by the sunspot cycle could be removed after this correction (Zreda et al., 2012).”


5. Page 9036, line 24-26. Soil moisture from 10 soil layers (does this correspond to the top 10 cm of the soil?) in CLM is used as input to COSMIC. The effective measurement depth of the cosmic-ray probe depends on soil moisture, so why is a fixed depth used here? I expect this will introduce a bias in the simulated soil moisture for comparison with the measurements.

Response: The thickness of top 10 soil layers in CLM is about 3.8 m. Because the effective measurement depth of cosmic-ray probe is between 12 and 76 cm, it is unlikely that anything beyond 1 m deep will substantially impact the results. The COSMIC model assumes a more detailed soil profile. In COSMIC, the soil moisture information from the 10 layers from CLM was interpolated to information for 300 layers based on the soil layer depth for stable numerical solution. The contribution of each soil layer to the measured neutron flux changes
temporally depending on the soil moisture condition. Therefore the effective measurement depth of the cosmic ray probe also changes temporally. The explanation in the manuscript was improved. (line 317-328)

“The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was used as input to COSMIC in order to simulate the corresponding neutron count intensity and compare it with the measured neutron count intensity. It should be mentioned that it is unlikely that anything beyond 1 m deep will substantially impact the results because the effective measurement depth of the cosmic-ray probe is between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile. COSMIC interpolates the soil moisture information from the ten CLM soil layers to information for 300 soil layers of depth 1cm. The contribution of each soil layer to the measured neutron flux will change temporally depending on the soil moisture condition. Therefore the effective measurement depth of the cosmic ray probe will also change temporally. COSMIC calculates the vertically weighted soil moisture content based on the vertical distribution of soil moisture content.”

6. Page 9039, line 1. Definition of state vector not clear. Why soil moisture from 10 layers (see previous comment) and soil temperature for 15 layers?
Response: These are the standard CLM layout for soil moisture and soil temperature. The hydrology calculations are done over the top 10 layers, and the bottom 5 layers are specified as bedrock. The lower 5 layers are hydrologically inactive layers. Temperature calculations are done over all layers. The manuscript has been revised to include this explanation. (line 422-426)

“The 10 layers of soil moisture and 15 layers of soil temperature are the standard CLM layout for both soil moisture and soil temperature. The hydrology calculations are done over the top 10 layers, and the bottom 5 layers are specified as bedrock. The lower 5 layers are hydrologically inactive layers. Temperature calculations are done over all layers (Oleson et al., 2013)”

7. Page 9040, line 17-20. How is the leaf area index represented in the augmented
system equation? As a persistence model?

Response: the leaf area index was treated as a parameter and updated with help of the augmented state vector approach, but only changed after each update. For the calibration of the LAI, the state vector was augmented with surface temperature, ground temperature, vegetation temperature, soil temperature for 15 layers and LAI if only the land surface temperature observations were assimilated without soil moisture update. This resulted then in a state dimension of 19. (line 380-384)

“For the calibration of the LAI, the state vector was augmented with surface temperature, ground temperature, vegetation temperature, soil temperature for 15 CLM-layers and LAI if only the land surface temperature observations were assimilated without soil moisture update. This resulted then in a state dimension of 19.”

8. Page 9041, line 1-15. The Kalman filter settings are not sufficiently discussed. They seem rather arbitrarily chosen. It is not clear how the standard deviations, spatial and temporal correlations, and cross correlations given in Table 1 are determined. Has sensitivity analysis been applied to analyse the sensitivity of ensemble size and model error statistics on the assimilation results? You can analyse the prediction uncertainty provided by the Kalman filter to evaluate the Kalman filter settings by comparing measurements with predicted confidence bands or analyse the statistical properties of the model innovations. Definition of measurement uncertainty is not described.

Response: the values of standard deviations and temporal correlations in Table I were chosen based on commonly used values in previous catchment scale and regional scale data assimilation studies (Kumar et al., 2009; Reichle et al., 2010; De Lannoy et al., 2012). In the 3D-EnKF, the imposed spatial correlation on forcing data is very important for the assimilation (Reichle and Koster, 2003; De Lannoy et al., 2009). In 1D-EnKF and LETKF (which we used), no horizontal correlation among model grid cells is calculated, so the imposed spatial correlation of forcing data will not influence the assimilation. The impacts of
horizontal spatial correlation on the assimilation can be included through the localization technique (Reichle and Koster, 2003; De Lannoy, et al., 2009). The selection of the ensemble size was based on the results of Han et al., 2014, who reported that for more than 30~40 ensemble members, the assimilation results could not be improved too much. Therefore 50 ensemble members were used in this study. (line 443-446)

“The values of standard deviations and temporal correlations in Table 1 were chosen based on previous catchment scale and regional scale data assimilation studies (De Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010).”

The observation standard deviation of cosmic-ray probes is equal to the square root of the measured neutron counts (Zreda, et al., 2012) and the observation standard deviation of MODIS land surface temperature was here equal to 1 K (Wan and Li, 2008). We added this information in the revised version of the manuscript. (line 460-464)

“The variance of the instantaneous measured neutron intensity is equal to the measured neutron count intensity (Zreda et al., 2012) and smaller for temporal averaging for daily or sub-daily applications. The instantaneous neutron intensity was assimilated in this study. The variance of MODIS LST was assumed to be 1 K (Wan and Li, 2008)”


9. Page 9043, line 4. How is measured soil moisture estimated?

Response: the soil moisture for the CRS footprint scale was calculated from the arithmetic mean of the 23 SoilNet soil moisture observations. This information has been included in the manuscript. (line 304-305)

“In this study, the soil moisture for the CRS footprint scale was calculated from the arithmetic mean of the 23 SoilNet soil moisture observations.”

10. Page 9045, line 4. Same information shown in Figs. 6-8 and Table 3. All results can be included in the table and figures omitted.

Response: thanks for the suggestion. Table 3 was removed in the revision.

11. Page 9045, line 3-25. It is stated that the results for latent and sensible heat flux correspond to the results obtained for soil moisture. However, there are some notable differences that should be elaborated. The effect of inclusion of parameter
estimation of LAI on latent and sensible heat flux depends on the type of data
being assimilated. For LST assimilation an increase in RMSE is obtained when
LAI estimation is included. With assimilation of both LST and CRS lower RMSE
is obtained with LAI estimation. In addition, assimilation of LST provides better
results than assimilation of both LST and CRS.

Response: thanks, in the scenario of only LST assimilation without LAI update,
the latent heat flux could not be improved. The univariate assimilation of LST did
not give any improvement for this case. The joint soil moisture and LAI update
scenario of LST_Feedback_Par_LAI was worse than the single soil moisture
update scenario of LST_Feedback in this case. This part has been improved in the
discussion section of the revision. (line 509-514)

“Without assimilation of cosmic-ray probe neutron counts, the soil moisture
simulation cannot be improved (scenario Only_LST). However, the scenarios of
LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture profile
characterization, which shows that explicitly using LST to update soil moisture
content in the data assimilation routine gives better results than using LST only to
update soil moisture by the model equations.”

“The scenario where soil moisture and LAI are jointly updated
(LST_Feedback_Par_LAI) gave worse results than the scenario of
LST_Feedback.”

12. Figure 5. Explain numbers in lower-right corner in figure caption.

Response: these are the accumulated ET amounts during the study period; this has
been corrected in this revision. (line 523-524)
Correction of Systematic Model Forcing Bias of CLM using Assimilation of Cosmic-Ray Neutrons and Land Surface Temperature: a study in the Heihe Catchment, China

Xujun Han¹,²,³
1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
2. Forschungszentrum Jülich, Agrosphere (IBG 3), Leo-Brandt-Strasse, 52425 Jülich, Germany

Harrie-Jan Hendricks Franssen¹,²
1. Forschungszentrum Jülich, Agrosphere (IBG 3), Leo-Brandt-Strasse, 52425 Jülich, Germany
2. Centre for High-Performance Scientific Computing in Terrestrial Systems: HPSC TerrSys, Geoverbund ABC/J, Leo-Brandt-Strasse, 52425 Jülich, Germany

Rafael Rosolem
Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK

Rui Jin
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China

Xin Li
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China

Harry Vereecken¹,²
1. Forschungszentrum Jülich, Agrosphere (IBG 3), Leo-Brandt-Strasse, 52425 Jülich, Germany
2. Centre for High-Performance Scientific Computing in Terrestrial Systems: HPSC TerrSys, Geoverbund ABC/J, Leo-Brandt-Strasse, 52425 Jülich, Germany

Corresponding author: Xujun Han, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China. (hanxj@lzb.ac.cn)
Abstract

The recent development of the non-invasive cosmic-ray soil moisture sensing technique fills the gap between point scale soil moisture measurements and regional scale soil moisture measurements by remote sensing. A cosmic-ray probe measures soil moisture for a footprint with a diameter of ~600 m (at sea level) and with an effective measurement depth between 12 cm to 76 cm, depending on the soil humidity.

