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Abstract 9 

Estimation of pooled within-time series (PTS) variograms is a frequently used technique for 10 

geostatistical interpolation of continuous hydrological variables in spatially data-scarce 11 

regions conditional that time series are available. The only available method for estimating 12 

PTS variograms, i.e. averaging empirical variograms (AEV), averages semivariances, which 13 

that are computed for individual time steps, over each spatial- lag within a pooled time series. 14 

However, semivariances computed by a few paired comparisons and thus for low data density 15 

in individual time steps are erratic and hence they may hamper precision of PTS variogram 16 

estimation. Here, we outlined an alternative method, i.e. spatially shifting temporal points 17 

(SSTP), for estimating PTS variograms by spatializing temporal data points and shifting them. 18 

The data were pooled by ensuring consistency of spatial structure and temporal stationarity 19 

within a time series, while pooling sufficient number of data points and increased data density 20 

for reliable variogram estimation. The pooled spatial data point sets from different time steps 21 

were assigned to different coordinate sets clusters on the same space. Then a semivariance 22 

was computed for each spatial- lag within a pooled time series by simultaneously comparing 23 

all point pairs separable by that spatial- lag within a pooled time series, and a PTS variogram 24 

was estimated by controlling the lower and upper boundary of spatial- lags. SSTP was then 25 

applied for PTS variogram estimation of a hydrologicalprecipitation index in a spatially data-26 

scarce regionBangladesh. The precision of SSTP was compared with the available AEV and a 27 

modified, i.e. weighted AEV (WAEV), method, using weighted mean squared error (WMSE) 28 

as model-fit, and root mean squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) as 29 

universal krigingan approprite geostatistical interpolation performance statistics. Our 30 



 2 

methodSSTP (average WMSE: 4.54 X 107, RMSE: 584.49 and NSE: 0.34) showed higher 1 

precision than the available AEV (average WMSE: 7.52 X 108, RMSE: 618.15 and NSE: 2 

0.24) and WAEV (average WMSE: 5.19 X 107, RMSE: 601.32, NSE: 0.30) methods for PTS 3 

variogram estimation, and allowed for modelling spatial variability at ≤ 29 km for all time 4 

steps. was We developed SSTP by using the freely available R open source software 5 

environment. The method will reduce uncertainty for spatial variability modeling while 6 

preserving spatiotemporal properties of data for geostatistical interpolation of hydrological 7 

variables, particularly in spatially data-scarce developing countries. 8 

 9 

1 Introduction 10 

Geostatistical interpolation techniques, e.g. kriging, have been extensively applied to mapping 11 

spatially continuous hydrological variables, e.g. precipitation (Carrera-Hernández and Gaskin, 12 

2007, Durão et al., 2009, Haberlandt, 2007), stream flow (Castiglioni et al., 2011, Skøien et 13 

al., 2006, 2014), flood (Archfield et al., 2013) and runoff (Skøien et al., 2008). Modeling 14 

spatial variability, i.e. the spatial variogram estimation, plays a central role in geostatistical 15 

interpolation (Webster and Oliver, 2007). while tThe precision of variogram estimation 16 

strongly depends on the number of observations, i.e. spatial data points, in a region (Oliver, 17 

2010, Truong et al., 2012). Webster and Oliver (1992, 2007) identified the threshold for 18 

satisfactorily precise isotropic and anisotropic variogram estimation as 100 and 250 data 19 

points, respectively. Moreover, variograms computed on fewer than 50 data points exhibited 20 

little precision, whereas variograms on 400 data points were computed with great very high 21 

precision (reliable) (Webster and Oliver, 1992, 2007). 22 

The number of data points in a region indicates data density, which also affects the precision 23 

of variogram estimation, and quality of kriging and other geostatisitical interpolation quality 24 

forof hydrological variables (Parajka et al., 2015). A few data points entail a low data density 25 

and thus a high distance between data points and alsoas well as between the locations of 26 

interpolation and data points. This leads to a high “smallest separation distance”, i.e. the 27 

smallest spatial-lag, between data point pairs for which empirical variograms (semivariances) 28 

are computed, i.e. the smallest spatial-lag, and thus a high uncertainty for short distant spatial 29 

variability modeling (Schuurmans et al., 2007). Moreover, the global information of the 30 

stationary hydrological variable mean becomes preponderant and leads to a loss of global 31 
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variance (Bhowmik and Costa, 2014). This, in turn, leads to an overestimation and 1 

underestimation of small and large variable values, respectively.   2 

Particularly, In in developing countries, hydrological data are often scarce because of 3 

technological and economical constraints (Bhowmik, 2012, Bhowmik and Costa, 2014). 4 

Consequently, spatial variograms are often estimated with less than 50 data points  and in turn 5 

the resulting variograms are mostly imprecise (Bhowmik and Cabral, 2011, Bhowmik and 6 

Costa, 2012, Castellarin, 2014, Goovaerts, 2000, Pugliese et al. 2014). Moreover, because of 7 

low data density the smallest separation distance between point-pairs for which semivariances 8 

are computed, i.e. the smallest -spatial-lag is very high and hence, the uncertainty for short 9 

distant spatial variability modeling also remains high (Schuurmans et al., 2007).  10 

Estimation of pooled within-time series (PTS) variograms by comparing spatial variability 11 

from multiple time steps, e.g. years, (that is similar to pooled within-class (or strata) 12 

variograms where spatial variability from multiple attribute classes are compared (Webster 13 

and Oliver, 2007)), enables precise variogram estimation in spatial data-scarce regions, 14 

conditional that a time series of hydrological data is available (Wagner et al., 2012). PTS 15 

variograms have been adapted to cases where the available numbers of data points and data 16 

density for individual time steps of a hydrological time series were too few low to obtain 17 

satisfactory precision (Bhowmik, 2012, Rogelis and Werner, 2012, Schuurmans et al., 2007, 18 

Wagner et al., 2012). The advantages of PTS variograms over individual variograms are: - (i) 19 

the number of point- pairs could beis considerably increased, and in turnreducing the noise in 20 

the empirical semivariancesograms was considerably decreased and hence,and thus increasing 21 

the precision of variogram could be estimatedion with higher precision (Rogelis and Werner, 22 

2012), and (ii) data density can be increased and in turn the smallest -spatial-lag was is 23 

considerably decreased by including spatial variability from the multiple time steps., For 24 

varying lengths of temporal data where at different spatial points, some time steps may 25 

possess-pairs were separated by shorter distancessmaller spatial-lags than others. , and thus 26 

the uncertainty for the short distant spatial variability was substantially reducedPooling allows 27 

to include these small spatial-lags in temporally constant variogram estimation and thus to 28 

reduce uncertainties of short distant spatial variability modeling for the time steps that possess 29 

only lower data density and thus larger spatial-lags. In turn, short distant variability can be 30 

modeled for time steps with lower data density and larger spatial-lags using point pairs from 31 

time steps with higher data density and smaller spatial-lags (Schuurmans et al., 2007). 32 
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Moreover, PTS variograms were shown to be more suitable than spatiotemporal variograms 1 

(that are estimated for interpolation in space-time,) and mean variograms (that averaging 2 

average estimated non-singular individual variogram parameters, i.e. nuggets, partial sills and 3 

ranges within time series) (method d in Gräler et al., (2011)) for cases, where the spatial 4 

locations and numbers of available data points and density vary within a time series and do 5 

not meet the threshold for precise individual variogram estimation in any time step 6 

(Christakos, 2001, Kerry and Oliver, 2004). This is because temporal variability modeling is 7 

uncertain for variable spatial locations of data points and numbers of data points within 8 

alengths of time series, while and, as previously discussed, the estimated spatial variogram 9 

parameters for individual time steps are imprecise due to scarce data. 10 

Averaging empirical variograms (semivariances) (AEV), which are computed by paired 11 

comparisons in individual time steps, over each spatial- lag within a pooled time series 12 

represents the only method available for PTS variogram estimation (method c in Gräler et al., 13 

(2011)). Computation of semivariances for individual time steps, where the numbers of data 14 

points do not meet the threshold for precise variogram estimation and data density is very 15 

low, is erratic because of a few paired comparisons and large spaial-lags. Hence, averaging 16 

erratic semivariances may lead to an erratic semivariance for a spatial- lag within a time series 17 

and thus hamper the precision of PTS variogram estimation. Moreover, most studies focused 18 

on geostatistical interpolation of hydrological variables in regions with dense spatial data 19 

(Haberlandt, 2007, Skøien et al., 2006) whereas there is an increasing need for studies on 20 

spatial variability of hydrological variables in spatially data-scarce regions, particularly in 21 

developing countries (Stocker et al., 2013). Hence, only the AEV method for PTS variogram 22 

estimation is insufficient for the anticipated large number of studies on data-scarce countries. 23 

We outlineed an alternative method in this paper for estimating PTS variograms by 24 

spatializing temporal data points and shifting them. that isWe called call this method 25 

“spatially shifting temporal points (SSTP)”. SSTP was developed using the freely available R 26 

(R Core Team, 20142015) open source software environment. We apply SSTP to estimate 27 

