The representation of location by regional climate models in complex terrain

D. Maraun1 and M. Widmann2

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
2School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, UK

Received: 10 February 2015 – Accepted: 3 March 2015 – Published: 16 March 2015

Correspondence to: D. Maraun (dmaraun@geomar.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

To assess potential impacts of climate change for a specific location, one typically employs climate model simulations at the grid box corresponding to the same geographical location. But based on regional climate model simulations, we show that simulated climate might be systematically displaced compared to observations. In particular in the rain shadow of mountain ranges, a local grid box is therefore often not representative of observed climate: the simulated windward weather does not flow far enough across the mountains; local grid boxes experience the wrong airmasses and atmospheric circulation. In some cases, also the local climate change signal is deteriorated. Classical bias correction methods fail to correct these location errors. Often, however, a distant simulated time series is representative of the considered observed precipitation, such that a non-local bias correction is possible. These findings also clarify limitations of bias correcting global model errors, and of bias correction against station data.

1 Introduction

Many impacts of climate change are expected to manifest themselves at regional and local scales. To guide adaptation to these impacts, high-resolution climate scenarios are often desired, that realistically simulate potential future regional climate. These scenarios are usually generated by dynamical or statistical downscaling of global climate model simulations (Rummukainen, 2010; Maraun et al., 2010). In the following we will only consider dynamical downscaling by regional climate models (RCMs), but later discuss our results in a general context. For a regional climate change simulation to be useful, it should in general accurately represent the local marginal distribution (i.e. the unconditional probability density function), present-day variability on daily to interannual scales, and the local response to climate change (Maraun et al., 2010).

Impact assessments for a specific location are typically based on simulations at the grid box corresponding to the same geographical location. This at first thought very
reasonable choice is taken in several settings: when directly interpreting the local climate model output; also when driving an impact model representing a specific real world area; and finally when bias correcting local model simulations against observed data.

In many cases, this choice will be justified and the best option. We argue, however, that it is not a priori clear whether a geographical model location represents the same real world location. The orography even of high-resolution RCMs is in general a coarse model of the true orography. As a consequence, in particular in mountain ranges the simulated mesoscale flow might considerably deviate from the observed flow, resulting in systematically displaced local events. In the following we will demonstrate that in such cases, choosing local model output might result in wrong climate change and thus impact assessments. We refer to the representation of a real world geographical location as location representativeness.

Testing the location representativeness is straightforward in weather forecasting by means of forecast verification: a high forecast skill indicates that the model indeed represents the correct geographical location. Furthermore, model output statistics (MOS) in weather forecasting implicitly optimizes location representativeness by choosing extended and weighted predictor fields (Glahn and Lowry, 1972). This concept can in principle be transferred to assess the location representativeness of RCMs: in a perfect boundary setting, the sequence of large-scale weather events in reality and in the model are in close synchrony. Except for the internal variability generated by the RCM, also the simulated and observed regional weather are synchronous. On sufficiently long time scales, one should therefore be able to measure location representativeness by the correlation between regional simulated and observed time series.

Here we demonstrate the relevance of location representativeness for precipitation simulated by an RCM across Europe, in particular in complex terrain. We propose to measure location representativeness by correlations between observations and simulations at the inter-annual scale. Inspired by earlier work of Widmann et al. (2003), we also show that a low location representativeness can in many cases be corrected
by non-local bias correction. Finally, we discuss consequences for correcting global climate model errors.

2 Concept and data

Location representativeness of RCM-simulated climate can in principle be measured by the temporal correlation between simulated and observed climate in a perfect boundary setting. However, internal climate variability hampers the estimation. An RCM, even if driven with perfect boundary conditions, is not designed to correctly simulate the observed day-to-day variability at the grid-box scale (Weisse and Feser, 2003; Wong et al., 2014); away from the boundary conditions, complex weather dynamics will always result in considerable random deviations of simulated from observed weather system trajectories. Although such mesoscale internal atmospheric variability reduces the correlation between simulation and observations, it does not reduce the location representativeness. Yet mesoscale internal atmospheric variability generally occurs at short time scales and will be averaged out at longer time scales.

We therefore propose to measure location representativeness in a perfect boundary setting by the correlation between seasonally averaged observed and simulated time series. This time scale is a compromise between a high signal to noise ratio (boundary forced signal vs. random mesoscale weather variability) and a sufficient number of time steps. Thus, given an observed time series at seasonal scale, \(y_{ijk} \) in a grid box \((i, j) \) for \(k = 1 \ldots N \) time steps, and a corresponding simulated time series \(x_{ijk} \), we estimate the local location representativeness as

\[
R_{ij} = C_k(x_{ijk}, y_{ijk})
\]

(1)

where \(C_k(.) \) denotes the Pearson sample correlation in time.