In this study, it was tested whether neutron counts also allow to correct for a systematic error in the model forcings. Lack of water management data often cause systematic input errors to land surface models. Here, the assimilation procedure was tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental Research - HiWATER, 2012) where no irrigation data were available as model input although for the area a significant amount of water was irrigated. In the study, the measured cosmic-ray neutron counts and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products were jointly assimilated into the Community Land Model (CLM) with the Local Ensemble Transform Kalman Filter. Different data assimilation scenarios were evaluated, with assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter estimation of leaf area index (LAI). The results show that the direct assimilation of cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) estimation significantly, correcting for lack of information on irrigation amounts. The joint assimilation of neutron counts and LST could improve further the ET estimation, but the information content of neutron counts exceeded the one of LST. Additional
improvement was achieved by calibrating LAI, which after calibration was also closer to independent field measurements. It was concluded that assimilation of neutron counts was useful for ET and soil moisture estimation even if the model has a systematic bias like neglecting irrigation. However, also the assimilation of LST helped to correct the systematic model bias introduced by neglecting irrigation and LST could be used to update soil moisture with state augmentation.

Keywords: Cosmic-ray neutron counts, Land surface temperature, Evapotranspiration, Land data assimilation, Parameter estimation
1. Introduction

Soil moisture plays a key role for crop and plant growth, water resources management and land surface-atmosphere interaction. Therefore accurate soil moisture retrieval is important. Point scale measurements can be obtained by methods like time domain reflectometry (TDR) (Robinson et al., 2003) and larger scale, coarse soil moisture information from remote sensing sensors (Entekhabi et al., 2010; Kerr et al., 2010). Wireless Sensor Networks (WSN) allow characterization of soil moisture at the catchment scale with many local connected sensors at separated locations (Bogena et al., 2010). TDR only measures the point scale soil moisture and the maintenance of WSN is expensive. Recently, neutron count intensity measured by above-ground cosmic-ray probes was proposed as alternative information source on soil moisture. Neutron count intensity is measured non-invasively at an intermediate scale between the point scale and the coarse remote sensing scale (Zreda et al., 2008). A network of cosmic-ray sensors (CRS) has been set-up over N-America (Zreda et al., 2012).

Cosmic rays are composed of primary protons mainly. The fast neutrons generated by high-energy neutrons colliding with nuclei lead to “evaporation” of fast neutrons and the generated and moderated neutrons in the ground can diffuse back into the air where their intensity can be measured by the cosmic-ray soil moisture probe. Soil moisture affects the rate of moderation of fast neutrons, and controls the neutron concentration and the emission of neutrons into the air. Dry soils have low moderating power and are highly emissive; wet soils have high moderating power and are less emissive. The neutrons are mainly moderated by the hydrogen atoms
contained in the soil water and emitted to the atmosphere where the neutrons mix
instantaneously at a scale of hundreds of meters. The measurement area of a
cosmic-ray soil moisture probe represents a circle with a diameter of ~600 m at sea
level (Desilets and Zreda, 2013) and the measurement depth decreases non-linearly
from ~76 cm (dry soils) to ~12 cm (saturated soils) (Zreda et al., 2008). The measured
cosmic-ray neutron counts show an inverse correlation with soil moisture content. The
cosmic-ray neutron intensity could be reduced to 60% of surface cosmic-ray neutron
intensity if the soil moisture was increased from zero to 40% (Zreda et al., 2008). The
soil moisture estimation on the basis of cosmic-ray probe based neutron counts over a
horizontal footprint of hectometers received considerable attention in scientific
literature during the last years (Desilets et al., 2010; Zreda et al., 2008; Zreda et al.,
2012).

Hydrogen atoms are present as water in the soil, lattice soil water, below ground
biomass, atmospheric water vapor, snow water, above ground biomass, intercepted
water by vegetation and water on the ground. These additional hydrogen sources
contribute to the measured neutron intensity. The role of these additional hydrogen
sources should be included in the analysis of the cosmic-ray measurements in order to
isolate the main contribution from soil moisture. Formulations for handling water
vapor (Rosolem et al., 2013), for lattice water and organic carbon (Franz et al., 2013)
and for a litter layer present on the soil surface (Bogena et al., 2013) have been
developed.

*It was shown that the assimilation of soil moisture observations could be used to*
correct the rainfall errors; the soil moisture estimation can be significantly improved using the joint state and bias estimation. The positive impact of soil moisture data assimilation was shown in several studies. Importantly, surface soil moisture could be used to obtain better characterization of the root zone soil moisture (Barrett and Renzullo, 2009; Crow et al., 2008; Das et al., 2008; Draper et al., 2011; Li et al., 2010). It was also shown that the assimilation of soil moisture observations can be used to correct rainfall errors (Crow et al., 2011; Yang et al., 2009). Often a systematic bias between measured and modelled soil moisture content can be found; soil moisture estimation can be significantly improved using joint state and bias estimation (De Lannoy et al., 2007; Kumar et al., 2012; Reichle, 2008). Also studies on data assimilation of remotely sensed land surface temperature products show a positive impact on the estimation of soil moisture, latent heat flux and sensible heat flux (Ghent et al., 2010; Xu et al., 2011). Also in these studies it was found that bias, in these cases soil temperature bias, of land surface models can be removed with land surface temperature assimilation (Bosilovich et al., 2007; Reichle et al., 2010). Other studies updated both land surface model states and parameters with soil moisture and land surface temperature data (Bateni and Entekhabi, 2012; Han et al., 2014a; Montzka et al., 2013; Pauwels et al., 2009). The assimilation of
measured cosmic-ray neutron counts in a land surface model was successfully tested, but these studies focused on state updating alone (Rosolem et al., 2014b; Shuttleworth et al., 2013). The surface soil moisture could be used to obtain better characterization of the root zone soil moisture. The studies of data soil moisture measurements are useful for improving the soil moisture profile estimation in land surface models or hydrologic models. Assimilation of remotely sensed land surface temperature products also improves the estimation of evapotranspiration and the positive impacts on land surface states estimation: the soil moisture, latent heat flux and sensible heat flux could be improved by assimilating the remote-sensed land surface temperature; the soil temperature bias of land surface model could be removed using the land surface temperature assimilation. The joint state and parameter estimation in land surface model with soil moisture and land surface temperature also shows the success. The assimilation of measured cosmic-ray neutron counts in a land surface model has been tested. In this paper we focus on the assimilation of measured cosmic-ray neutron counts for improving soil moisture content characterization at the field scale. The assimilation of measured cosmic-ray neutron counts in a land surface model has been tested (Han et al., 2014b; Rosolem et al., 2014a; Shuttleworth et al., 2013). This paper focuses on the case that model input is biased. Land surface models still are affected by limited knowledge on water resources management and for regions in China (and elsewhere) typically no information on irrigation amounts is available as irrigation is mainly by the flooding system. We analyse whether measured neutron counts are able
to correct for such biases. This case is not only relevant for neglecting irrigation in China, but also for other water resources management issues (e.g., groundwater pumping) which are neglected in the simulations. Neglecting irrigation in land surface models results in a large bias in the simulated soil moisture content because of a lack of water input. The bias in soil moisture content also results in a too small latent heat flux and too high sensible heat flux. We hypothesize that data assimilation also can play an important role for removing such biases in data deficient areas. One possible strategy in data assimilation studies for handling this type of bias, which is not followed in this paper, is to calibrate the simulation model (e.g., land surface model) prior to data assimilation to remove biases (Kumar et al., 2012) and use the corrected simulation model in the context of sequential data assimilation. A different strategy was followed in this paper and no a priori bias correction was carried out because this type of problem (neglecting water resources management) does not allow for such an a priori bias correction. The bias can be contributed to the model structure, model parameter, atmospheric forcing or observation data, and the bias-aware assimilation requires the assumption that the bias comes from a particular source. If the source of bias is not attributed to the right source, model predictions cannot be improved. The bias could can be contributed to the model structure, model parameter, atmospheric forcing or observation data, and the bias-aware assimilation requires the assumption that the bias comes from a particular source (Dee, 2005). Therefore bias-blind assimilation in which the bias estimation was not handled explicitly was used for safety. Instead, it...
was investigated whether neutron counts measured by cosmic-ray probe were able to correct for the bias. So, therefore, the bias-blind assimilation was used for safety.