PTS variograms for a hydrological series in a spatially data-scarce developing country and 28 

compare it with the AEV and a modified AEV methods.  29 

  30 
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2 Materials and Methods 1 

2.1 Data and software 2 

SSTP was applied to the PTS variogram estimation for “annual total precipitation in 3 

hydrological wet days (PRCPTOT)” in Bangladesh (Peterson et al., 2001, Figure 1). We used 4 

the daily precipitation data from 1948-2007 series (DMICCDMP, 2012). Currently, 32 rain-5 

gauges (data points) report daily precipitation in Bangladesh that classifies the country as data 6 

scarce because the number does not meet the threshold for satisfactorily precise variogram 7 

estimation (Webster and Oliver, 2007) (Figure 1). Moreover, the numbers of data points 8 

exhibit an increasing coverage from 8 in 1948 to 32 in 2007 and thus indicate imprecise 9 

spatial variograms (with <50 data points) for individual time steps (Figure S1, Table S1). 10 

The precipitation data were quality controlled and validated using the “RClimdex” routine 11 

(Peterson et al., 2001). PRCPTOT was computed for each of the time steps (year) and data 12 

points (rain-gauge), where precipitation data were available, following the method described 13 

in Bhowmik (2012) and Peterson et al. (2001). In general, high values of PRCPTOT were 14 

observed at data points with high longitudes and low latitudes (southeastern part of the 15 

country) and vice versa (Figure S1). The altitudes of all data points were below 50 m and do 16 

not significantly (p=0.8) correlate with PRCPTOT in Bangladesh (Figure 1). 17 

SSTP was developed on R (R Core Team, 2014) using the utilities of the “gstat” package 18 

(Pebesma, 2004). The other used packages were “intamap” (Pebesma et al. 2011) and 19 

“spacetime” (Pebesma, 2012). 20 

2.22.1 Pooling hydrological time seriesSpatial structure and stationarity tests 21 

Spatial structure, and spatial and temporal stationarity indicate the strength, and spatial and 22 

temporal pattern of variability of spatial spatiotemporal datavariables, respectively 23 

(Kravchenko, 2003). Hence, as a PTS variogram represents a constant variability between 24 

spatial data points within a pooled time series, spatial structure and stationarity requires 25 

consistency within that time series (Gräler et al., 2011). Moreover, a hydrological variable 26 

should exhibit temporal stationarity, i.e. the mean and distribution of the variable should be 27 

constant across a pooled time series (Gräler et al., 2011). the The number of pooled data 28 

points should also ensure high enough precision for variogram estimation, i.e. the threshold 29 
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for reliable variogram estimation (400) should be achieved (Webster and Oliver, 2007) and 1 

data density should be incrased to reduce uncertainty for short-distance spatial variability 2 

modelling (Parajka et al., 2015).  3 

Consequently, wWe first quantified the spatial structure of PRCPTOT  the hydrological 4 

variable in each year time step by computing its spatial correlation coefficients along the 5 

longitudinal and latitudinal gradients as suggested by Kravchenko (2003). Hereafter, tThe 6 

Pettitt–Mann–Whitney test was then applied ton the correlation coefficients to identify 7 

statistically significant change points between 1948 and 2007within a time series and thus to 8 

identify changes in the spatial structure (Kiely et al., 1998, Figure S2). The (sub)time series in 9 

between the change points were extracted as time series with consistent spatial structure. 10 

NextIn a second step, we checked for the temporal stationarity of PRCPTOT the the variable 11 

within the previously extracted time series with consistent spatial structure. For the purpose, 12 

we conducted an Augmented Dickey-Fuller test for each series (Said and Dickey, 1984). The 13 

null hypothesis of the test was that the the variablePRCPTOT has a unit root in each series, 14 

where rejecting null hypothesis with statistical significance denotes temporal stationarity. In a 15 

final step, the time series with consistent spatial structure and temporal stationarity were 16 

checked if to ensure that the numbers of pooled data points meet the threshold for reliable 17 

variogram estimation and data density was increased. The data points of the time series that 18 

satisfied the above three criteria were pooled and used for the PTS variogram estimation.  For 19 

comparison, we also pooled the data points from 1948-2007 series, checked for stationarity 20 

and number of pooled data points and used for PTS variogram estimation. The Pettitt–Mann–21 

Whitney test and Augmented Dickey-Fuller test were performed using the R (R Core Team, 22 

2015) packages “cpm” (Ross, 2013) and “tseries” (Trapletti and Hornik, 2012), respectively. 23 

Spatial stationarity, constancy of mean of thea regionalized hydrological variable across thea 24 

study region, is crucial for the choice of appropriate geostatistical interpolation techniques 25 

(Cressie, 1993). Hence, we checked for spatial stationarity, i.e. the presence of a trend in the 26 

mean of the regionalized hydrological variable to identify an appropraite geostatistical 27 

technique for spatial interpolation of variables. For the purpose, we identified trends (slopes) 28 

of thein the variable along the longitudinal and latitudinal gradients through a simple linear 29 

regression and checked for their statistical significance. In case that sStatistically significant 30 

trends in the variable was detected, i.e.indicated non-stationarity whereas trends with no 31 

statistical significance indicated stationarity., the family of geostatistical interpolation 32 



 7 

technique that incorporates regional trend in the mean, e.g. universal kriging, was chosen for 1 

the interpolation of hydrological variable. 2 

1.12.2 Estimation Computation of pooled within-time series (PTS) empirical 3 

variograms 4 
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2.4 We computed pooled within-time series (PTS) empirical variograms applying three 6 

methods: (i) the developed alternative method Spatially shifting temporal points (SSTP) that 7 

was developed in this paper, (ii) the available method averaging empirical variograms (AEV) 8 

that is currently the only available method and (iii) a modified AEV method, i.e. weighted 9 

AEV (WAEV) method (see the schematic diagram Figure 1 for work-flows of the methods). 10 

2.4.12.2.1 Spatially shifting temporal points (SSTP) 11 

SSTP was developed in R (R Core Team, 2015) using the utilities of the “gstat” (Pebesma, 12 

2004), “intamap” (Pebesma et al. 2011) and “spacetime” (Pebesma, 2012) packages. The 13 

dData point sets from different years (temporal)time steps within a pooled time series were 14 

spatialized, i.e. assigned to different sets of coordinates (clusters) on the same space (Figure 15 

21). Given that

€ 

s is a data point location vector comprised with the coordinate vector touples 16 

(

€ 

x,y ,), t  is a time (year) vector for a pooled time series, 

€ 

Z(s,t)  is the vector for computed 17 

PRCPTOT variable value for the data point 

€ 

s in year 

€ 

t  and 

€ 

si,t − s j,t   is the separation 18 

distance, i.e. spatial- lag of the point -pair comprised with points

€ 

si and

€ 

s j  in year 

€ 

t , we first 19 

assigned the data points from the base year (

€ 

t1) of a pooled series, e.g. 1948 of the 1948-1975 20 

series, to its original coordinates (

€ 

xt1 ,yt1 ). Then coordinates for the data points of the latter 21 

years were calculated according to Eq. (1), when 

€ 

(t1 +1) + 4n ≤ t < (t1 +1) + 4(n +1); 

€ 

n∈N  22 

(

€ 

N  = natural numbers). 23 

€ 

s(t1 +1)+4n = x(t1 +1)+4n + (n +1)d,y( t1 +1)+4n

s(t1 +1)+4n+1 = x(t1 +1)+4n+1 − (n +1)d,y( t1 +1)+4n+1

s(t1 +1)+4n+2 = x(t1 +1)+4n+2,y(t1 +1)+4n+2 + (n +1)d
s(t1 +1)+4n+3 = x(t1 +1)+4n+3,y(t1 +1)+4n+3 − (n +1)d

.       (1) 24 

For example, for the years  = {1949, 1950, 1951, 1952} within the pooled series of 1948-25 

1975, n=0 because 

€ 

(1948 +1) + 4 *0 ≤ t < (1948 +1) + 4(0 +1)  and hence,  26 
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€ 

s1949 = x1949 + d,y1949
s1950 = x1950 − d,y1950
s1951 = x1951,y1951 + d
s1952 = x1952,y1952 − d

.         (2) 1 

€ 

d  in Eqs. (1) and (2) is a shift distance that is bigger than two-fold the largest -spatial-lag 2 

available within the pooled time series, i.e. 