If the simulated local flow is systematically shifted compared to observed flow, the observed local climate might not be well represented by the simulated climate at the corresponding model grid box, but rather by the simulation at a distant grid box. To
identify such cases of non-local representativeness, we adapt the concept developed by Widmann et al. (2003) to our context. We generalise Eq. (1) to assess location representativeness of any model grid box \((m, n)\) for the real-world grid box \((i, j)\) as

\[
R_{ij}^{mn} = C_k(x_{mnk}, y_{ijk}).
\]

A non-local representativeness measure can then be defined as

\[
\tilde{R}_{ij} = \max_{mn} R_{ij}^{mn},
\]

i.e., instead of representing local climate by the model grid box \((i, j)\), one can chose that grid box, that maximizes the correlation between model and observation \((m, n) = \arg \max_{mn} R_{ij}^{mn}\). To reduce computational cost and to avoid spurious correlations by spatial multiple testing, we consider non-local correlations in a 11 \(\times\) 11 field centered on the observational grid-box of interest.

To eliminate artificial non-local skill, all non-local measures are calculated on a cross-validated series. To this end, the data have been divided into three blocks of 10 and one of 11 year length. Each block is left out once and, for a chosen grid box in the observations, an individual non-local representative grid-box is determined by maximizing the correlation across the 11 \(\times\) 11 field in the remaining calibration blocks. The simulated data of that grid-box for the left-out validation block are then written into the cross-validated series. Based on this series the final cross-validated non-local correlation is calculated. As marginal distributions might differ from grid box to grid box (and correlations are invariant to scale), all time series are transformed to zero mean and unit SD prior to the cross-validation.

To illustrate the concept, we consider precipitation simulated by the RCM RACMO2 from the KNMI (van Meijgaard et al., 2008). The RCM is forced by ERA40 reanalysis data at the lateral boundaries and operates at a 0.22° \(\times\) 0.22° resolution. The simulation spans the time period 1 January 1961–31 December 2000 and is available from the ENSEMBLES project (van der Linden and Mitchell, 2009). As observational reference we employ the E-OBS data set (Haylock et al., 2008). Limitations of this data set...
have been highlighted, in particular at the daily scale (Hofstra et al., 2010; Kysely and Plavcova, 2010; Maraun et al., 2012), but the quality at the seasonal scale is generally high.

3 Results

Figure 1 shows local correlations between observed and simulated seasonal mean precipitation time series. For DJF (left panel) correlations over most of Europe are significant and high, in particular over western Europe and its elevated coastal regions. The overall decrease in correlations from west to east reflects the growing influence of internal climate variability on the predominantly westerly flow away from the western boundaries. Thus, the gradient does not imply a decreasing representativeness towards Eastern Europe, but simply a decreasing signal-to-noise ratio. Along coastal regions with pronounced orography, precipitation is very well represented by RCMs (Eden et al., 2014): the track of a weather system is hardly diverted over the open ocean, orographic uplift then triggers precipitation across a large area. The overall high correlations indicate that systematic errors in the large-scale circulation play a minor role for RCMs driven with perfect boundary conditions.

For discussing location representativeness, the white areas in mountaineous regions are of interest, in particular the Alps, the Bohemian Massif and the eastern slopes of the Sierra Nevada in Spain. Here, the local model-observation correlation is insignificant, suggesting the presence of systematic orography-caused errors at the regional scale.

For summer (right panel), the correlations are lower across Europe, in large regions insignificant; patterns are patchy, and the orographic structure visible in winter mostly disappears. Insignificant correlations occur predominantly over Eastern Europe and are readily explained by the continental climate: a large fraction of precipitation stems from local convective precipitation, which is controlled by local radiative heating rather than by large-scale atmospheric flow, making the resulting process almost independent of the boundary forcing even at the seasonal scale. During summer, also the westerly
flow is much less pronounced (Greatbatch and Rong, 2006; Folland et al., 2009), furthermore decreasing the signal-to-noise ratio for identifying orography-caused errors. To summarize: during summer, internal climate variability limits the assessment of RCM location representativeness.