Instead, it is investigated whether neutron counts measured by cosmic-ray probe are able to correct for the bias. Aim is to improve the soil moisture profile estimation in a crop land with seed corn as main crop type.

In CLM, the land surface fluxes are calculated based on the Monin-Obukhov similarity theory. The sensible heat flux is formulated as a function of temperature and leaf area index $\text{LAI}$, and the latent heat flux is formulated as a function of the temperature and leaf stomatal resistances. The leaf stomatal resistance is calculated from the Ball-Berry conductance model (Collatz et al., 1991). The updates of soil temperature and vegetation temperature are derived based on the solar radiation absorbed by top soil (or vegetation), longwave radiation absorbed by soil (or vegetation), sensible heat flux from soil (or vegetation) and latent heat flux from soil (or vegetation). And the measured land surface temperature is composed of the ground temperature and vegetation temperature. Therefore, a difference between measured and calculated land surface temperature can be adjusted by changing land surface fluxes. As land surface fluxes are sensitive to soil moisture content, land surface temperature is sensitive to soil moisture content. Therefore, the surface fluxes are therefore sensitive to the surface and soil land surface temperature.

Beside of the cosmic-ray neutron counts observation, therefore, the land surface temperature (LST) products measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (MOD11A1) and Aqua (MYD11A1) are also
assimilated jointly to improve the soil temperature profile estimation because the 
evapotranspiration is sensitive to the soil temperature. Two Terra LST products can be 
obtained per day at 10:30 am/pm and two Aqua LST products can be obtained per day 
at 1:30 am/pm. Soil moisture, land surface temperature and LAI influence the 
estimation of latent and sensible heat fluxes (Ghilain et al., 2012; Jarlan et al., 2008; 
Schwinger et al., 2010; van den Hurk, 2003; Yang et al., 1999) (e.g., Ghilain et al., 
2012; Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk et al., 2003; Yang et 
el., 1999), and therefore this study focuses in addition on the calibration of LAI with 
help of the assimilation of land surface temperature. However, there are large 
discrepancies between the remotely retrieved LAI and measured values, and the 
MODIS LAI product underestimates in situ measured LAI by 44% on average 
(http://landval.gsfc.nasa.gov/), and therefore the LAI is also calibrated by data 
assimilation. Soil moisture, land surface temperature and leaf area index LAI 
contribute to the estimation of latent and sensible heat fluxes (Ghilain et al., 2012; 
Jarlan et al., 2008; Schwinger et al., 2010; van den Hurk, 2003; Yang et al., 1999), and 
therefore this study focuses in addition on the calibration of leaf area index LAI using 
the land surface temperature assimilation. However, there are large discrepancies 
between the remotely retrieved LAI and measured values, and the MODIS LAI 
product underestimates 44% of field measurement on average 
(http://landval.gsfc.nasa.gov/), and therefore the leaf area index LAI is also calibrated 
by data assimilation. In summary, the novel aspects of this work are: 1) investigating 
whether data assimilation is able to correct for missing water resources management
data without a priori bias correction; 2) joint assimilation of cosmic-ray neutron counts, LST and updating of LAI; 3) application of this framework to real-world data in an irrigated area with the availability of detailed verification data.~

2. Materials and Methods

2.1 Study Area and Measurement

The Heihe River Basin is the second largest inland river basin of China, and it is located between 97.1° E-102.0° E and 37.7° N-42.7° N and covers an area of approximately 143,000 km² (Li et al., 2013). In 2012, a multi-scale observation experiment of evapotranspiration with a well-equipped superstation (Daman superstation) to measure the atmospheric forcings and soil moisture at 2 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm and 160 cm depth (Xu et al., 2013), was carried out from June to September in the framework of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (Li et al., 2013). SoilNet wireless network nodes (Bogena et al., 2010) were deployed to measure soil moisture content and soil temperature at four layers (4 cm, 10 cm, 20 cm and 40 cm). One cosmic-ray soil moisture probe (CRS-1000B) was installed (Han et al., 2014c) with 23 SoilNet nodes (Jin et al., 2014; Jin et al., 2013) in the footprint (Fig. 1). The main crop type within the footprint of the cosmic-ray probe is seed corn. The irrigation is applied through channels using the flooding irrigation method. Exact amounts of applied irrigation are therefore not available.

The measured cosmic-ray neutron count data were processed to remove the
outliers according to the sensor voltage (≤ 11.8 Volt) and relative humidity (≥ 80%).

The surface fluxes were measured using the eddy covariance technique, and data were processed using EdiRe (http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe) software, in which the anemometer coordinate rotation, signal lag removal, frequency response correction, density corrections and signal de-spiking were done for the raw data. The energy balance closure was not considered in this study. The leaf area index LAI was measured by the LAI-2000 scanner during the field experiment, there are 17 samples collected in 14 days of 3 months.

2.2 Land Surface Model and Data

The Community Land Model (CLM) was used to simulate the spatio-temporal distribution of soil moisture, soil temperature, land surface temperature, vegetation temperature, sensible heat flux, latent heat flux and soil heat flux of the study area. The coupled water and energy balance are modeled in CLM, and the land surface heterogeneity is represented by patched plant functional types and soil texture (Oleson et al., 2013).

The soil properties used in CLM were from the soil database of China with 1 km spatial resolution (Shangguan et al., 2013). The MODIS 500 m resolution plant functional type product (MCD12Q1) (Sun et al., 2008) which was resampled by nearest neighbor interpolation to 1 km resolution and MODIS leaf area index LAI product (MCD15A3) with 1 km spatial resolution (Han et al., 2012) were used as
input. Due to a lack of measurement data, two atmospheric forcing data sets were used: the Global Land Data Assimilation System reanalysis data (Rodell et al., 2004) was interpolated using the National Centers for Environmental Prediction (NCEP) bilinear interpolation library iplib in spatial and temporal dimensions and used in the CLM for the spin-up period (http://www.nco.ncep.noaa.gov/pmb/docs/libs/iplib/ncep_iplib.shl). For the three months data assimilation period, hourly forcing data (incident longwave radiation, incident solar radiation, precipitation, air pressure, specific humidity, air temperature and wind speed) from the Daman superstation of HiWATER were available and used.

2.3 Cosmic-Ray Forward Model

In this study, the new developed COsmic-ray Soil Moisture Interaction Code (COSMIC) model (Shuttleworth et al., 2013) was used as the cosmic-ray forward model to simulate the cosmic-ray neutron count rate using the soil moisture profile as input. The effective measurement depth of the cosmic-ray soil moisture probe ranges from 12 cm (wet soils) to 76 cm (dry soils) (Zreda et al., 2008), within which 86% of the above-ground measured neutrons originate. COSMIC also calculates the effective sensor depth based on the cosmic-ray neutron intensity and the soil moisture profile values (Franz et al., 2012; Shuttleworth et al., 2013).