€ 

d > 2*max si,t − s j ,t , and shifts the data point sets 3 

of different years from each other. This shift distance was chosen because it prevents the 4 

influence of data point sets from different years on each other while estimating PTS 5 

variograms, i.e. the peripheral data points of the sets from neighboring years are separated by 6 

a distance outside of the range of the largest -spatial-lag available within the pooled time 7 

series (Figure 21). Thus the shift distance is represents a spatially rescaled temporal distance 8 

(1 year) between data point sets from two consecutive years that preserves the spatiotemporal 9 

properties of PRCPTOT. Note that this shift distance is different from the spatially rescaled 10 

temporal distance computed for spatiotemporal variogram estimation in Gräler et al. (2011), 11 

where temporal variability was examined on a scale analogous to spatial variability. We 12 

selected the shift distance as in Eq. (3), but the users can choose any distance that is 13 

€ 

> 2*max si,t − s j ,t . 14 

€ 

d = 2*max si,t − s j ,t +max si,t − s j,t /100.       (3) 15 

Spatial shifting of the temporal data points was performed using the R package “spacetime” 16 

(Pebesma, 2012). This allows for treating all temporal data points within a pooled time series 17 

as spatial points on the same space and thus for simultaneously binning and comparing point 18 

pairs from all yearstime steps (spatial clusters) for a temporally constant spatial-lag. For 19 

example, for the pooled series of 1948-1975, point pairs with PRCPTOT observations that are 20 

separated by 100 km in each of the 25 clusters can be binned and compared simultaneously 21 

for a single empirical variogram computation (Figure 2). Consequently, the number of point 22 

pairs for comparison can be substantially increased as they are pooled from 25 clusters 23 

(years). Moreover, the point pairs in anyfrom the cluster with the highest data density, 24 

thatwhere data points are separated by the smallest spatial- lag, i.e. < 30 km in 1973 and 1975, 25 

are can be included in the temporally constant empirical variogram computation and thus 26 

uncertainties of short distance variability modeling for the clusters, where point pairs are only 27 

separable by larger spatial lags, are reduced.  28 
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2.4.2 Computation of empirical variograms 1 

Finally, The the empirical variograms (semivariances) were computed by simulatenous 2 

comparing comparison of all possible point -pairs ofrom the spatially shifted points within a 3 

pooled time series using the commonly applied Methods of Moments (MoM) (Webster and 4 

Oliver, 2007). For the point -pair  and  (both treated as spatial points on the same space), 5 

the semivariance 

€ 

γ si − s j  (temporally constant) is a function of the spatial lag 

€ 

si − s j  (that 6 

is not affected by actual location of data points) and was computed by Eq.. (4).. 7 

€ 

γ si − s j =
1

2M si − s j
(Z(si) − Z(s j ))

2

i, j
∑ .       (4) 8 

€ 

M si − s j  is the number of point pairs that can be separated by the spatial lag 

€ 

si − s j . Thus, 9 

SSTP uses a spatial variogram (empirical) computation method on the spatialized temporal 10 

points from a pooled time series and thus computes a temporally constant semivariance for 11 

each spatial- lag. Departing from the AEV method of computing yearly semivariances for 12 

each spatial lag (in our case computing separate semivariance for each coordinate cluster) and 13 

averaging them, SSTP computes a single temporally constant semivariance using Eq. (4) by 14 

simultaneously comparing point pairs from all years that are separable by a spatial lag (see 15 

Figure S3 for details). In turns, SSTP demonstrates two advantages over the AEV: (i) SSTP 16 

pools the data points with observations for a series instead of pooling computed 17 

semivariances for each year (Figure S3) and (ii) the number of data points that actually 18 

participates in semivariance computation using Eq. (4) is substantially higher for SSTP than 19 

AEV as it computes one semivariance for a spatial-lag by comparing point pairs from all 20 

years rather than computing yearly semivariances and averaging them (Figure S3). 21 

In Eq. (4), The the upper and lower boundary boundaries of 

€ 

si − s j  were set to the smallest- 22 

and largest -spatial-lags available within the pooled time series, respectively, according to Eq. 23 

(5). 24 

si − sj smallest
=min si,t − sj,t

si − sj largest
=max si,t − sj,t

.         (5) 25 
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These (Eq. 5) were done to reduce the uncertainty of modeling short distant spatial variability 1 

for the time steps with large spatial-lags, i.e. variability was by modeled modeling variability 2 

for the smallest minimum -spatial-lag within the time series (described above) and to avoid 3 

inclusion of temporal variability as pseudo spatial variability in semivariance computation, 4 

i.e. points that are temporally apart are not paired for comparison. a spatially shifted point-5 

pair in semivariance computation that contains points from two different years. 6 

 7 

In the next step, we checked for anisotropy in the spatial variability of PRCPTOT within the 8 

pooled time series. In case that anisotropy was detected, we computed the ratio between the 9 

major (

€ 

A ) and minor (

€ 

B) axes of the anisotropy ellipse and the angle of the anisotropy (

€ 

φ ). 10 

Computation of semivariances and anisotropy parameters were was performed using “gstat” 11 

(Pebesma, 2004) and “intamap” (Pebesma et al. 2011) packages of R (R Core Team, 2015). 12 

2.2.2 Averaging empirical variograms (AEV) 13 

We also computed pooled semivariances using the AEV method (Figure 1). AEV corresponds 14 

to the method c described in Gräler et al. (2011) and the pooled variogram estimation method 15 

described in Pebesma and Gräler (2014). Semivariances for a temporally constant spatial-lag 16 

were computed for the individual time steps, where point pairs were separable by that spatial-17 

lag. These semivariances from individual time steps were averaged to obtain the PTS 18 

semivariance. 19 

2.2.3 Weighted averaging empirical variograms (WAEV) 20 

We modified the AEV method for a more robust computation of pooled semivariances by 21 

taking the varying number of compared point pairs in individual time steps into account, i.e. 22 

WAEV (Figure 1). Semivariances for a spatial lag were computed in individual time steps as 23 

for AEV that were then averaged using a weighted approcah. The weights were provided 24 

according to the number of point pairs used for comparison in indiviual time steps.  25 

 26 
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2.3 Test for anisotropy 1 

After computation of semivariances using the above three methods, we checked for 2 

anisotropy in the spatial variability of the hydrological variable within the pooled time series. 3 

In case that anisotropy was detected, we computed the ratio between the major (

€ 

A ) and minor 4 

(

€ 

B) axes of the anisotropy ellipse and the angle of the anisotropy (

€ 

φ ). Anisotropy parameters 5 

were computed using “intamap” package (Pebesma et al. 2011) and were converted according 6 

to the requirements of “gstat” (Pebesma, 2004) package in R (R Core team, 2015). 7 

Pooled within-time series (PTS) variogram estimation and precision 8 

2.4  Estimation of pooled within-time series (PTS) variograms Estimation and 9 

precision of PTS variograms 10 

We estimated PTS variograms, i.e. fitted variogram models to the PTS empirical variograms 11 

(semivariances) for each pooled time series. Thereafter, the precision of estimated PTS 12 

variograms was evaluated by: (i) variogram model-fit to the empirical variograms and (ii) 13 

cross-validation of an appropriate kriging interpolation of PRCPTOTthe hydrological variable 14 

using the best-fit models (Webster and Oliver, 1992, 2007). 15 

2.4.1 Variogram model-fit 16 

The available variogram models were fitted to the computed semivariances by a weighted 17 

least square approach providing M (si, sj ) / (si, sj )
2  as weights (see Pebesma (2004) for 18 

details). However, variogram models can also be fitted by the maximum likelihood approach 19 

as described in Marchant and Lark (2007) or by providing different weights than ours if using 20 

the weighted least square approach (Pebesma, 2004). Details on the available variogram 21 

models and their formularization, and fitting in the gstat package (Pebesma, 2004) of R (R 22 

Core Team, 2015) can be found in Cressie (1983) and Pebesma (2001), respectively. The 23 

parameters of the fitted models, i.e. nugget and sill variances, and range (a) were extracted. In 24 

case that anisotropy was detected, the isotropic range parameter a was replaced adjusted by 25 

using the anisotropy parameter where geometric anisotropy was made isotropic according to 26 

Eq. (56) through a linear transformation of coordinates with reference to the anisotropy ellipse 27 

described above (Oliver, 2010). 28 



 12 

a = A2 cos2φ +B2 sin2φ .         (6) 1 

2.5 Precision of variograms 2 

Precision of the estimated PTS variograms was evaluated by (i) variogram model-fit to the 3 

empirical variograms and (ii) cross-validation of an ordinary kriging (OK) interpolation of 4 

PRCPTOT using the best-fit models (Webster and Oliver, 1992, 2007). We computed the 5 

“weighted sum mean of squared error (SSEWMSE)” as a model-fit statistic (Pebesma, 2004). 6 

The  WMSEs of the previously fitted variogram models were compared by the corresponding 7 

SSEs and the best-fit model form with the lowest SSE WMSE was identified for each pooled 8 

series. 9 

2.4.2 Kriging interpolation and performance statistics 10 

 Then the best-fit model form was used in a leave-one-out cross-validation of the OK spatial 11 

interpolation of PRCPTOT the hydrological variable in each year time step of the each pooled 12 

series using an appropriate geostatistical interpolation technique, i.e. kriging. The OK kriging 13 

interpolation method was chosen because it gives unbiased evaluation of how well the 14 

variogram model fits the data (Oliver, 2010).  15 

The appropriate kriging technique was chosen based on the existance of spatial stationarity 16 

(described in 2.1) and covariates. The covariates were identified by checking spatial 17 

correlation between the hydrological variable and available other spatially dependent 18 

variables. Spatially dependent variables showing statistically significant correlation with the 19 

hydrological variable were chosen as covariates. In case that no convariate was identified and 20 

the hydrological variable showed spatial stationarity, ordinary kriging (OK) technique was 21 

used. Whereas in the presence of a trend in the regionalized variable mean, i.e. spatial non-22 

stationarity, we used universal kriging (UK) technique. Kriging with external drift (KED) was 23 

used if covariates were available. Kriging interpolation was performed using the R (R Core 24 