To investigate whether the vanishing correlations in mountaineous areas are really caused by systematic local orographic effects, we estimate non-local correlations, Eq. (2). Figure 2, left panel, illustrates the approach for a grid-box in the leeward foothills of the Alps (close to Domodossola in Northern Italy). Each grid box shows the correlation between simulated precipitation in that grid box and observed precipitation in the central grid box against the real world topography. Correlations are high along the main ridge of the Alps and towards the North West, but low in the Po-Valley. In fact, observed precipitation in the central grid box is not represented by the corresponding RCM simulation, but rather by simulated precipitation on the windward side of the Alps. Other studies have found precipitation biases in the rain shadows of mountain ranges, often towards too little rain (e.g. Caldwell et al., 2009; Heikkilä et al., 2011); here we additionally show that not only the intensity is reduced because too much precipitation occurs on the windward side of the mountains, but that the whole weather (in terms of precipitation variability) does not cross the mountains. In other words: in reality, the Alpine foothills in the rain shadow of the main ridge are substantially influenced by the windward weather northwest of the Alps; in the RCM, the rain shadow is basically cut off the north-western influence and resembles more the weather of the Po-Valley. A closer look at the temporal variability in a cross section through the two mountain ranges confirms the above line of argument. The right panel of Fig. 2 shows observed and simulated precipitation time series for nine grid boxes from west to east, centered on the central grid box shown in the left panel. In the observations (blue lines), the transition from the windward side to the rain shadow of the Alps is rather smooth, whereas an abrupt change occurs in the RCM simulation (red lines) from the third to the fourth grid box. For all nine grid boxes, at least one RCM simulated time series from a (poten-
tially) distant grid box (grey lines) correlates well with the local observed precipitation time series.

The fact that in some regions non-local correlations are substantially higher than local correlations suggests to represent local observed precipitation by precipitation simulated for a distant grid box according to Eq. (3). The corresponding non-local correlation maps are shown in Fig. 3 for winter (top) and summer (bottom). For almost the entire Europe, at least one non-local grid box has been identified that well represents local observed precipitation variability during winter. In particular in winter, the areas affected by orography errors with insignificant correlations have almost completely disappeared. For summer, the result is again detracted by internal weather variability. The middle panels show the improvement in correlations by the non-local approach: in particular over those mountaineous areas, where the local RCM simulation did not well represent observed precipitation, correlations have greatly improved during winter. The right panels indicate the direction of that non-local RCM grid box relative to the considered grid box, that maximises the correlation between model and observations (only where the correlation improves by at least 0.2). During winter, the representative grid boxes lie in general towards the west or northwest of the considered grid box, demonstrating that the two examples really represent a general behaviour. During summer, no clear directional pattern emerges, illustrating again the influence of internal climate variability.

The previous analysis has shown that, in particular in mountain areas, RCM simulated precipitation at a specific location does not necessarily represent the observed precipitation variability on inter-annual scales. Therefore the question arises whether the climate change signal at such locations might be wrongly represented by the RCM. We therefore compare the linear trends (in percent per decade) in observed seasonal precipitation with the local simulated trend as well as the simulated trend for the grid box with highest location representativeness.

Figure 4 depicts the improvement of simulated trends compared to observed trends (reduction in absolute trend bias) when considering non-local representativeness. We
show only results for grid boxes where the non-local approach improves correlations by at least 0.2. Green indicates an improvement, brown a deterioration. During winter (left), almost no grid boxes show a deterioration in the representation of trends by the non-local approach, many grid boxes indicate no change; a large fraction, however, shows an improvement in the simulated trends when considering non-local representativeness. For summer (right), the picture is again erratic with about as many improvements as deteriorations.

4 Discussion and conclusions

To illustrate the concept of location representativeness and to investigate its practical relevance, we have assessed the skill of the KNMI RACMO RCM, driven with perfect boundary conditions, to correctly represent local simulated precipitation. As measure for location representativeness we consider the correlation between simulated and observed seasonally aggregated precipitation, separately for winter and summer.

At a chosen grid box, RCM precipitation might not be representative of the actually observed precipitation, in particular in the rain shadow of major mountain ranges such as the Alps. Earlier studies (e.g. Caldwell et al., 2009; Heikkilä et al., 2011) have shown that precipitation is often biased towards too low values in the rain shadows of mountain ranges. Here we demonstrate that not only the marginal distributions are biased, but that the simulated climate is not representative of the observed climate. In fact, the simulated windward weather does not cross the mountain range to the extent it does in reality. Thus, the local grid box experiences the wrong airmasses and the wrong atmospheric circulation, which both make up interannual variability. In some cases, also the local climate change signal is deteriorated. These results could be clearly demonstrated for winter. In summer, the assessment of location representativeness is complicated because mesoscale internal climate variability dominates boundary forcings even on interannual scales.
Our findings have some immediate implications for bias correction. Classical local bias correction methods – in the sense of mapping a local simulated surface variable onto the observed one at the corresponding geographical location (Déqué et al., 2007; Maraun et al., 2010; Teutschbein and Seibert, 2012) – will fail to correct these location errors. These bias correction methods adjust marginal distributions: they are an ad-hoc post processing of, e.g., the magnitude of temperature values or precipitation intensities, but they do not shift airmasses or change the atmospheric circulation. We therefore argue that it is essential to test for location representativeness prior to any bias correction.