COSMIC makes several assumptions to calculate the number of fast neutrons reaching the cosmic-ray soil moisture probe \( N_{\text{COSMOS}} \) at a near-surface measurement location, and the soil layer with a depth of 3 meters for the complete soil profile, was
discretized into 300 layers for the integration of Eq. 2 in COSMIC. The number of fast neutrons reaching the cosmic-ray probe \( N_{\text{COSMOS}} \) is formulated as (Shuttleworth et al., 2013):

\[
N_{\text{COSMOS}} = N \int_0^\infty A(z)[\alpha \rho_s(z) + \rho_w(z)] \exp \left( - \left[ \frac{m_s(z)}{L_1} + \frac{m_w(z)}{L_2} \right] \right) dz \tag{1}
\]

\[
A(z) = \left( \frac{2}{\pi} \right)^{\frac{1}{2}} \left[ \frac{-1}{\cos(\theta)} \right] \left[ \frac{m_s(z)}{L_3} + \frac{m_w(z)}{L_4} \right] d\theta \tag{2}
\]

\[ \alpha = 0.405 - 0.102 \times \rho_s \tag{3} \]

\[ L_3 = -31.76 + 99.38 \times \rho_s \tag{4} \]

where \( N \) is the high energy neutron intensity (counts/hour), \( z \) denotes the soil layer depth (m), \( \rho_s \) denotes the dry soil bulk density (g/cm\(^3\)), \( \rho_w \) denotes the total water density, including the lattice water (g/cm\(^3\)) and \( \alpha \) denotes the ratio of fast neutron creation factor. \( L_1 \) is the high energy soil attenuation length with value of 162.0 g/cm\(^2\) and \( L_2 \) denotes the high energy water attenuation length of 129.1 g/cm\(^2\). In equation (2) \( \theta \) is the angle between the vertical below the detector and the line between the detector and each point in the plane. \( m_s(z) \) and \( m_w(z) \) are the integrated mass per unit area of dry soil and water (g/cm\(^2\)), respectively. \( L_3 \) denotes the fast neutron soil attenuation length (g/cm\(^2\)) and \( L_4 \) stands for the fast neutron water attenuation length with value of 3.16 g/cm\(^2\).

The cosmic-ray neutron intensity reaching the land surface is influenced by air pressure, atmospheric water vapor content and incoming neutron flux. In order to isolate the contribution of soil moisture content to the measured neutron density, it is important to take these effects into account and the calibrated neutron count intensity...
can be derived as follows:

\[ N_{\text{corr}} = N_{\text{obs}} \times f_p \times f_{wv} \times f_i \]  
(5)

where \( N_{\text{corr}} \) represents corrected neutron counts and \( N_{\text{obs}} \) the measured neutron counts. \( f_p \) is the correction factor for air pressure, \( f_{wv} \) the correction factor for atmospheric water vapor and \( f_i \) the correction factor for incoming neutron flux.

The correction factor for air pressure \( f_p \) can be calculated as (Zreda et al., 2012):

\[ f_p = \exp\left( \frac{P - P_0}{L} \right) \]  
(6)

where \( P \) (mbar) is the local air pressure, \( P_0 \) (mbar) the average air pressure during the measurement period and \( L \) (g/cm\(^2\)) is the mass attenuation length for high-energy neutrons; the default value of 128 g/cm\(^2\) was used for this study (Zreda et al., 2012).

The correction factor \( f_{wv} \) for atmospheric water vapor is calculated as (Rosolem et al., 2013):

\[ f_{wv} = 1 + 0.0054 \times (\rho_{v0} - \rho_{v0}^{\text{ref}}) \]  
(7)

where \( \rho_{v0} \) (kg/m\(^3\)) is the absolute humidity at the measurement time and \( \rho_{v0}^{\text{ref}} \) (kg/m\(^3\)) is the average absolute humidity during the measurement period.

Fluctuations in the incoming neutron flux should be removed because the cosmic-ray probe is designed to measure the neutron flux based on the incoming background neutron flux. The correcting factor \( f_i \) for the incoming neutron flux is calculated as:
where $N_m$ is the measured incoming neutron flux and $N_{avg}$ is the average incoming neutron flux during the measurement period. The measured data at the Jungfraujoch station in Switzerland at 3560 m (http://cosray.unibe.ch/) was used to calculate $N_m$ and $N_{avg}$. The temporal (secular or diurnal) variations caused by the sunspot cycle could be removed after this correction (Zreda et al., 2012).

In this study, the soil moisture for the CRS footprint scale was calculated from the arithmetic mean of the 23 SoilNet soil moisture observations. In this study, the soil moisture at for the CRS footprint scale was calculated from the arithmetic mean of the 23 SoilNet soil moisture observations. The calibration of the high energy neutron intensity parameter $N$ in equation (1) was done using the measured cosmic-ray neutron counts rate and averaged soil moisture content at the CRS footprint scale. Because lattice water was unknown for this site, a value of 3% was assumed in this study (Franz et al., 2012). Hourly soil moisture measurements for a period of 2.5 months were used for COSMIC calibration. Inside the cosmic-ray probe footprint, the amount of applied irrigation was spatially variable due to the different management practice of each farmer. The gradient search algorithm L-BFGS-B (Zhu et al., 1997) was used to minimize the root mean square error of the differences between simulated cosmic-ray neutron counts (using measured soil moisture by SoilNet as input to COSMIC) and the measured neutron counts $N_{Corr}$. The optimized parameter value of $N$ was 615.96 counts/hour in this case.

The simulated soil moisture content for 10 CLM soil layers (3.8 m depth) was
used as input to COSMIC in order to simulate the corresponding neutron count intensity and compare it with the measured neutron count intensity. It should be mentioned that it is unlikely that anything beyond 1 m deep will substantially impact the results because the effective measurement depth of the cosmic-ray probe is between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile. COSMIC interpolates the soil moisture information from the ten CLM layers to information for 300 soil layers of depth 1 cm. The contribution of each soil layer to the measured neutron flux will change temporally depending on the soil moisture condition. Therefore the effective measurement depth of the cosmic ray probe will also change temporally. COSMIC calculates the vertically weighted soil moisture content based on the vertical distribution of soil moisture content. For the data assimilation, the simulated soil moisture content for 10 soil layers (3.8 m depth) in CLM was used as the input to COSMIC in order to simulate the corresponding cosmic-ray neutron counts and compare it with the measured neutron counts. It should be mentioned that it is unlikely that anything beyond 1 m deep will substantially impact the results because the effective measurement depth of cosmic-ray probe is between 12 and 76 cm. The COSMIC model assumes a more detailed soil profile. In COSMIC, the soil moisture information from the 10 layers from CLM was interpolated to information for 300 layers based on the soil layer depth for stable numerical solution. The contribution of each soil layer to the measured neutron flux will change temporally depending on the soil moisture condition. So the effective measurement depth of the
cosmic ray probe will also change temporally. COSMIC calculates as output also the neutron count rate and the vertically weighted soil moisture content, which is calculated with help of the effective sensor depth obtained from COSMIC based on the vertical distribution of soil moisture contents at different depth.

2.4 Two Source Formulation - TSF

The land surface temperature products of MODIS are composed of a ground temperature and vegetation temperature component, which are however unknown. CLM models the ground temperature and vegetation temperature separately, but does not model the composed land surface temperature as seen by MODIS. The corresponding land surface temperature of CLM should therefore be modelled for data assimilation purposes. The two source formulation (Kustas and Anderson, 2009) was used in this study to calculate the land surface temperature from the MODIS view angle using ground temperature and vegetation temperature simulated by CLM:

\[ T_s = \left[ F_v(\Phi)T_v^4 + (1 - F_v(\Phi)T_g^4) \right]^{1/4} \]  

(9)

where \( T_s \) (K) is the composed surface temperature as seen by the MODIS sensor, \( F_v(\Phi) \) is the fraction vegetation cover observed from the sensor view angle \( \Phi \) (radians), \( T_v \) (K) is the vegetation temperature and \( T_g \) (K) is the ground temperature. (Kustas and Anderson, 2009):

\[ F_v(\Phi) = 1 - \exp \left( -\frac{0.5\Omega(\Phi)LAI}{\cos \Phi} \right) \]  

(10)

where \( LAI \) is the leaf area index, \( \Omega(\Phi) \) is a clumping index to represent the nonrandom leaf area distributions of farmland or other heterogeneous land surfaces.
(Anderson et al., 2005), and is defined as:

\[ \Omega(\phi) = \frac{0.49 \Omega_{\text{max}}}{0.49 + (\Omega_{\text{max}} - 0.49) \exp(k \theta^{3.34})} \]  

(11)

\[ \Omega_{\text{max}} = 0.49 + 0.51(\sin \phi)^{0.05} \]  

(12)

\[ k = -\{0.3 + \{1.7 \times 0.49 \times (\sin \phi)^{0.1}\}^{1.4}\} \]  

(13)

2.5 Assimilation Approach

The Local Ensemble Transform Kalman Filter (LETKF) was used as the assimilation algorithm, which is one of the square root variants of the ensemble Kalman filter (Evensen, 2003; Hunt et al., 2007; Miyoshi and Yamane, 2007). The model uncertainties are represented using the ensemble simulation of model states and LETKF derives the background error covariance using the model state ensemble members. LETKF uses the non-perturbed observations to update all the ensemble members of model states at each assimilation step.