Team, 2015) package “gstat” (Pebesma, 2004). For details on the kriging interpolation 25 

techniques and implementation in “gstat”, see Cressie (1983) and Pebesma (2004). 26 

Finally, the root means squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) (Parajka 27 

et al., 2015) was were computed as kriging interpolation performance statistics for each 28 

model form by comparing the observed and OK UKkriging interpolated PRCPTOT 29 
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hydrological variable values through a the leave-one-out cross-validation (Pebesma, 2004). 1 

Note that we avoided the recalibration of the model form based on RMSE and NSE computed 2 

through the cross-validation because cross-validation statistics can be related to many factors 3 

other than the variogram model, such as the implementation of parameters related to the 4 

search neighborhood and used interpolation algorithm (Goovaerts, 2000).  5 

  6 

For comparison, we also estimatedThe precision of the PTS variograms estimated by SSTP, 7 

AEV and WAEV for the abovea pooled series were compared by applying the averaging 8 

empirical variogram (AEV) method of pooled estimation following the steps described in 9 

Gräler et al. (2011) (method c) and Pebesma and Gräler (2014). The SSEsusing corresponding 10 

WMSEs, and RMSEs and NSEs.were also computed for the AEV variograms following the 11 

method described above and compared with the SSEs MSEs and RMSEs of the SSTP 12 

variograms.The method that estimated PTS variograms with the lowest WMSE and RMSE, 13 

and the highest NSE was chosen as the most precise variogram estimation method. To 14 

identify the effect of the consistency of spatial structure within a pooled time series on PTS 15 

variogram estimation, we also pooled the data points from a series showing inconsistent 16 

spatial structure, checked for temporal and spatial stationarity, and number and density of 17 

pooled data points and used for PTS variogram estimation. The MSEs and RMSEs, and NSEs 18 

of these PTS variograms were compared with the PTS variograms estimated for time series 19 

with consistent spatial structure.  20 

We provide a commented R-script as a supplementary material (SMR_script.R in the 21 

supplemetary material) detailing the SSTP and enabling comparison with AEV and WAEV 22 

methods for PTS variogram estimation (SM2). The sample data (Sample_data.Rdata) for 23 

reproducibility is also provided as ain the supplementary material (SM3) that will be 24 

permanently archived in PANAGEA. For further modification and development of SSTP, the 25 

R-script and sample data are available from an online repository, i.e. 26 

https://github.com/AvitBhowmik/SSTP.  27 
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Study area and data 1 

3 Study area and data 2 

The avobe three methods SSTP waswere applied to the PTS variogram estimation for “annual 3 

total precipitation in hydrological wet days (PRCPTOT)” in Bangladesh (Peterson et al., 4 

2001) (Figure 12) and their precision statistics were compared. The hydrological wet days in 5 

Bangladesh refers to the monsoon season, i.e. June to September in each year, when 80 % of 6 

the annual precipitation occurs (Bhowmik, 2012, DMICCDMP, 2012). We used the daily 7 

precipitation data from 1948-2007 series that were collected from Bangladesh Meteorological 8 

Department (DMICCDMP, 2012). Currently, 32 rain-gauges (density 2.2 rain-gauges per 9 

10000 sq. km.) report daily precipitation in Bangladesh, classifying the country as data scarce 10 

(Webster and Oliver, 2007) (Figure 13). Moreover, the numbers of data points and data 11 

density exhibit an increasing coverage from 8 points in 1948 to 32 points in 2007, and from 12 

0.5 points per 10000 sq. km. in 1948 to 2.2 points per 10000 sq. km. in 2007, respectively 13 

(Figure 3, details can be extracted from Figure S1 and Table S1 in supplementary materials). 14 

This indicates an increase in the precision of variogram estimation from 1948 to 2007. 15 

However, spatial variograms estimated for all individual years are likely imprecise as all are 16 

estimated with < 50 data points and < 3 points per 10000 sq. km. (Webster and Oliver, 2007) 17 

(Figure S1, Table S13). 18 

The precipitation data were quality controlled and validated using the “RClimdex” routine 19 

(Peterson et al., 2001). Then, PRCPTOT was computed for each of the time steps (year) and 20 

data points (rain-gauge) where precipitation data were available following the method 21 

described in Bhowmik (2012) and Peterson et al. (2001). In general, high values of 22 

PRCPTOT were observed at data points with high longitudes and low latitudes (southeastern 23 

part of the country) and vice versa (Figure S1).To identify covariates, we checked for the 24 

spatial correlation between PRCPTOT and the elevation of data points. The elevation of all 25 

data points were below 50 m and do not significantly (p=0.8) correlate with PRCPTOT in 26 

Bangladesh (Figure 1). 27 

For comparison, we also pooled the data points from 1948-2007 series, checked for 28 

stationarity and number of pooled data points and used for PTS variogram estimation. 29 



 15 

SSTP was developed in R (R Core Team, 2014) using the utilities of the “gstat” (Pebesma, 1 

2004), “intamap” (Pebesma et al. 2011) and “spacetime” (Pebesma, 2012) packages. 2 

 3 

34 Results 4 

4.1 Spatial structure and stationarity 5 

Spatial structure and stationarity 6 

Statistically significant change points were detected in 1976 and 1993, and in 1976 for the 7 

spatial correlation coefficients of PRCOTOT along the longitudinal and latitudinal gradients, 8 

respectively, within the 1948-2007 series (Figure S24). These change points indicated 9 

changes in spatial structure from 1976 and 1993. Consequently, spatial structure within the 10 

entire 1948-2007 series was inconsistent whereas the (sub)time series 1948-1975, 1976-1992 11 

and 1993-2007 showed consistent spatial structure. 12 

 The Dickey-Fuller statistics obtained for the 1948-1972, 1976-1992, 1993-2007 and 1948-13 

2007 series were -4.5, -3.4, -5.0 and -4.0 respectively, and they were statistically significant at 14 

p <0.01. Therefore, for each of these series null hypothesis was rejected and thus PRCPTOT 15 

showed temporal stationarity. Moreover, the number of total data points  within the 1948-16 

1975, 1976-1992, 1993-2007 and 1948-2007 series met the threshold for reliable variogram 17 

estimation (Table 1). 18 

Statistically significant positive and negative spatial trends were observed in PRCPTOT along 19 

the logitudinal (363.90 mm/0, p<0.001) and latitudinal (-246.73 mm/0, p<0.001) gradients. 20 

Therefore, regionaliged PRCPTOT depicted trend in the mean and hence, exhibited spatial 21 

non-stationarity. This is also supported by Figure 3, where a gradual increase in PRCPTOT 22 

was observed from the Northwest to Southeast of Bangladesh.  23 

 PRCPTOT values did not vary much between the pooled series though the spatial variation 24 

of PRCPTOT within the pooled time series were high (CV ≥ 41%) (Table 1, S1). 25 
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4.2 Pooled within-time series (PTS) empirical variograms 1 

Spatial shift and anisotropy 2 

4.2.1 Spatial shifts 3 

The distance 

€ 

d  used for spatial shifting by spatially shifting temporal points (SSTP) method 4 

in each of the pooled series was 1111 km (~100
, decimal degree as a geographical measure of 5 

longitude or latitude with WGS 1984 datum) because the largest -spatial-lag available within 6 

these series was approximately 550 km (~50) (Figure 25, Table 1, S1). Thus the shifted 7 

peripheral data points of sets from neighboring years showed a distance > 550 km, i.e. ≥ 8 

(1111-550) km (Figure 25), and thus therefore the spatiotemporal properties of PRCPTOT 9 

were preserved, i.e. the data points from a year did not influence data points from other years 10 

and temporal autocorrelation was coherent with the spatial autocorrelation of the spatialized 11 

point clusters (Figure 5). Consequently, the shift distance represents a spatially rescaled 12 

temporal distance (1 year) between data point sets from two consecutive years that preserves 13 

the spatiotemporal properties of PRCPTOT. 14 

4.2.2 Empirical variograms 15 

SSTP computed a single temporally constant semivariance of PRCPTOT for each spatial-lag 16 

by simultaneously comparing point pairs from all years that are separable by that spatial-lag 17 

(Figure 5, 6). For example, for the pooled series of 1948-1975, point pairs with PRCPTOT 18 

observations that were separated by 100 km in each of the 25 clusters could be binned and 19 

compared simultaneously for a single empirical variogram computation (Figure 5, 6). 20 

Consequently, the number of point pairs for comparison could be increased to 441 as they 21 

were pooled from 25 clusters (years) (Table 1). 22 

Departing from SSTP, the averaging empirical variograms (AEV) and weighted AEV 23 

(WAEV) methods computed yearly semivariances for each spatial lag, i.e. computed separate 24 

semivariance for each SSTP coordinate cluster, and averaged them arithmatically and 25 

weighting by the number of comapred point pairs in each cluster, respectively. In turns, SSTP 26 

demonstrated two advantages over the AEV and WAEV: (i) SSTP pooled the data points with 27 

observations for a series instead of pooling computed semivariances for each year (Figure 1, 28 

