Interactive comment on “Co-evolution of volcanic catchments in Japan” by T. Yoshida and P. A. Troch

T. Yoshida and P. A. Troch
takeoys@gmail.com

Received and published: 15 January 2016

Dear Dr. Jefferson,

We appreciate your constructive comments. Our responses to each comment are shown below.

General Comments:

The manuscript shows that 14 catchments, with primarily volcanic bedrock, show both landscape and hydrologic changes with bedrock age. Drainage density is used as the single metric of topography, while baseflow index and slope of the flow duration curve were used as the hydrologic metrics. The authors endeavor also to test climate as a correlate with catchment hydrology and landscape characteristics, but the fairly narrow range of climates represented in the study makes this section less compelling. Overall, I think the paper does a nice job of presenting a new dataset on hydrology in volcanic catchments, but that it tries to do much with too little in terms of making broad claims about coevolution. In particular, I think the climate section is weak and the topographic metrics are underdeveloped, but could be significantly strengthened with some additional DEM analysis. I think with revision this paper could be a strong contribution to HESS, and I look forward to seeing it published.

Response:

We have added the slope-area analysis to the revised manuscript to understand the time scale of landscape evolution and to infer the physical processes governing the catchment evolution. We agree with you that the climate section is weak due to the quite narrow range of aridity indices of our dataset, which makes it difficult to argue the broad claims about coevolution. Thus, we would focus on presenting a new dataset that corroborates the finding of previous research that showed age is a strong control on hydrologic response. By adding the slope area analysis, we would also suggest that tectonic uplift plays a role in the rate of catchment coevolution, which corroborates the suggestion by Troch et al. (2015) that the hydrological age is not only a function of time since formation, but also a function of three catchment forming factors. In this paper, separating the effects of climate and base rock geology is therefore difficult if we are restricted to empirical analysis. We will continue working on this topic by using process-based hydrological models in an attempt to derive responses that are not observable with direct measurement to shed more light on the interconnected nature of landscape and hydrological properties.

Specific Comments:

Slope-area analyses (such as used by Jefferson et al. 2010) are a powerful tool for inferring differences in process domains across catchments. Other DEM analyses that could be done include generation of hypsometric curves and more river long profiles.
and calculation of average slopes and ruggedness. Analyses such as these would a
more robust way of showing that the landscapes are evolving over time and should help
support or constrain the interpretation of processes that explain the drainage density
trends. In reading the discussion, I noted that the authors inferred that the tentatively
observed decrease in drainage density in older catchments might be due to lowering of
the regional water table due to blocked recharge. Alternatively, perhaps the topography
has been sufficiently eroded in these older catchments such that the slope-area space
can’t support such a high drainage density anymore. More geomorphological analysis
might help support one of these hypotheses.

Response:
The slope area relationships indicate that the channels dominated by fluvial erosion
emerged between 2 – 6 Ma since their formation, depending on the tectonic uplift rate,
and extended towards the upper portion of the catchments until they become substan-
tially eroded gentle hillslopes. It should also be noted that the contributing areas of
the inflection points in mean slope area relationship are generally smaller than those
of the channel heads defined by the digitized stream lines. The discrepancy between
the inflection points and the channel heads implies that some portion of the fluvial
channels is ephemeral rather than perennial. The extension of ephemeral streams in
mature catchments supports the argument that the major flow pathways have changed
over time from deep groundwater to shallow subsurface flow, even after the drainage
density have reached equilibrium. The slope area relationship also suggested that the
oldest catchment was substantially eroded and perhaps this may explain the drainage
density trend.

Section 4.2: In Figures 5 and 6 and related discussion in the text, the statistical fits
seem highly dependent on the very youngest catchment to show a time trend. I was
interested to see if the relationships are statistically significant if this catchments is
removed from the dataset. Using the data provided in Table 3, I found that there is
no statistically significant log-linear fit between age and drainage density (p=0.28) or
age and slope of the flow duration curve (p=0.30) without the youngest catchment. In
the discussion, the authors do describe how the geology of the youngest catchment
may result in an anomalously high drainage density (relative to the age), but I think it
would be worthwhile to point out the effect of the youngest catchment within the results
section.

Response:
We don’t think it is a good idea to describe the anomalously high drainage density of
one specific catchment in the result section. Instead, we added the following descrip-
tion in the result section of the revised manuscript; ‘It should be noted that there is
no statistically significant log-linear fit between age and drainage density (p=0.28) or
age and slope of the flow duration curve (p=0.30) without the youngest catchment. We
will later discuss the uniqueness of the youngest catchments and how it influence the
interpretation of our results.’