In this study, \( x_1^b, \ldots, x_N^b \) denote the model state ensemble members; \( \bar{x}^b \) is the ensemble mean of \( x_1^b, \ldots, x_N^b \); \( N \) is the ensemble size; \( y_1^b, \ldots, y_N^b \) denote the mapped model state ensemble members; \( \bar{y}^b \) is the ensemble mean of \( y_1^b, \ldots, y_N^b \); \( H \) is the observation operator (COSMIC for soil moisture or the two source function for land surface temperature). The analysis step of LETKF can be summarized as follows:

Prepare the model state vector \( X^b \):

\[ X^b = [x_1^b - \bar{x}^b, \ldots, x_N^b - \bar{x}^b] \]  

(14)

where \( \bar{x}^b \) is composed of one vertically weighted soil moisture content and soil moisture content for 10 CLM-layers, resulting in a state dimension equal to 11 if only
The neutron count observation was assimilated; and \( \bar{x}^b \) is composed of surface temperature, ground temperature, vegetation temperature and soil temperature for 15 CLM-layers if only the land surface temperature observations were assimilated without soil moisture update, giving a state dimension of 18. The water and energy balance are coupled, and in CLM the energy balance is firstly solved, then the derived surface fluxes are used for updating the soil moisture content. So the cross correlation between the soil temperature and soil moisture could be calculated using the ensemble prediction in LETKF, and this makes the updating of soil moisture by assimilating land surface temperature possible. We also used the land surface temperature to update the soil moisture profile, in this case the soil moisture vector was augmented to the LETKF state vector of land surface temperature assimilation, and—resulting in a state dimension of 28. For the calibration of the LAI, the state vector was augmented with surface temperature, ground temperature, vegetation temperature, soil temperature for 15 CLM-layers and LAI if only the land surface temperature observations were assimilated without soil moisture update. This resulted then in a state dimension of 19. For the calibration of the LAI, the state vector was augmented as surface temperature, ground temperature, vegetation temperature, soil temperature for 15 CLM-layers and LAI if only the land surface temperature observations were assimilated without soil moisture update, giving a state dimension of 19.

Construct the mapped model state vector \( Y^b \) after transformation of observation operator:
The following analysis is looped for each model grid cell to calculate the update of model state ensemble members:

Calculate analysis error covariance matrix $P^a$:

$$P^a = [(N - 1)I + Y^b R^{-1} Y^b]$$  \hspace{1cm} (17)

The perturbations in ensemble space are calculated as:

$$W^a = [(N - 1)P^a]^{1/2}$$  \hspace{1cm} (18)

Calculate the analysis mean $\bar{w}^a$ in ensemble space and add to each column of $W^a$ to get the analysis ensemble in ensemble space:

$$\bar{w}^a = P^a Y^b R^{-1} (y^o - \bar{y}^b)$$  \hspace{1cm} (19)

Calculate the new analysis:

$$X^a = X^b [\bar{w}^a + W^a] + \bar{x}^b$$  \hspace{1cm} (20)

where $R$ is the observation error covariance matrix, $y^o$ is the observation vector and $X^a$ contains the updated model ensemble members.

The LETKF method can also be extended to do parameter estimation using a state augmentation approach (Bateni and Entekhabi, 2012; Li and Ren, 2011; Moradkhani et al., 2005; Nie et al., 2011). Alternative strategies for parameter estimation are a dual approach (Moradkhani et al., 2005) with separate updating of states and parameters.

Vrugt et al. (2005) also proposed a dual approach with parameter updating in an outer optimization loop using a Markov Chain Monte Carlo method, and state updating in an inner loop. The a priori calibration of model parameters is also an option (Kumar et
With the augmentation approach, the state vector of LETKF can be augmented by the parameter vector including soil properties (sand fraction, clay fraction and organic matter density) and vegetation parameters (leaf area index LAI, etc.). In a preliminary sensitivity study it was found that for this site simulation results were more sensitive to the leaf area index LAI than to soil properties. Soil texture is also quite well known for this site from measurements. Therefore in this study, only the leaf area index LAI was in some of the simulation scenarios calibrated. In the different scenarios of land surface temperature assimilation, the LETKF state vector was also augmented to include leaf area index LAI as calibration target. As a consequence, the augmented state vector contains surface temperature, ground temperature, and vegetation temperature, 15 layers of soil temperature and leaf area index LAI, making up a state dimension equal to 19 for the scenarios of land surface temperature assimilation without soil moisture update; for the scenarios of land surface temperature with soil moisture update, the state dimension is 29 for the scenarios of land surface temperature with soil moisture update, the state dimension will be changed to 29. The 10 layers of soil moisture and 15 layers of soil temperature are the standard CLM layout for both soil moisture and soil temperature. The hydrology calculations are done over the top 10 layers, and the bottom 5 layers are specified as bedrock. The lower 5 layers are hydrologically inactive layers. Temperature calculations are done over all layers (Oleson et al., 2013).

3. Experiment Setup
Firstly the 50 ensemble members of CLM with perturbed soil properties and atmospheric forcing data were driven from the 1st of Jan. 2012 to the 31st of May 2012 to do the CLM spin-up; secondly an additional assimilation period of cosmic-ray neutron counts was done from the 1st of Jun. 2012 to the 30th Aug. 2012 to reduce the spin-up error. Then the final CLM states on 30th Aug. 2012 were used as the initial states for the following data assimilation scenarios. Perturbed soil properties were generated by adding a spatially uniform perturbation sampled from a uniform distribution between -10% and 10% to the values extracted from the Soil Database of China for Land Surface Modeling (1 km spatial resolution). The LAI was perturbed with multiplicative uniform distributed random noise in the range of [0.8~1.2]. The perturbations added to the model forcings show correlations in space and time. The leaf area index was perturbed with multiplicative uniform distributed random noise in the range of [0.8~1.2]. The model forcings were perturbed by adding a perturbation, showing correlations in space and time. The spatial correlation was induced by a Fast Fourier Transform and the temporal correlation by a first-order auto-regressive model (Han et al., 2013; Kumar et al., 2009; Reichle et al., 2010). The statistics on the perturbation of the forcing data are summarized in Table 1. The values of standard deviations and temporal correlations in Table 1 were chosen based on previous catchment scale and regional scale data assimilation studies (De Lannoy et al., 2012; Kumar et al., 2012; Reichle et al., 2010).

The cosmic-ray neutron intensity was assimilated every 3 days at 12Z from the 1st
of June 2012 onwards, because we found that the difference between daily assimilation and 3 days assimilation was small (Entekhabi et al., 2010; Kerr et al., 2010). The measured neutron count intensity showed large temporal fluctuations in time and these fluctuations were not corresponding to the temporal variations of soil moisture. Therefore the measured neutron count intensity was smoothed with the Savitzky–Golay filter using a moving average window of size 31 hours and a polynomial of order 4 (Savitzky and Golay, 1964). The originally measured neutron counts and smoothed neutron counts are plotted in Fig. 2. The assimilation frequency of MODIS LST products of MOD11A1 and MYD11A1 was up to 4 times (maximum) per day depending on the data availability. There are 230 observation data (including cosmic-ray probe neutron counts, MODIS LST, MOD11A1 and MYD11A1 LST) in the whole assimilation window. The variance of the instantaneous measured neutron intensity was equal to the measured neutron count intensity (Zreda et al., 2012) and smaller for temporal averaging for daily or sub-daily applications (Zreda et al., 2012). The instantaneous neutron intensity was assimilated in this study, and the variance of MODIS LST was assumed to be 1 K (Wan and Li, 2008). The variance of Cosmic-ray was the measured neutron counts value (Zreda et al., 2012) and the variance of MODIS LST was assumed to be 1 K.

The 4 days MODIS leaf area index LAI product was aggregated and used as the CLM leaf area index LAI parameter. Because the leaf area index LAI from MODIS is usually lower than the true value (compared with the field measured leaf area index LAI in the HiWATER experiment) and because the surface flux and surface
temperature are sensitive to the leaf area index LAI, two additional scenarios were investigated where leaf area index LAI was calibrated to study the impact of leaf area index LAI estimation on surface flux estimation within the data assimilation framework.