5) and (ii) the number of data points that actually participates in semivariance computation 29 

was substantially higher for SSTP than AEV and WAEV as it computed one semivariance for 30 
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a spatial-lag by comparing point pairs from all years rather than computing yearly 1 

semivariances and averaging them (Figure 1, 5). Consequently, the SSTP computed 2 

semivariances were much less noisy than the semivariances computed by AEV and WAEV, 3 

especially for large spatial-lags (Figure 6). 4 

4.2.3 Data density and short distance variabiity 5 

Data density for 1948-1975 series could be increased to 1.5, and for 1976-1992, 1993-2007 6 

and 1948-2007 to 2.2 points per 10,000 sq. km for PTS variogram estimation (Table 1).  7 

Consequently, The the smallest -spatial-lags available within the three pooled series were 8 

similar and allowed for modeling spatial variability of PRCPTOT at ≤ 29 km (Table 1, S1). 9 

This, particularly, decreased uncertainty for short distant spatial variability modelling for the 10 

time steps where the smallest spatial-lags were substantially higher, i.e. ≥ 60 km for 1948-11 

1965. 12 

4.2.4 Anisotropy 13 

 14 

Anisotropy was detected in the spatial variability of PRCPTOT for all pooled series in the 15 

northwest-southeast direction (900>

€ 

φ>00 from normal north to anticlockwise, for details see 16 

Pebesma (2004)) indicating a strong variability of PRCPTOT in that direction (Figure 36, S1). 17 

This is also coherent with the direction of spatial trend in PRCPTOT (Figure 3) and the strong 18 

spatial variation of PRCPTOT within the pooled time series, i.e. CV ≥ 41% (Table 1). 19 

Moreover, 1948-1975 series depicted weak anisotropy (  = 0.8), i.e. relatively weak 20 

variability whereas 1976-1992 and 1993-2007 series depicted strong anisotropy (  = 0.4), 21 

i.e. relatively strong variability (Figrue 3).  22 

 23 

4.3 Precision of variogram estimation 24 

4.3.1 Precision of vVariogram estimationmodel-fit 25 

The SSTP computed semivariances were much less noisy than the semivariances computed 26 

by AEV, especially for large spatial- lags (Figure 3). The “Power” (Pow) model showed the 27 

best fit, i.e. the lowest weighted mean of squared error (WMSE) for all methods in all pooled 28 
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series except for the SSTP in 1948-2007 series, where the “Hole” (Hol) model showed the 1 

best fit (Figure 6). This indicates a monotonic increase in empirical variograms with an 2 

increase in the spatial-lags without reaching a threshold and hence spatial non-stationarity, 3 

which is supported by the presence of a trend in the mean of PRCPTOT (Figure 3). 4 

Consequently, tThe estimated PTS variograms estimated by SSTP showed better model-fit 5 

(lower SSEWMSE, i.e. 4.54 X 107 on average) and in turn entailed better performance of OK 6 

interpolation in cross-validation, and thus showeding higher precision than the PTS 7 

variograms estimated by AEV (average MSE: 7.52 X 108) and WAEV (average MSE: 5.19 X 8 

107), while WAEV showed better model-fit than AEV (Table 2). The “Power” (Pow) model 9 

showed the best fit for both methods in all pooled series except for the SSTP in 1948-2007 10 

series, where the “Hole” (Hol) model showed the best fit (Figure 3). The PTS variograms 11 

estimated for the time series with inconsistent spatial structure, i.e. 1948-2007, by both all 12 

methods showed lower precisionhigher WMSE than the variograms estimated for the time 13 

series with consistent spatial structure (Table 2). For the time series with consistent spatial 14 

structure, precision ofWMSEs for PTS variogram estimation increased decreased with the 15 

increasing number of pooled data points (Table 2). 16 

4.3.2 Kriging interpolation performance 17 

The elevation of all data points was below 50 m (Figure 2) and did not significantly (p=0.8) 18 

correlate with PRCPTOT in Bangladesh. Hence, because of the unavailability of spatial 19 

convariates and presence of spatial non-stationarity, universal kriging (UK) method proved to 20 

be the most appropriate for interpolating PRCPTOT in Bangladesh. 21 

UK interpolation of PRCPTOT fitting the PTS variogram models estimated by SSTP entailed 22 

better performance in cross-validation than AEV and WAEV, showing lower root mean 23 

squared error (RMSE) and higher Nash-Sutcliffe efficiency (NSE) (Parajka et al., 2015) 24 

(Table 2). Average RMSEs and NSEs obtained for UK interpolation by fitting the PTS 25 

variograms estimated by SSTP, AEV and WAEV were 584.49 and 0.34, 618.15 and 0.24, and 26 

601.32 and 0.30, respectively. This also indicates better performance of UK interpolation 27 

fitting WAEV estimated PTS variogram model forms than the AEV estimated model forms. 28 

Lower RMSEs and higher NSEs were also observed for UK interpolation of PRCPTOT 29 

fitting PTS variograms estimated by all methods for the time series with consistent spatial 30 

structure than with inconsistent spatial structure (Table 2). Decreasing RMSEs and increasing 31 
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NSEs were also observed with the increasing number of pooled data points for the time series 1 

with consistent spatial structure. 2 

Overall, SSTP estimated PTS variograms showed better fit to the empirical variograms and 3 

data and thus showed higher precision than AEV and WAEV, while WAEV showed higher 4 

precision than AEV (Table 2). Moreover, higher precision in variogram estimation was 5 

obtained for the time series with consistent spatial structure than the inconsistent spatial 6 

structure, while precision increased with the increasing number of pooled data points for 7 

consistent spatial structure (Table 2).  8 

 9 

45 Discussion and future research challenges 10 

In this paper, we developed and implemented spatially shifting temporal points (SSTP), an 11 

alternative method for estimating pooled within-time series (PTS) variograms in spatially 12 

data-scare regions. Contrasting with the available method of averaging empirical variograms 13 

(AEV) and a modified more robust method, i.e. weighted averaging empirical variograms 14 

(WAEV) computed for individual time steps, SSTP computed empirical variograms 15 

(semivariances) by simultaneously comparing all point pairs separable by a spatial- lag within 16 

a pooled time series (Figure 1, 6). Consequently, when compared to the PTS variograms 17 

estimated by AEV and WAEV, SSTP variograms showed higher precision (Figure 6, Table 18 

2). The numbers of available data points did not meet the threshold for satisfactorily precise 19 

variogram estimation in any of the individual time steps (year) within 1948-2007 series and 20 

data density were very low (Figure 3, S1 and Table S1). hence Hence, the available numbers 21 

of point -pairs and smallest spatial-lags for comparisons were not sufficient for reliable 22 

semivariance computation (Webster and Oliver, 2007) (Table S1Figure 3). As a result, 23 

computed semivariances for those individual years were likely erratic that induced noisy and 24 

erratic semivariances when averaged by AEV and WAEV methods (Figure 36). Thus model 25 

fitting to AEV and WAEV semivariances showed a lower goodness-of-fit and ordinary 26 

universal kriging (OKUK) interpolation of PRCPTOT using the AEV and WAEV variogram 27 

models showed worse performance than the SSTP variograms (Figure 36, Table 2). By 28 

contrast, SSTP computed semivariances were reliable because of much subtantially higher 29 

number (that also met the threshold for reliable variogram estimation) of comparisons and 30 

higher data density than by AEV and WAEV (Figure S3Table 1 and 2) and thus entailed 31 
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higher precision in PTS variogram estimation. These results are in line with Webster and 1 

Oliver (1992, 2007).  2 

Semivariances computed for small spatial- lags by SSTP, and AEV and WAEV methods were 3 

similar whereas semivariances for large spatial- lags were largely different (Figure 36). 4 

Moreover, semivariances computed by AEV and WAEV showed much more noise at large 5 

spatial- lags than small spatial- lags. The number of erratic semivariances averaged by AEV 6 

and WAEV for large spatial- lags were higher than for small spatial lags because point-pairs 7 

from more years were separable by large spatial- lags than by small spatial- lags due to data 8 

availability (Table S1Figure 3). For example, point -pairs from only one two years (1973 and 9 

1975) were separable by the smallest -spatial-lag for 1948-1975 series whereas point -pairs 10 

from 20 years were separable by the largest -spatial-lag (Table 1, Table S1). In addition, the 11 

numbers and spatial locations of available data points are highly variable within the pooled 12 

series and spatial variability of PRCPTOT was high (Table 1, S1, Figure S13, Table 1). 13 

Hence, we argue that the averaged semivariances computed by AEV and WAEV was were 14 

representative of the small number of semivariances at small spatial- lags but unrepresentative 15 

of the large number of semivariances at large spatial- lags because of the variable number and 16 

spatial location of data points and high spatial variability of PRCPTOT. As a result, 17 

semivariances for large spatial- lags computed by SSTP, and AEV and WAEV could be 18 

similar if the numbers and spatial locations of data points were the same for all time steps and 19 

spatial variability of PRCPTOT was low (Gräler et al., 2011). MoreoverHowever, for variable 20 

number and spatial locations of data points, the noise in the semivariances computed by AEV 21 

at large spatial-lags can could be partly reduced using the robust WAEV method, i.e. if theby 22 

weighaveraginge of the average of semivariances per spatial lag is weighted by with the 23 

corresponding number of data points available per time step, and thus a better model-fit and 24 