Section 4.3: In this section, the authors introduce another dataset, that of MOPEX
catchments as discussed in Wang and Wu (2013). This dataset is described some-
times as MOPEX catchments and sometimes as the Wang and Wu dataset, and un-
less the reader has also read Wang and Wu, this will be confusingly inconsistent. More
significantly, I think the main result highlighted by graphing the MOPEX data along
with the Japanese catchments is how climatically similarly the Japanese catchments
are. Given that, it is unsurprising that the authors find no significant trends with aridity
index. Based on this, the authors conclude that catchment age is “the strongest candi-
date as a predictor of the variability in baseflow index.” This seems like a rather strong
conclusion to draw from a sample over a narrow range of variability for one climatic
metric.

Response:
The citation of Wang and Wu (2013) was used consistently in the revised manuscript.
We agree with you that we drew hasty conclusion from the limited range of climate
variability in our dataset. The conclusion should be “the finding that the age is a strong control on hydrologic response is in agreement with previous research”, rather than “the catchment age is the strongest candidate as a predictor of the variability in baseflow index”.

Technical Comments:

p. 9962, line 20: This sentence seems to require citation demonstrating the rigorous validation.
Response:
Three citations were added to the revised manuscript.

p. 9963, line 12: What scale were the maps?
Response:
The scale of the map is 1:25,000. This information was added to the revised manuscript.

p. 9965, line 10: You call this a weak correlation, but with a standard p-value cutoff of 0.05, I would call this no significant correlation. Examination of Figure 4 suggests that any inference of a relationship between catchment age and aridity index seems heavily dependent on the two outlier age catchments.
Response:
We avoid ambiguous expression of weak/strong correlations in the revised manuscript. Instead, consistent description of significant based on the threshold, p-value of 0.05, was used to decide if the correlation is significant or not.
We also added the following to the revised manuscript; “Thus, it is not possible to thoroughly investigate the controls of climate and time on catchment co-evolution, and the regression of any signatures is substantially affected by the behavior of the youngest and oldest catchments.”

p. 9965, line 23: I think there is a typo in this sentence and something other than age is meant. This was also picked up by another reviewer.
Response:
This has been corrected to ‘catchment area’.

p. 9667, line 5: I’m not convinced that is fair to conclude that catchment age is the dominant descriptor of hydrologic variability, if the authors explicitly framed your paper as testing age versus climate but then couldn’t really test climate. That said, the finding that age is a strong control on hydrologic response is in agreement with previous research in volcanic catchments.
Response:
As described above, we agree with you. The main interpretation of our dataset is that “the finding that the age is a strong control on hydrologic response is in agreement with previous research”, rather than “the catchment age is the strongest candidate as a predictor of the variability in baseflow index”.

p. 9667, line 17: “They” is unclear.
Response:
This has been corrected to ‘Jefferson et al., (2010)’.

p. 9668, line 24: Citation needed for the statement about flow paths changing from vertical to shallow subsurface over time.
Response:
Citation of ‘Jefferson et al. (2010)’ has been added to the revised manuscript.

p. 9668, line 27-28: It’s not clear why disconnection of the channel network from aquifers would result in a decrease in drainage density, unless it is specified that it
is a decrease in the extent of the perennial stream network.

Response:
This ‘drainage density’ has specified as ‘the extent of the perennial stream network’ in the revised manuscript.

p. 9669, line 5-6: Here “western US”, previously “Oregon Cascades.”

Response:
‘Oregon Cascades’ is used to maintain consistency.

p. 9669, line 8-9: How much difference in drainage density between Oregon and Japan could be due to differences in mapping standards?

Response:
Mapping standards of the US and Japan are both not available; hence the difference in the mapping standards might be a reason for the anomalous drainage density of SNK. However, it is not convincing given the drainage densities of the catchments older than 2 Ma are similar. We would thus assume that the difference in the mapping standards is negligible for comparison although there still remains uncertainty.

p. 9669, line 25: Awkward construction of the last phrase in the sentence.

Response:
This sentence has been revised into ‘the basalt in the upper catchment is younger than that in the lower catchment’.

p. 9670, line 9: Are there any citations to support the assertion that acidic water dissects the landscape faster anywhere in the world?