The following assimilation scenarios were compared: (1) CLM: open loop simulation without assimilation; (2) Only_CRS: only the measured neutron counts were assimilated; (3) Only_LST: only the MODIS LST products were assimilated. The quality control flags of LST products were used to select the data with good quality for assimilation; (4) CRS_LST: the measured neutron counts and MODIS LST products were assimilated jointly. In the above scenarios, the neutron count data was used to update the soil moisture and the LST data were used to update the ground temperature, vegetation temperature and soil temperature. (5) LST_Feedback: We also evaluated the scenario of assimilating the LST measurements to update the soil moisture profile. (6) CRS_LST_Par_LAI: the leaf area index LAI was included as variable to be calibrated, otherwise the scenario was the same as CRS_LST. (7) LST_Feedback_Par_LAI: the leaf area index LAI was included as variable to be calibrated, otherwise the scenario was the same as LST_Feedback. (8) CRS_LST_True_LAI: the in situ measured leaf area index LAI during the HiWATER experiment was used in the model simulation.

[Insert Figure 2 here]

4. Results and Discussion
In order to evaluate the assimilation results for the different scenarios outlined in section 3, the Root Mean Square Error (RMSE) was used:

$$\text{RMSE} = \sqrt{\frac{\sum_{n=1}^{N}(E_{\text{Estimated}} - M_{\text{Measured}})^2}{N}}$$  \hspace{1cm} (21)

where “Estimated” is the ensemble mean without assimilation or the ensemble mean after assimilation, “Measured” is measured soil moisture content evaluated at the SoilNet nodes (or latent heat flux, sensible heat flux or soil heat flux). $N$ is the number of time steps. For the soil moisture analysis in this study, $N$ is equal to 2184. The smaller the RMSE value is, the closer assimilation results are to measured values, which is in general considered to be desirable.

The temporal evolution of soil moisture content at 10, 20, 50 and 80 cm depth for different scenarios is plotted in Fig. 3 and Fig. 4. The RMSE values for different scenarios are summarized in Table 2. Assimilating the land surface temperature could improve the soil moisture profile estimation in the scenario of LST_Feedback_Par_LAI; the soil moisture results are better than the open loop run at all depths. With the assimilation of CRS neutron counts, the soil moisture RMSE values (scenarios CRS_LST_Par_LAI and CRS_LST_True_LAI) decreased significantly. The RMSE values for the scenarios Only_CRS and CRS_LST (not shown) are similar to CRS_LST_Par_LAI, which indicates that the main improvement for the soil moisture profile characterization is achieved by neutron count assimilation; and land surface temperature assimilation and leaf area index estimation play a minor role. Without assimilation of cosmic-ray probe neutron counts, the soil moisture simulation cannot be improved (scenario Only_LST). However, the
scenarios of LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture profile characterization, which shows that explicitly using LST to update soil moisture content in the data assimilation routine gives better results than using LST only to update soil moisture by the model equations. Without assimilation of cosmic-ray probe neutron counts, the soil moisture simulation cannot be improved in the scenario Only_LST. However, the scenarios of LST_Feedback and LST_Feedback_Par_LAI improve the soil moisture profile characterization, which shows that explicitly using LST to update soil moisture content in the data assimilation routine gives better results than using LST only to update soil moisture over the model equations. Results of LST_Feedback and LST_Feedback_Par_LAI are similar; therefore only results for LST_Feedback_Par_LAI are shown in Fig. 3 and Fig. 4. This implies that the improved soil moisture characterization due to LAI calibration is low. The results for the cosmic-ray probe neutron count assimilation proved that the cosmic-ray probe sensor can be used to improve the soil moisture profile estimation at the footprint scale. The results for the cosmic-ray probe neutron count assimilation proved the cosmic-ray probe sensor can be used to improve the soil moisture profile estimation at the footprint scale. 

Fig. 5 depicts the scatter plots of measured ET versus modelled ET for different scenarios, and the accumulated ET for all scenarios are summarized in the lower-right
corner of Fig. 5. The EC measured evapotranspiration (ET) is 384.7 mm for the assimilation period, without energy balance closure correction. The true evapotranspiration is therefore likely larger, but not much larger as the energy balance gap was limited (3.7%). The CLM estimated ET, without data assimilation, using only precipitation as input is 223.7 mm and is much smaller than the measured value as applied irrigation is not considered in the model. This open loop simulated value would imply water stress and a limitation of canopy transpiration and soil evaporation due to low soil moisture content. Assimilation of land surface temperature only (Only_LST) hardly affected the estimated ET and was not able to correct for the artificial water stress condition. However, if land surface temperature was used to update soil moisture directly, taking into account correlations between the two states in the data assimilation routine, the ET estimates improved to 336.8 mm and 354.8 mm for the scenarios of LST_Feedback and LST_Feedback_Par_LAI respectively. The assimilation of land surface temperature of MODIS with soil moisture update results in significant improvements of ET.

The different neutron count assimilation scenarios also resulted in significantly improved estimates of ET. Univariate assimilation of cosmic-ray neutron data (Only_CRS) resulted in 301.9 mm ET. This shows that the impact of neutron count assimilation to correct evapotranspiration estimates is little smaller than the impact of land surface temperature with soil moisture update. Joint assimilation of land surface temperature data and cosmic-ray neutron data (CRS_LST) gave a slightly larger ET of 310.6 mm than Only_CRS. Scenarios of CRS_LST_Par_LAI and
CRS_LST_True_LAI gave the best ET estimates (360.5 mm and 349.3 mm). This shows that correcting the biased LAI-estimates from MODIS by in situ data or calibration helped to improve model estimates.

[Insert Figure 5 here]

The RMSE values of latent heat flux, sensible heat flux and soil heat flux for all scenarios are summarized in Fig. 6, Fig. 7, Fig. 8 and Table 3. It is obvious that the RMSE values are very large for both the latent heat flux (123.9 W/m²) (Fig. 6) and sensible heat flux (80.5 W/m²) (Fig. 7) for the open loop run and all other scenarios where the soil moisture was not updated. If the land surface temperature was assimilated to update the soil moisture, the latent heat flux RMSE decreased to 60.5 W/m² (LST_Feedback) and 62.5 W/m² (LST_Feedback_Par_LAI). The scenario where soil moisture and LAI are jointly updated (LST_Feedback_Par_LAI) gave worse results than the scenario of LST_Feedback. The joint soil moisture and LAI update scenario of LST_Feedback_Par_LAI was worse than the single soil moisture update scenario of LST_Feedback in this case. Again, the assimilation of neutron counts also resulted in a strong RMSE reduction for the latent heat flux (76.5 W/m² for Only_CRS). If in addition land surface temperature was assimilated and leaf area index_LAI optimized, the RMSE value of latent heat flux further decreased to 56.1 W/m² (70.7 W/m² without LAI optimization). If the field measured LAI was used instead in the assimilation (CRS_LST_True_LAI), the RMSE was 61.0 W/m². These results are in correspondence with the ones discussed before for soil moisture characterization. Evidently, the combined assimilation of cosmic-ray probe neutron
counts and land surface temperature, and calibration of leaf area index LAI (or use of field measured leaf area index LAI as model input) shows the strongest improvement for the estimation of land surface fluxes. The soil heat flux did not show a clear improvement related to assimilation and showed only some improvement in case LAI was calibrated (Fig. 8). For the scenario of land surface temperature assimilation without soil moisture update (Only_LST), estimates of latent and sensible heat flux are not improved. It means that under water stress condition, the improved characterization of land surface temperature (and soil temperature) does not contribute to a better estimation of land surface fluxes.

[Insert Table 3 here]

[Insert Figure 6 here]

[Insert Figure 7 here]

[Insert Figure 8 here]

The updated leaf area index LAI for scenarios of LST_Feedback_Par_LAI and CRS_LST_Par_LAI is shown in Fig. 9. The MODIS leaf area index LAI product was used as input for CLM and time series are plotted as blue line in Fig. 9 (Background). The leaf area index LAI was also measured in the HiWATER experiment, and the measured values are shown as green star (Observation). Ens_Mean represents the mean leaf area index LAI of all ensemble members (Ensembles). It is obvious that MODIS underestimates the leaf area index LAI compared with the observations. With the assimilation of land surface temperature, the leaf area index LAI could be updated and be closer to the observations, but there is
still a significant discrepancy between the measured leaf area index LAI and the updated one. The leaf area index LAI values for the scenario with leaf area index LAI calibration (CRS_LST_Par_LAI) are close to the measured leaf area index LAI values (CRS_LST_True_LAI), which is an encouraging result. The calibrated leaf area index LAI shows some unrealistic increases and decreases during the assimilation period, which is inherent to the data assimilation approach. A smoothed representation of the leaf area index LAI might provide a more realistic picture.