UK interpolation performance could be achieved (see Figure S4 for details on weighted 25 

AEVFigure 6). 26 

The PTS variograms estimated for the 1948-2007 series (inconsistent spatial structure) 27 

showed lower precision than the variograms estimated for the series with consistent spatial 28 

structure, although PRCPCTOT was stationary within 1948-2007 series, and the number of 29 

data points (higher than for the series with consistent spatial structure) met the threshold for 30 

reliable variogram estimation and the highest data-density could be achieved (Webster and 31 

Oliver, 1992, 2007) (Table 1, 2). Moreover, higher precision was obtained for PTS variogram 32 
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estimation with higher number of pooled data points among the series with consistent spatial 1 

structure and vice-versa (Table 1, 2). However, this may also be related to the inherent spatial 2 

structure within the time series, i.e. spatial variability of PRCPTOT may be estimated with 3 

higher precision for the data points with the spatial structure observed for 1993-2007 than for 4 

1948-1975. Furthermore, the Hole model showed the best fit for the series with inconsistent 5 

spatial structure that did not represent the variability for individual time steps, i.e. (Power 6 

variability was representative as depicted by the models for consistent spatial structure). 7 

These results suggest that the consistency of spatial structure, i.e. the strength of spatial 8 

variabilty within pooled time series is crucial for PTS variogram estimation (Kravchenko, 9 

2003) and increasing the number of pooled data points and data density can may increase the 10 

precision of PTS variogarm estimation if when the spatial structure is persistentconsistent. 11 

Many studies pooled data points only by assuming the consistency of spatial structure within 12 

time series (Bhowmik, 2012, Gräler et al., 2011, Rogelis and Werner, 2012, Wagner et al., 13 

2012). We recommend that time series should be checked for consistency of spatial structure 14 

before pooling. 15 

 The threshold for reliable variogram estimation, i.e. 400 data points (Webster and Oliver, 16 

2007), could be achieved for each pooled series (Table 1). However, if data scarcity is more 17 

acute in a region and Notwithstanding, if the required number of data points for reliable 18 

variogram estimation is unavailable, users should can comply with the threshold for precise 19 

isotropic (100) and anisotropic (250) variogram estimation (Webster and Oliver, 1992, 2007). 20 

For example, Laaha et al. (2013) achieved satisfactorilly precise variograms for river 21 

temperatures in Austria using 214 stations. Nevertheless, isotropic variograms were estimated 22 

with less than 100 data points in some regions for geostatistical interpolation of flood 23 

(Archfield et al., 2013), low-flow indices (Castiglioni et al., 2011) and precipitation (Todini et 24 

al., 2001). These variograms should be further validated and can be imporved by estimating 25 

PTS variograms by including comparisons from multiple time steps. However, variograms 26 

should not be estimated with fewer than 50 data points as they are imprecise and are of little 27 

value for geostatistical interpolation (Webster and Oliver, 1992, 2007). Hence, variograms 28 

estimated with less than 50 data points in previous studies (Bhowmik and Cabral, 2011, 29 

Bhowmik and Costa, 2012, Castellarin, 2014, Goovaerts, 2000, Pugliese et al. 2014) should 30 

be treated with caution in further analyses and geostatistical interpolation of corresponding 31 

hydrological variables. Note that, if all data points separable by a spatial-lag exhibit identical 32 
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temporal patterns for a hydrological variable in a region, pooling derived increasing number 1 

of comparisons will provide only minor improvements on the individual variograms. 2 

A weaker anisotropy, i.e. variability was detected in the northwest-southeast direction for the 3 

1948-1975 series than for 1976-1992 and 1993-2007 series (Figure 3). This is presumably 4 

because of the lower number of spatial points per year in the 1948-1975 series than in 1976-5 

1992 and 1993-2007 series, and thus a loss of anisotropy information (Table S1). However, 6 

higher PRCPTOT values were observed in the southeast than the northeast of Bangladesh and 7 

a high spatial variation (average CV = 42%) was observed for 1948-1975 series (Figure S1, 8 

Table S1). Hence, it can be claimed that the anisotropy, i.e. variability of PRCPTOT was 9 

equally strong for 1948-1975 series although not captured due to lower number of spatial 10 

points per year. 11 

 12 

The PTS variograms also allowed for increasing data density in variogram estimation and 13 

thus increasing the smallest-spatial-lags (FigureTable 1). This enabled modeling spatial 14 

variability at ≤ 29 km distance for all time steps (constant) within the pooled series although 15 

the smallest -spatial-lags available for many years, e.g. 1948-1950, were much three-fold 16 

higher (> 95 km) (Table 1, S1Figure 3). Thus, the PTS variograms reduce uncertainties for 17 

short distant spatial variability modeling for the time steps with large spatial lags. This iswas 18 

done by including point pairs separable by smaller spatial-lags available in any time step with 19 

higher data density in empirical variogram computation. However, the smallest -spatial-lag 20 

for which spatial variability can be modeled for a pooled series is inherently depends 21 

dependent on the available data density and thus availability of spatial- lags in individual time 22 

steps, i.e. at least one point -pair should be separated by the a smallest -spatial-lag in a time 23 

step. For example, if the smallest spatial-lags between point pairs with available data density 24 

in all years within the 1948-1975 series were ≥ 100 km, spatial variability could not be 25 

modeled at ≤ 29 km and could only be modeled at ≥ 100 km. Moreover, although SSTP 26 

generally reduces uncertainties for short distant spatial variability modeling, it does notthe 27 

reduction ofe uncertainties for spatial prediction of hydrological variables at short distantces 28 

is higher in regionsfor time steps with lowhigh data density, i.e. spatial prediction is uncertain 29 

if thewhen the variable is not gauged at short distances, than the time steps with low data 30 

density, i.e. the variable is only gauged at large distances. Thus, modeling short distant spatial 31 



 23 

variability by PTS variograms can be further improved if smaller spatial- lags are available or 1 

more point pairs are available for comparison with higher data density, i.e. more point pairs in 2 

individual time steps are separable by the smallest -spatial-lags (Rogelis and Werner, 2012; 3 

Schuurmans et al., 2007). 4 

A weaker anisotropy, i.e. directional variability, was detected in the northwest-southeast 5 

direction for the 1948-1975 series than for 1976-1992 and 1993-2007 series (Figure 6). This 6 

is presumably because of the lower number of spatial points per year in the 1948-1975 series 7 

than in 1976-1992 and 1993-2007 series, and thus a loss of anisotropy information (Table S1). 8 

However, higher PRCPTOT values were observed in the southeast than the northeast of 9 

Bangladesh and a high spatial variation (average CV = 42%) was observed for 1948-1975 10 

series (Figure 3, Table S1). Hence, it can be claimed that the anisotropy, i.e. directional 11 

variability, of PRCPTOT was equally strong for 1948-1975 series although not captured due 12 

to lower number of spatial points per year. 13 

Modeling spatial variability across time should consider temporal dependence or 14 

autocorrelation (Christakos, 2001, Said and Dickey, 1984). PTS variograms estimated by 15 

AEV and WAEV do not account for temporal autocorrelation as the spatial variability from 16 

time steps are averaged. Although SSTP preserves temporal autocorrelation by spatialization, 17 

i.e. spatial clusters from neighboring years are closer on space than the clusters from distant 18 

years, it also excludes temporal autocorrelation for PTS variogram estimation (spatial 19 

variability is assumed to be temporally constant). Hence, future studies should include 20 

temporal autocorrelation in PTS variogram estimation by SSTP as performed by 21 

spatiotemporal variograms (Gräler et al., 2011). Inclusion of temporal autocorrelation couldan 22 

be achieved by weighting spatial distances using rescaled temporal distances. This will allow 23 

for using PTS variograms in modeling time series across space, e.g. estimating time series 24 

structure for an ungauged location.  25 

SSTP was developed on in the freely available open source R software environment (R Core 26 

Team, 2014), and thus ensures reproducibility and wide spread application to geostatistical 27 

interpolation for resource constraint developing countries (Pebesma et al., 2012). The method 28 

is also applicable to PTS variograms estimation for geostatistical interpolation of non-29 

hydrological spatially continuous variables in data-scarce regions. Spatiotemporal variogram 30 

estimation techniques by modeling time as a separate dimension (Gräler et al., 2011) were 31 
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criticized for time series with variable spatial locations and numbers of data points 1 