If a distant simulated time series is found to be representative of the considered observed precipitation, a non-local bias correction is in general possible. Instead of mapping local simulated values onto observed values, one could adapt the idea of Widmann et al. (2003) and map the best representative distant simulated time series onto local observations. Such a correction would not only correct marginal distributions, but additionally “shift the weather across the mountains”: the corrected simulation would experience the right airmasses and atmospheric circulation. As demonstrated, such a non-local bias correction can also improve the representation of climate change trends. These improvements are still minor for observed trends but might prove crucial as soon as strong trends start to emerge.

Often, it is desired to correct the combined RCM and global climate model errors, or even to directly bias correct global climate models against observations. In such a setting it is difficult to test location representativeness as simulations and observations are not temporally aligned. Moreover, global climate models typically suffer from large-scale circulation errors such as a displacement of the storm tracks (e.g. Randall et al., 2007). In other words: in general, simulated climate at a particular geographical location is not representative of the corresponding local observed climate. Thus, in line with the argument of Eden et al. (2012) and Eden and Widmann (2014), at a given location it is not a priori clear whether a bias correction of global climate models is justified. Prior to any bias correction one should therefore assess whether the relevant
dynamical processes governing a local climate of interest are well simulated and well located.

In many situations, biases are not corrected against gridded observations but rather against station data. In this setting, situations are conceivable where no grid box correctly represents the point location. If the local weather is mainly determined by local orographic phenomena (e.g., a mountain breeze, valley fog), the simulated grid box average (in fact, even gridded observational data) might only contain little relevant information about the local climate (Maraun, 2014). Again, in such a situation a meaningful bias correction would be impossible. Thus also here it is crucial to test for location representativeness prior to any bias correction, in particular in complex terrain.

The preceding discussion broadens the concept of representativeness. In addition to the location aspect discussed here, representativeness has a well known scale aspect: climate models simulate area average values and thus do not represent point data of station observations (Klein Tank et al., 2009). Also here, the root of the problem is not the difference in marginal distributions but the fact that area averages do not contain all information about local-scale variations (Maraun, 2013). Again, a classical deterministic bias correction would fail; a stochastic bias correction, however, could in principle add the required small-scale variability (Maraun, 2013; Wong et al., 2014).

Acknowledgements. We thank E. Meredith for helpful discussions and acknowledge financial support by the Volkswagen Foundation, Az. 85 423. M. Widmann has been supported by a short term scientific mission of the EU COST Action ES1102 “VALUE”. RCM data are available from ensemblesrt3.dmi.dk, E-OBS data from www.ecad.eu.

The article processing charges for this open-access publication have been covered by a Research Centre of the Helmholtz Association.
References

Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., National Geophysical Data Center, NOAA, Boulder, Colorado, USA, 2009. 3026

Greatbatch, R. J. and Rong, P.-F.: Discrepancies between different Northern Hemisphere summer atmospheric data products, J. Climate, 19, 1261–1273, 2006. 3017

3022
Klein Tank, A., Zwiers, F., and Zhang, X.: Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate data and monitoring, WCDMP-No. 72, WMO-TD No. 1500, Geneva, Switzerland, 2009. 3021

Maraun, D.: Bias correction, quantile mapping and downscaling: revisiting the inflation issue, J. Climate, 26, 2137–2143, 2013. 3021

Figure 1. Local representativeness. Correlation between local (at the same grid box) simulated and observed seasonal mean time series. Left: DJF; right: JJA. Under the assumption of independence, correlations $C_k > 0.3$ are pointwise statistically significant at the 95% level.
Figure 2. Location representativeness illustrated with a grid box in the Alps (around 46°07’ N, 8°15’ E) for winter (DJF). Left: correlation of observed grid box series with surrounding simulated series; red square: position of observational grid box; grey shading: real world topography (Amante and Eakins, 2009). Right: seasonal mean time series along zonal cross section through red grid box. Blue: observed, red: model at same grid box; grey: model at grid box showing highest correlation at interannual scale. The saturation of the red series indicates the correlation between model and observed series at same grid box. Series are transformed to common mean and unit SD.
Figure 3. Non-local representativeness. Top: DJF; bottom: JJA. Left: correlation between observed seasonal mean time series and modelled time series at non-local grid box that maximizes correlation with observations; center: improvement in correlation by using non-local series; right: direction of model grid box that maximizes correlation relative to local grid box. Areas where correlation does not improve by at least 0.2 are shown in white.
Figure 4. Reduction in absolute trend bias by non-local approach. Trends measured in percent per decade. Left: DJF, right: JJA. Green: improvement (bias reduced); brown: deterioration (bias increased). Areas where correlation does not improve by at least 0.2 are shown in grey.