[Insert Figure 7 here]

This study illustrates that for an irrigated farmland, the measured cosmic-ray probe neutron counts can be used to improve the soil moisture profile estimation significantly. Without irrigation data, CLM underestimated soil moisture content. The cosmic-ray neutron count data assimilation can be used as an alternative way to retrieve the soil moisture content profile in CLM. The improved soil moisture simulation was helpful for the characterization of the land surface fluxes. The univariate assimilation of land surface temperature without soil moisture update is not helpful for the estimation of land surface fluxes and even worsened the sensible heat flux characterization (Fig. 26). However, in a multivariate data assimilation framework where land surface temperature was assimilated together with measured cosmic-ray probe neutron counts, the land surface temperature assimilation contributed significantly to an improved ET estimation. The simulated canopy transpiration in CLM was in general too low, even when the water stress condition was corrected by assimilating neutron counts, which was related to small
values of the leaf area index $\text{LAI}$. The additional estimation of leaf area index $\text{LAI}$ through the land surface temperature assimilation resulted in an increase of the leaf area index $\text{LAI}$ yielding an increase of estimated ET.

In general, land surface models need to be calibrated before use in land data assimilation, especially if there is an apparent large bias in the model simulation (Dee, 2005). The simulation of soil moisture and surface fluxes was biased in our study, mainly due to the lack of irrigation water as input. This bias cannot be corrected a priori without exact irrigation data, which are not available in the field. The data assimilation was proven to be an efficient way to remove the model bias in this case.

We also calculated the equivalent water thickness to analyze the equivalent irrigated water after each step of soil moisture update. For the scenarios of CRS_LST_Par_LAI and CRS_LST_True_LAI, the equivalent irrigation in three months was 693.6 mm and 607.6 mm, respectively. Because the irrigation method is flood irrigation, it is not easy to evaluate the true irrigation applied in the field. From the results we see however that the applied irrigation (in the model) is much larger than actual ET (~600-700mm vs ~400mm) (~700mm vs ~400mm). This could indicate that the amount of applied irrigation in the model is too large, but irrigation by flooding is also inefficient and results in excess runoff and infiltration to the groundwater, because it cannot be controlled so well as sprinkler irrigation or drip irrigation. Therefore, the calculated amount of irrigation could be realistic, but might also be too large if soil properties are erroneous in the model.

The soil moisture content measured by the cosmic-ray probe represents the depth
between 12 cm (very humid) and 76 cm (extremely dry case) depending on the amount of soil water (soil moisture content and lattice water). Therefore the effective sensor depth of the cosmic-ray probe will change over time. In order to model the variable sensor depth and the relationship between the soil moisture content and neutron counts, the new developed COSMIC model was used as the observation operator in this study. Additionally the influences of air pressure, atmospheric vapor pressure and incoming neutron counts were removed from the original measured neutron counts. Because there is still some water in the crop which also affects the cosmic-ray probe sensor, the COSMIC observation operator could be improved to include vegetation effects. Several default parameters proposed by (Shuttleworth et al., 2013) were used in the COSMIC model, these parameters probably need further calibration following the development of the COSMIC model.

The spatial distribution of soil moisture for the study area was very heterogeneous due to the small farmland patches and different irrigation periods for the different farmlands. Therefore the soil moisture content inferred by SoilNet may not represent the true soil moisture content of the cosmic-ray probe footprint, which is a further limitation of this study. Although the Cosmic-ray Soil Moisture Observing System (COSMOS) has been designed as a continental scale network by installing 500 COSMOS probes across the USA (Zreda et al., 2012), there are still some disadvantages of COSMOS compared with remote sensing. COSMOS is also expensive for extensive deployment to measure the continental/regional scale soil moisture. There are still some disadvantages of COSMOS compared with remote...
sensing. The land surface is heterogeneous and COSMOS only samples part of this heterogeneity. COSMOS is also expensive for extensive deployment. Although the Cosmic-ray Soil Moisture Observing System (COSMOS) has been designed as a continental scale network by installing 500 COSMOS probes across the USA (Zreda et al., 2012). But there are still some disadvantages of COSMOS compared with the remote sensing. Because the land surface is heterogeneous and COSMOS only catch the heterogeneity of local footprint scale, and COSMOS is expensive for extensive deployment.

5. Summary and Conclusions

In this paper, we studied the univariate assimilation of MODIS land surface temperature products, the univariate assimilation of measured neutron counts by the cosmic-ray probe, the bivariate assimilation of land surface temperature and neutron count data, and the additional calibration of leaf area index $\text{LAI}$ for an irrigated farmland at the Heihe catchment in China, where data on the amount of applied irrigation were lacking. The most important objective of this study was to test whether data assimilation is able to correct for the absence of information on water resources management as model input, a situation commonly encountered in large scale land surface modelling. For the specific case of lacking irrigation data, no a priori bias correction is possible. The bias blind assimilation without explicit bias estimation was used. We focused on the model bias introduced by the forcing data and the LAI, and neglected the other sources of bias. In case leaf area index $\text{LAI}$ was calibrated, this was done at each data assimilation step of land surface temperature. The data
assimilation experiments were carried out with the Community Land Model (CLM) and the data assimilation algorithm used was the Local Ensemble Transform Kalman Filter (LETKF). A likely further model bias, besides missing information on irrigation, is the underestimation of LAI by MODIS, which was used to force the model.

The results show that the direct assimilation of measured cosmic-ray neutron counts improves the estimation of soil moisture significantly, whereas univariate assimilation of land surface temperature without soil moisture update does not improve soil moisture estimation. However, if the land surface temperature was assimilated to update the soil moisture profile directly with help of the state augmentation method, the evapotranspiration and soil moisture could be improved significantly. This result suggests that the land surface temperature remote sensing products are needed to correct the characterization of the soil moisture profile and the evapotranspiration. The improved soil moisture estimation after the assimilation of neutron counts resulted in a better ET estimation during the irrigation season, correcting the too low ET of the open loop simulation. The joint assimilation of neutron counts and MODIS land surface temperature improved the ET estimation further compared to neutron count assimilation only. The best ET estimation was obtained for the joint assimilation of cosmic-ray neutron counts, MODIS land surface temperature including calibration of the leaf area index $\text{LAI}$ (or if field measured leaf area index $\text{LAI}$ was used as input). This shows that bias due to neglected information on water resources management can be corrected by data assimilation if a combination of soil moisture and land surface temperature data is available.
We can conclude that data assimilation of neutron counts and land surface temperature is useful for ET and soil moisture estimation of an irrigated farmlands, even if irrigation data are not available and excluded from model input. The land surface temperature measurements are an alternative data source to improve the soil moisture and land surface fluxes estimation under water stress conditions. This shows the potential of data assimilation to correct also a systematic model bias. Leaf area index \textit{LAI} optimization further improves simulation results, which is also likely related to a systematic underestimation of LAI by the MODIS remote sensing product. The results of using the calibrated leaf area index \textit{LAI} are comparable to the results of using field measured leaf area index \textit{LAI} as model input.

**Acknowledgements**

This work is supported by the NSFC (National Science Foundation of China) project (grant number: 41271357, 91125001), the Knowledge Innovation Program of the Chinese Academy of Sciences (grant number: KZCX2-EW-312) and the Transregional Collaborative Research Centre 32, financed by the German Science foundation. Jungfraujoch neutron monitor data were kindly provided by the Cosmic-ray Group, Physikalisches Institut, University of Bern, Switzerland. We acknowledge computing resources and time on the Supercomputing Center of Cold and Arid Region Environment and Engineering Research Institute of Chinese Academy of Sciences.
List of Tables

Table 1 Summary of perturbation parameters for atmospheric forcing data.