(Christakos, 2001, Kerry and Oliver, 2004). However, Tthis can be empirically examined if 2 

future studies compare the precision of the spatiotemporal variograms with the SSTP 3 

variograms for time series with variable lengths. 4 

 5 

6 Conclusions 6 

It We outlined spatially shifting temporal points (SSTP) reduces uncertaintythat increases 7 

precision for spatial variability modeling at both short and long distances by including 8 

variability of the smallest -spatial-lag within a time series and simulaneously comparing many 9 

point -pairs for large distances. SSTP was developed in the freely available and open source R 10 

software environment (R Core Team, 2015), and thus ensures reproducibility and wide spread 11 

application to geostatistical interpolation for resource constraint regions, particularly 12 

developing countries (Pebesma et al., 2012). The method is also applicable to PTS variograms 13 

estimation for geostatistical interpolation of non-hydrological spatially continuous variables 14 

in data-scarce regions. Inclusion of external variables that correlate with the variable for 15 

interpolation, e.g. altitude elevation with precipitation (although did not correlate in our case), 16 

will also increase the precision of PTS variogram estimation by SSTP (Diodato, 2005, 17 

Pebesma, 2006). To conclude, SSTP method can be further improved by integrating with the 18 

expert elicitation technique (Truong et al., 2013). 19 

 Conclusions 20 

  21 

 22 

Author contribution 23 

A.K.B. conceived the study. A.K.B. developed the method under supervision of P.C. A.K.B. 24 

drafted the manuscript. A.K.B. and P.C. revised the manuscript. 25 

 26 

 27 

28 



 25 

Acknowledgements 1 

The study was carried out within the framework of the European Commission, Erasmus 2 

Mundus Programme, project no. 2007-0064. Edzer Pebesma and Benedikt Gräler partly 3 

supervised the method development. Ralf B. Schäfer, and anthree anonymous referees and the 4 

manuscript handling editor gave valuable comments that helped to substantially improve the 5 

manuscript. 6 

 7 

 8 

References 9 

Archfield, S. A., Pugliese, A., Castellarin, A., Skøien, J. O., Kiang, J. E.: Topological and 10 

Canonical Kriging for Design Flood Prediction in Ungauged Catchments: An Improvement 11 

over a Traditional Regional Regression Approach?, Hydrol. Earth Syst. Sci., 17, 1575–88, 12 

doi:10.5194/hess-17-1575-2013, 2013. 13 

Bhowmik, A.: A Comparison of Bangladesh Climate Surfaces from the Geostatistical Point of 14 

View, ISRN Met., 2012, 353408, doi:10.5402/2012/353408, 2012.  15 

Bhowmik, A., Cabral, P.: Statistical Evaluation of Spatial Interpolation Methods for Small-16 

Sampled Region: A Case Study of Temperature Change Phenomenon in Bangladesh, in: 17 

Computational Science and its Applications - ICCSA 2011: Lecture Notes in Computer 18 

Science, Springer, Heidelberg, Dordrecht, London, New York, 44-59, doi:10.1007/978-3-642-19 

21928-3_4, 2011. 20 

Bhowmik, A., Costa, A.: A Geostatistical Approach to the Seasonal Precipitation Effect on 21 

Boro Rice Production in Bangladesh, Int. J. Geosci. 3, 443-462, doi:10.4236/ijg.2012.33048, 22 

2012. 23 

Bhowmik, A., Costa, A.: Representativeness impacts on accuracy and precision of climate 24 

spatial interpolation in data-scarce regions. Met. Apps., doi:10.1002/met.1463, 2014. 25 

Carrera-Hernández, J., Gaskin, S.: Spatio temporal analysis of daily precipitation and 26 

temperature in the Basin of Mexico, J. Hydro. 336, 231-249, 27 

doi:10.1016/j.jhydrol.2006.12.021, 2007. 28 



 26 

Castellarin, A.: Regional Prediction of Flow-Duration Curves Using a Three- Dimensional 1 

Kriging, J Hydrol, 513, 179–91, doi:10.1016/j.jhydrol.2014.03.050, (2014). 2 

Castiglioni, S., Castellarin, A., Montanari, A., Skøien, J. O., Laaha, G., Blöschl, G.: Smooth 3 

Regional Estimation of Low-Flow Indices: Physiographical Space Based Interpolation and 4 

Top-Kriging, Hydrol. Earth Syst. Sc., 15, 715–27, doi:10.5194/hess-15-715- 2011, 2011. 5 

Christakos, G.: Modern Spatiotemporal Geostatistics, Oxford University Press, New York, 6 

2001. 7 

Cressie, N.: Statistics for spatial data, Revised edition, John Wiley & Sons, New York, 8 

Chichester, Toronto, Brisbane, Singapore, 1993. 9 

Diodato, N.: The influence of topographic co-variables on the spatial variability of 10 

precipitation over small regions of complex terrain, Int. J. Clim. 25, 351-363, 11 

doi:10.1002/joc.1131, 2005. 12 

DMICCDMP. Disaster Management Information Center of Comprehensive Disaster 13 

Management Program (DMICCDMP): Bangladesh Meteorological Department, 14 

http://www.bmd.gov.bd/index.php, last access: 25 July 2014. 15 

Durão, R., Pereira, M., Costa, A., Côrte-Real, J., Soares, A.: Indices of precipitation extremes 16 

in southern Portugal – a geostatistical approach. Nat. Haz. E. Sys. Sci., 9, 241-250, 17 

doi:10.5194/nhess-9-241-2009, 2009. 18 

Goovaerts, P.: Geostatistical approaches for incorporating elevation into the spatial 19 

interpolation of rainfall, J. Hydro., 228, 113-129, doi:10.1016/S0022-1694(00)00144-X, 20 

2000. 21 

Gräler, B., Gerharz, L., Pebesma, E.: Spatio-temporal analysis and interpolation of PM10 22 

measurements in Europe. European Topic Center on Air Pollution and Climate Change 23 

Mitigation, Technical paper 2011/10, 2011. 24 

Haberlandt, U.: Geostatistical interpolation of hourly precipitation from rain gauges and radar 25 

for a large-scale extreme rainfall event, J. Hydro. 332, 144-157, 26 

doi:10.1016/j.jhydrol.2006.06.028, 2007. 27 

Kerry, R., Oliver, M.: Average variograms to guide soil sampling. Int. J. App. E. Ob. Geoinf., 28 

5, 307–325, doi:10.1016/j.jag.2004.07.005, 2004. 29 



 27 

Kiely, G., Albertson, J., Parlange, M.: Recent trends in diurnal variation of precipitation at 1 

valentina on the West Coast of Ireland, J. Hydro., 207, 270–279, 1998. 2 

Kravchenko, A.: Influence of spatial structure on accuracy of interpolation methods, Soil. Sci. 3 

Soc. Am. J., 67, 1564-1571, doi:10.2136/sssaj2003.1564, 2003. 4 

Laaha, G., Skøien, J. O. Nobilis, F., Blöschl, G.: Spatial Prediction of Stream Temperatures 5 

Using Top-Kriging with an External Drift, Env. Mod. Assess., 18, 671–83, 6 

doi:10.1007/s10666-013-9373-3, 2013. 7 

Marchant, B., Lark, R.: Robust estimation of the variogram by residual maximum likelihood. 8 

Geoderma, 140, 62–72, doi: 10.1016/j.geoderma.2007.03.005, 2007.  9 

Oliver, M.: The Variogram and Kriging, in: Handbook of Applied Spatial Analysis, Springer-10 

Verlag, Berlin, Heidelberg, doi: 10.1007/978-3-642-03647-7_17, 2010. 11 

Parajka, J., Merz, R., Skøien, J.O., Viglione, A.: The role of station density for predicting 12 

daily runoff by top-kriging interpolation in Austria, J. Hydrol. Hydromech., 63, doi: 13 

10.1515/johh-2015-0024, 2015. 14 

Pebesma, E. J.: Gstat user’s manual, Department of Physical Geography, Utrecht University, 15 

Utrecht, The Netherlands, Available from: http://www.gstat.org/gstat.pdf, 2001. 16 

Pebesma, E.: Multivariable geostatistics in S: the gstat package, Comp. Geosci., 30, 683-691, 17 

doi: 10.1016/j.cageo.2004.03.012, 2004. 18 

Pebesma, E.: The role of external variables and GIS databases in geostatistical analysis. 19 

Trans. GIS, 10, 615–632, doi: 10.1111/j.1467-9671.2006.01015.x, 2006. 20 

Pebesma, E.: spacetime: Spatio-Temporal Data in R, J. Stat. Soft. 51, 1-30, 2012. 21 

Pebesma, E., Cornford, D., Dubois, G., Heuvelink, G., Hristopulos, D., Pilz, J., Stöhlkerg, U., 22 

Morin, G., Skøien, J.: INTAMAP: The design and implementation of an interoperable 23 

automated interpolation web service, Comp. Geosci., 37, 343–352, 24 

doi:10.1016/j.cageo.2010.03.019, 2011. 25 

Pebesma, E., Gräler, B.: Spatio-temporal geostatistics using gstat, available at: http://cran.r-26 

project.org/web/packages/gstat/index.html, 2014. 27 

Pebesma, E., Nüst, D., Bivand, R.: The R software environment in reproducible geoscientific 28 

research, Eos, Trans. A.G.U., 93, 163–163, doi: 10.1029/2012EO160003, 2012. 29 



 28 

Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., Plummer, N.: Report on the 1 

activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2 

2001, Report WCDMP-47, WMO-TD 1071, World Meteorological Organization, Geneva, 3 

2001. 4 

Pugliese, A., Castellarin, A., Brath, A.: Geostatistical Prediction of Flow–duration Curves in 5 

an Index-Flow Framework, Hydrol. Earth Syst. Sci., 18, 3801–16, doi:10.5194/hess-18-3801-6 