Response:
The following was added to the revised manuscript; “Acid precipitation significantly promotes weathering and soil formation by the input of rainfall and H+ (Huang et al., 2013). Acidic stream water is neutralized by the chemical weathering of primary silicate minerals in humid forested watersheds (Johnson et al., 1981).”

p. 9670, line 10: Ending the discussion with this rather drawn out and speculative discussion of a single watershed seems weak. I think the last paragraph of the conclusions is an appropriate and much stronger way to end the discussion (especially since it is not really conclusions).

Response:
The last paragraph of the conclusion section was moved to the discussion.

p. 9670, line 14: e.g., is unnecessary since the authors have listed all of the variables examined and not just given examples.

Response:
This has been corrected.

p. 9670, line 16: This is the first mention of intra-annual or seasonal water balance. I suppose the slope of the flow duration curve and the baseflow index tell you something about the overall water balance, but I didn’t see anything broken out seasonally.

Response:
This has been corrected as “The age of volcanic rock was significantly related to the partitioning of deep groundwater recharge and shallow subsurface flow”.

p. 9670, line 20-21: Alternatively drainage density has stayed constant in mature catchments.

Response:
This has been added to the revised manuscript.

p. 9670, line 21-22: DD is controlled by aridity index for a large array of diverse water-
sheds (Wang and Wu), but that assertion has not been convincingly supported in the Japanese catchments.

Response:
This sentence has been corrected as follows: “While aridity index does not explain the trend in drainage density given a quite narrow range of aridity index of our dataset, catchment age has a more significant impact on the changes in drainage density.”

p. 9671, lines 1-3: This sentence doesn’t really say anything.

Response:
This has been removed from the revised manuscript.

Table 2: It would be lovely to organize the catchments in this table in the same order they are presented in Tables 1 and 3.

Response:
The catchment order in Table 2 has been corrected.

Figure 7: What was the 0.35 to 0.45 range in aridity index chosen for presentation?

Response:
The following reason has been added to the revised manuscript. “We used this range because it comprises catchments that have wide range of age (from 0.225 to 11.7 Ma).”

Figure 8: The caption describes weak relationships, but in fact they are non-significant if the p-value cutoff is 0.05 as usual.

Response:
This has been corrected as “not significant”.

Figure 9: The inset of Figure 9 is the same as Figure 8. I think these two figures out to be combined.

C6176

Response:
The inset of Figure 15 (in the revised manuscript) aims to illustrate how the plots of our dataset clustered along the curve suggested by Wang and Wu (2010), but not fully explained by the curve. It is not the same as Figure 8, thus we leave the figures as they are.

Figure 10: Are the MOPEX catchments the same as the Wang and Wu catchments used in the previous figure? Consistent labeling would nice.

Response: We avoid expression of MOPEX catchments and consistently used Wang and Wu dataset in the revised manuscript.

Figure 11: I don’t think that the BFI in Jefferson et al. (2010) is calculated in quite the same way as in this study. Did the authors evaluate what difference that might make on the reported BFI values? If there is an effect of the methodology, how can the authors justify fitting a line through the combined datasets?

Response:
We added the following to the revised manuscript; “To compare the baseflow index values of our study with those presented by Jefferson et al. (2010), we separated the baseflow from total streamflow by using the Hysep procedure (e.g., Sloto and Crouse, 1996) presented in Jefferson et al. (2010).”

Figure 12: Why switch to baseflow coefficient here when baseflow index is used elsewhere? This doesn’t seem to be justified or explained in the text.

Response:
The reason for switching to baseflow coefficient is based on Wang and Wu (2013), who hypothesized that the aridity index is the first order indicator of the partitioning of precipitation into baseflow, and found a strong correlation between perennial stream density and the baseflow coefficient, \(Q_b/P \), which follows the complementary Budyko
curve (Fig.16).

Figure 12: In the caption, the authors report a correlation coefficient (0.74) but no associated p-value. Also, their reported correlation coefficient is for the Wang and Wu catchments and not the ones in the present study. It seems like it would be more relevant to report the relationship for the present study or the combined datasets.

Response:
The correlation coefficient of the combined dataset was added to the caption.

Figure 14: Unclear what the northing and easting are relative to, so some latitude/longitude coordinates would be nice. Also, in the lower watershed the blue elevation colors make it difficult to pick out the channel network. Finally, there's no units on the color scale.

Response:
The figure has been corrected.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 12, 9655, 2015.