Table 2 Root Mean Square Error (RMSE) of soil moisture profile of open loop run (CLM), feedback assimilation of land surface temperature including LAI calibration (LST_Feedback_Par_LAI), bivariate assimilation of neutron counts and land surface temperature including LAI calibration (CRS_LST_Par_LAI) and bivariate assimilation of neutron counts and land surface temperature (CRS_LST_True_LAI).

Table 3 Root Mean Square Error (RMSE) of latent heat flux and sensible heat flux for different simulation scenarios.
Table 1 Summary of perturbation parameters for atmospheric forcing data

<table>
<thead>
<tr>
<th>Variables</th>
<th>Noise</th>
<th>Standard deviation</th>
<th>Time Correlation scale</th>
<th>Spatial Correlation Scale</th>
<th>Cross correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>Multiplicative</td>
<td>0.5</td>
<td>24 h</td>
<td>5 km</td>
<td>[ 1.0, -0.8, 0.5, 0.0, ]</td>
</tr>
<tr>
<td>Shortwave radiation</td>
<td>Multiplicative</td>
<td>0.3</td>
<td>24 h</td>
<td>5 km</td>
<td>-0.8, 1.0, -0.5, 0.4,</td>
</tr>
<tr>
<td>Longwave radiation</td>
<td>Additive</td>
<td>20 W/m²</td>
<td>24 h</td>
<td>5 km</td>
<td>0.5, -0.5, 1.0, 0.4,</td>
</tr>
<tr>
<td>Air temperature</td>
<td>Additive</td>
<td>1 K</td>
<td>24 h</td>
<td>5 km</td>
<td>0.0, 0.4, 0.4, 1.0 ]</td>
</tr>
</tbody>
</table>
Table 2 Root Mean Square Error (RMSE) of soil moisture profile of open loop run (CLM), feedback assimilation of land surface temperature including LAI calibration (LST_Feedback_Par_LAI), bivariate assimilation of neutron counts and land surface temperature including LAI calibration (CRS_LST_Par_LAI) and bivariate assimilation of neutron counts and land surface temperature using ground-based measured LAI as input (CRS_LST_True_LAI).

<table>
<thead>
<tr>
<th>Soil Layer Depth</th>
<th>RMSE (m$^3$/m$^3$)</th>
<th>Open Loop (CLM)</th>
<th>LST_Feedback_Par_LAI</th>
<th>CRS_LST_Par_LAI</th>
<th>CRS_LST_True_LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm</td>
<td>0.202</td>
<td>0.137</td>
<td>0.085</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>20 cm</td>
<td>0.167</td>
<td>0.106</td>
<td>0.047</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>50 cm</td>
<td>0.193</td>
<td>0.112</td>
<td>0.112</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>80 cm</td>
<td>0.188</td>
<td>0.124</td>
<td>0.136</td>
<td>0.146</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Root Mean Square Error (RMSE) of latent heat flux and sensible heat flux for different simulation scenarios.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>RMSE (W/m²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latent Heat</td>
<td>Sensible Heat</td>
</tr>
<tr>
<td>Open Loop (CLM)</td>
<td>123.9</td>
<td>80.5</td>
</tr>
<tr>
<td>LST_Feedback</td>
<td>60.5</td>
<td>34.8</td>
</tr>
<tr>
<td>LST_Feedback_Par_LAI</td>
<td>62.5</td>
<td>37.2</td>
</tr>
<tr>
<td>Only_CRS</td>
<td>76.5</td>
<td>43.3</td>
</tr>
<tr>
<td>CRS_LST</td>
<td>70.7</td>
<td>40.5</td>
</tr>
<tr>
<td>CRS_LST_Par_LAI</td>
<td>56.1</td>
<td>31.9</td>
</tr>
<tr>
<td>CRS_LST_True_LAI</td>
<td>61.0</td>
<td>34.5</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Map of the cosmic-ray probe and SoilNet Nodes in the footprint of the CRS probe positioned at the Heihe river catchment

Figure 2. Measured and temporally smoothed CRS neutron counts

Figure 3. Soil moisture at 10 cm (upper) and 20 cm (lower) depth as obtained from an open loop run (CLM), local sensors (Obs), and different simulation scenarios. For a description of the scenarios see section 3 of the paper. The CRS neutron counts were assimilated from the 1st of June

Figure 4. Same as figure 3 but for 50 cm and 80 cm. Soil moisture at 50 (upper) cm and 80 cm (lower) depth measured and modeled according different scenarios. For a full description see Fig. 3

Figure 5. Evapotranspiration estimated according different scenarios for the period June-August 2012. For a full description see Fig. 3

Figure 6. RMSE values of latent heat flux, sensible heat flux and soil heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.

Figure 7. RMSE of sensible heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.

Figure 8. RMSE of soil heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.

Figure 9. Leaf area index LAI evolution for the period June-August 2012. Displayed are the measured leaf area index LAI (Observation), default values (Background), mean of ensemble members (Ens_Mean) and ensemble members (Ensembles) for scenarios of LST_Feedback_Par_LAI (upper) and CRS_LST_Par_LAI (lower)
Figure 1. Map of the cosmic-ray probe and SoilNet Nodes in the footprint of the CRS probe positioned at the Heihe river catchment
Figure 2. Measured and temporally smoothed CRS neutron counts.
Figure 3. Soil moisture at 10 cm (upper) and 20 cm (lower) depth as obtained from an open loop run (CLM), local sensors (Obs), and different simulation scenarios. For a description of the scenarios see section 3 of the paper. The CRS neutron counts were assimilated from the 1st of June onwards.
Figure 4. Same as figure 3 but for 50 cm and 80 cm soil moisture at 50 (upper) cm and 80 cm (lower) depth measured and modeled according different scenarios. For a full description see Fig. 3.
Figure 5. Evapotranspiration estimated according different scenarios for the period June-August 2012. For a full description see Fig. 3.
Figure 6. RMSE of latent heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.
Figure 7. RMSE of sensible heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.
Figure 8. RMSE values of latent heat flux, sensible heat flux and soil heat flux for the period June-August 2012. For a description of the scenarios see section 3 of the paper.
Figure 97. Leaf area index (LAI) evolution for the period June-August 2012. Displayed are the measured leaf area index (LAI) (Observation), default values (Background), mean of ensemble members (Ens_Mean) and ensemble members (Ensembles) for scenarios of LST_Feedback_Par_LAI (upper) and CRS_LST_Par_LAI (lower).
References:


Reul, N., Gruhier, C., and Others: The SMOS Mission: New Tool for Monitoring Key Elements of the

Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D., Yatheendradas, S., and Santanello, J. A.:
A comparison of methods for a priori bias correction in soil moisture data assimilation, Water Resour
Res, 48, n/a–n/a, 2012.

Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T., and Peters-Lidard, C. D.: Role of Subsurface

Kustas, W. and Anderson, M.: Advances in thermal infrared remote sensing for land surface modeling,

Li, C. and Ren, L.: Estimation of Unsaturated Soil Hydraulic Parameters Using the Ensemble Kalman
Filter, Vadose Zone J, 10, 1205, 2011.

Li, F. Q., Crow, W. T., and Kustas, W. P.: Towards the estimation root-zone soil moisture via the
simultaneous assimilation of thermal and microwave soil moisture retrievals, Adv Water Resour, 33,

Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and

Miyoshi, T. and Yamane, S.: Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48

Montzka, C., Grant, J. P., Moradkhani, H., Franssen, H. J. H., Weihermuller, L., Drusch, M., and
Vereecken, H.: Estimation of Radiative Transfer Parameters from L-Band Passive Microwave Brightness
Temperatures Using Advanced Data Assimilation, Vadose Zone J, 12, 2013.

Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual state–parameter estimation of

Nie, S., Zhu, J., and Luo, Y.: Simultaneous estimation of land surface scheme states and parameters
using the ensemble Kalman filter: identical twin experiments, Hydrology and Earth System Sciences,
15, 2437-2457, 2011.

Oleson, K., Lawrence, D. M., Bonan, G., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W.
Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and
Yang, Z.-L.: Technical Description of version 4.5 of the Community Land Model (CLM), Ncar Technical

of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated

Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv Water Resour, 31, 1411-1418,
2008.

Reichle, R. H., Kumar, S. V., Mahanama, S. P. P., Koster, R. D., and Liu, Q.: Assimilation of
Satellite-Derived Skin Temperature Observations into Land Surface Models, J Hydrometeorol, 11,