2014, 2014. 7 

R Core Team, R: A language and environment for statistical computing, R Foundation for 8 

Statistical Computing, Vienna, available at: http://www.R-project.org, 20154. 9 

Rogelis, M., Werner, M.: Spatial Interpolation for Real-Time Rainfall Field Estimation in 10 

Areas with Complex Topography. J. Hydromet. 14, 85-104, doi:10.1175/JHM-D-11-0150.1, 11 

2012. 12 

Ross, G.: Parametric and Nonparametric Sequential Change Detection in R: The cpm 13 

package, J. Stat. Soft., in press, 2014. 14 

Said, S., Dickey, D.: Testing for Unit Roots in Autoregressive-Moving Average Models of 15 

Unknown Order, Biometrika, 71, 599–607, doi:10.1093/biomet/71.3.599, 1984. 16 

Schuurmans, J., Bierkens, M., Pebesma, E.: Automatic Prediction of High-Resolution Daily 17 

Rainfall Fields for Multiple Extents: The Potential of Operational Radar, J. Hydromet. 8, 18 

1204-1224, doi:10.1175/2007JHM792.1, 2007. 19 

Skøien, J. O., Merz, R., Blöschl, G.: Top-kriging-geostatistics on stream networks, Hydrol. 20 

Earth Syst. Sci., 10, 277–287, doi:10.5194/hess-10-277-2006, 2006. 21 

Skøien, J. O., Blöschl, G., Laaha, G., Pebesma, E., Parajka, J., Viglione, A.: rtop: an R 22 

package for interpolation of data with a variable spatial support, with an example from river 23 

networks, Comp. Geosci., doi:10.1016/j.cageo.2014.02.009, 2014. 24 

Sk⊘ien, J. O., Pebesma, E. J., Blöschl, G.: Geostatistics for automatic estimation of 25 

environmental variables—some simple solutions, Georisk, 2, 259–272, 26 

doi:10.1080/17499510802086769, 2008. 27 

Stocker, T., Dahe, Q., Plattner, G.: Climate Change 2013: The Physical Science Basis, 28 

Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel 29 



 29 

on Climate Change, Summary for Policymakers, Intergovernmental Panel on Climate Change 1 

(IPCC), 2013. 2 

Todini, E., Pellegrini, F., Mazzetti, C.: Influence of Parameter Estimation Uncertainty in 3 

Kriging: Part 2 - Test and Case Study Applications, Hydrol. Earth Syst. Sci., 5, 225–32, 4 

doi:10.5194/hess-5-225-2001, 2001. 5 

Truong, P., Heuvelink, G., Gosling, J.: Web-based tool for expert elicitation of the variogram. 6 

Comp. Geosci., 51, 390–399, doi:10.1016/j.cageo.2012.08.010, 2013. 7 

Wagner, P., Fiener, P., Wilken, F., Kumar, S., Schneider, K.: Comparison and evaluation of 8 

spatial interpolation schemes for daily rainfall in data scarce regions, J. Hydro., 464-465, 388-9 

400, doi:10.1016/j.jhydrol.2012.07.026, 2012.  10 

Webster, R., Oliver, M.: Sample adequately to estimate variograms of soil properties, J. Soil. 11 

Sci., 43, 177-192, doi:10.1111/j.1365-2389.1992.tb00128.x, 1992. 12 

Webster, R., Oliver, M.: Geostatistics for Environmental Scientists, John Wiley and Sons 13 

Ltd., Chichester, 2007. 14 

 15 



 30 

Table 1. Number of data points, smallest- and largest -spatial-lags, and summary statistics, i.e. 1 

minimum (Min.), mean, maximum (Max.) and coefficient of variation (CV) of annual total 2 

precipitation in hydrological wet days (PRCPTOT) within the pooled time series. 3 

    4 

Pooled time 

series 

Number of 

pooled data 

points 

Data density 

(point/10,000 

km2) 

Spatial lag 

 

PRCPTOT 

Smallest 

(km) 

Largest 

(km) 

Min. 

(mm) 

Mean 

(mm) 

Max. 

(mm) 

CV 

(%) 

1948-1975 441 1.5 29.16 550 17 1659 4036 42 

1776-1992 465 2.2 26.61 550 84 1759 4499 42 

1993-2007 475 2.2 27.51 550 29 1789 4516 41 

1948-2007* 1381 2.2 26.61 550 17 1738 4516 41 

* Pooled time series with inconsistent spatial structure5 



 31 

Table 2. Precision statistics of the pooled within-time series (PTS) variograms estimated by 1 

spatially shifting temporal points (SSTP), and averaging empirical variograms (AEV) and 2 

weighted averaging empirical variograms (WAEV) methods. The weighted sum mean of 3 

squared errors (SSEWMSE) as the variogram model-fit statistic,s and root means squared 4 

error (RMSE) and Nash-Sutcliffe efficiency (NSE) as the ordinary universal kriging 5 

interpolation performance statisticss are presented. 6 

 7 

Pooled time 

series 

MSE RMSE NSE 

SSTP AEV WAEV SSTP AEV WAEV SSTP AEV WAEV 

1948-1975 2.55 X 107 6.63 X 108 3.21 X 107 622.63 655.41 630.58 0.28 0.19 0.25 

1776-1992 2.47 X 107 4.49 X 108 3.09 X 107 597.98 653.96 624.54 0.30 0.21 0.27 

1993-2007 2.43 X 107 3.34 X 108 2.96 X 107 461.50 493.95 485.05 0.53 0.47 0.49 

1948-2007* 1.07 X 108 1.56 X 109 1.15 X 108 655.85 669.29 665.12 0.23 0.10 0.18 

* Pooled time series with inconsistent spatial structure 8 
9 
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 1 

 2 

Figure 1. Work-flows and methodological differences between spatially shifting temporal 3 

points (SSTP), averaging empirical variograms (AEV) and weighted averaging empirical 4 

variograms (WAEV) methods for computing pooled within-time series (PTS) empirical 5 

variograms. PTS empirical variogram computation by AEV followed method c described in 6 

Gräler et al. (2011) and the method described in Pebesma and Gräler (2014). 7 

8 
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 1 

 2 

Figure 12. Geographic location of Bangladesh (left) in Southeast Asia within the coastal belt 3 

of Indian Ocean and the spatial distribution of currently active 32 rain-gauges (right) with 4 

altitudes (m above mean sea level) in the background. The coordinate reference system is 5 

WGS 1984. 6 

7 
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 1 

 2 

Figure 3. Temporally varying spatial locations, numbers (N) and density (D, in points per sq. 3 

km) of data points (left), and magnitude (in mm) and distribution of the computed annual total 4 

precipitation in hydrological wet days (PRCPTOT) (right) in Bangladesh during 1948-2007 5 

series for four representative years, i.e. 1948, 1966, 1983 and 2007. Details on the spatial 6 

locations, N, D, magnitude and distribution of PRCPTOT in each year during 1948-2007 are 7 

available from Figure S1 and Table S1 in the supplementary materails.   8 

9 
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 1 

Figure 4. Statistically significant change points in the spatial correlations of annual total 2 

precipitation in hydrological wet days (PRCPTOT) along the longitudinal (left) and latitudinal 3 

(right) gradients within the 1948-2007 series. 4 

 5 

6 
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 1 

 2 

Figure 245. Spatially shifted (according to Eq. (1)) temporal data points for the pooled 1948-3 

1975 series. Shift distance (d  = 1111 km) is calculated based on the largest-spatial-lag (550 4 

km) available within the series (Eq. 3). The data point sets from neighboring years are shifted 5 

by 1111 km (~100), which ensures that the peripheral points of the sets are shifted by > 550 6 

km (~50). The rectangles and legend indicate peripheries (convex hull) of data points in a year 7 

and PRCPTOT in mm, respectively. 8 
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 1 

 2 

Figure 356. Estimated pooled within-time series (PTS) variograms (fitted best models to 3 

empirical variograms) estimated by spatially shifting temporal points (SSTP), and averaging 4 

empirical variograms (AEV) and weighted averaging empirical variograms (WAEV) methods. 5 

Figure captions depict variogram(Var) estimation method: pooled series. The “Power” (Pow) 6 

and “Hole” (Hol) models were fitted according to γ ( si − sj ,φ) = c0 + cw si − sj
a
 and 7 
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, respectively, where si − sj  represents the 1 

spatial lag between point pair si  and sj , φ  is anisotropy angle, c0 , cw  and a  representare 2 

nugget, and partial sill variances, and range, respectively. Further details on the variogram 3 

models and their formularization and fitting in the gstat package of R are available in Cressie 4 

(1983) and Pebesma (2001). Fitted variogram models (“Power” (Pow) and “Hole” (Hol)), 5 

partial sill and nugget variance, range, aIn case that anisotropy was identified, anisotropy 6 

angle (φ ) and the ratio between major and minor axes of the anisotropy ellipse ( A :B ) are 7 

presented.  Figure captions depict variogram(Var) estimation method: pooled series. 8 

 9 


