Multi-criteria validation of artificial neural network rainfall-runoff modeling

R. Modarres

Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran

Received: 19 September 2008 – Accepted: 30 September 2008
– Published: 2 December 2008

Correspondence to: R. Modarres (r_m5005@yahoo.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

In this study we propose a comprehensive multi-criteria validation test for rainfall-runoff modeling by artificial neural networks. This study applies 17 global statistics and 3 additional non-parametric tests to evaluate the ANNs. The weakness of global statistics for validation of ANN is demonstrated by rainfall-runoff modeling of the Plasjan Basin in the western region of the Zayandehrud watershed, Iran. Although the global statistics showed that the multi layer perceptron with 4 hidden layers (MLP4) is the best ANN for the basin comparing with other MLP networks and empirical regression model, but the non-parametric tests illustrate that neither the ANNs nor the regression model are able to reproduce the probability distribution of observed runoff in validation phase. However, the MLP4 network is the best network to reproduce the mean and variance of the observed runoff based on non-parametric tests. The performance of ANNs and empirical model was also demonstrated for low-medium and high flows. Although the MLP4 network gives the best performance among ANNs for low-medium and high flows based on different statistics but the empirical model shows better results. However, none of the models is able to simulate the frequency distribution of low-medium and high flows according to non-parametric tests. This study illustrates that the modelers should select appropriate and relevant evaluation measures from the set of existing metrics based on the particular requirements of each individual applications.

1 Introduction

The rainfall-runoff relationship is an important issue in hydrology and a common challenge for hydrologists. Due to the tremendous spatial and temporal variability of watershed characteristics such as snowpack, soil moisture, hydraulic conductivity, watershed slope, seasonal rainfall etc., the rainfall-runoff relationship is usually a nonlinear process. Since the middle of the 19th century, different methods have been applied by hydrologists within rainfall-runoff modeling whereupon many models have attempted to
describe the physical processes involved (e.g. mathematical-physical lumped or dis-
tributed models).

Over the last decade, there has been a tremendous growth in the interest of appli-
cation of a class of techniques that operate in a manner analogous to that of biological neurons system, i.e. artificial neural networks (ANNs). While ANNs are capable of capturing non-linearity in the rainfall-runoff process compared with other modeling approaches (Hsu et al., 1995), ANN models have been applied in hydrology and in the context of rainfall-runoff modeling (Smith and Eli, 1995; Dawson and Wilby, 1998; Tokar and Markus, 2000; Zhang and Govindaraju, 2003; Kumar et al., 2005). From these studies, it has been demonstrated that ANN models can be flexible enough to simulate the rainfall-runoff processes successfully.

Various types of neural network models are available for rainfall-runoff modeling. Feedforward artificial neural networks (FFANNs) maintain a high level of research interest due to their ability to map any function to an arbitrary degree of accuracy. This has been demonstrated theoretically for both the radial basis function (RBF) network and the popular multilayer perceptron (MLP) network (Harpam and Dawson, 2005). The primary goal of ANN modeling is the prediction or forecasting of hydrological variables, e.g. runoff prediction. In this case, a set of variables is divided into two sets prior to the model building: the training set and validation set. The validation set is kept aside to evaluate the accuracy of the model derived from the training test. In the validation phase, the model output is compared with actual outputs using statistical measurements such as root-mean-square error (RMSE) and the coefficient of correlation (CORR).

However, the equality of the probabilistic characteristics of the observed and simulated runoff is usually ignored in validation test. It is important because the simulated runoff should reflect the relevant hydrological characteristics of the observed runoff in terms of both magnitude and frequency. For example, the observations are arranged in order of the magnitude, beginning with 1 for the biggest, when the flow duration curves are depicted. Therefore, the simulated runoff should reproduce the probabilistic
behavior of the observed runoff, especially for both upper and lower extreme values.
In this regard, the main objectives of this study are twofold; in the first step, we develop an effective ANN model for studying the rainfall-runoff relationship in the study area and verify the models by the global statistics such as root-mean-square error (RMSE), coefficient of correlation and coefficient of efficiency. In the second step, the non-parametric test for the equality of the mean, variance and probability distribution of the observed and simulated runoff is used to validate rainfall-runoff models and to compare them with global statistics.

2 Study area and data

In this study, the most popular FFANN architecture, i.e. MLP, is used for rainfall-runoff modeling of the main upstream basin of the Zayandehrud watershed in the western region of Isfahan Province in the center of Iran. Zayandehrud watershed has two main basins called Ghaleh Shahrokh and the Plasjan Basin. These two basins connect directly to the Zayandehrud Dam which provides the water supply for Isfahan province. The input and output variables for ANN is the daily rainfall and runoff of the Plasjan basin (Fig.1). The data set includes Plasjan daily streamflow time series and three daily rainfall time series of the stations within the basin for the period of 1965–2000.

3 Multi-layer perceptron

In this study, the multilayer perceptron architecture assumes that the unknown function (rainfall-runoff) is represented by a multilayer feed forward network of sigmoid units. An ANN model with \(n \) input neurons \((x_1, \ldots, x_n) \), \(h \) hidden neurons \((w_1, \ldots, w_h) \) and \(m \) output neurons \((z_1, \ldots, z_m) \) is considered in this study. The function that this model
calculates is

\[Z_k = f \left(\sum_{j=1}^{h} \alpha_{kj} w_j + \varepsilon_k \right) \quad k = 1, \ldots, m \]

(1)

\[W_j = g \left(\sum_{i=1}^{n} \beta_{ji} x_i + \tau_j \right) \quad j = 1, \ldots, h \]

(2)

Where \(g \) and \(f \) are activation functions, \(i, j, \) and \(k \) are representing input, hidden and output layers respectively, \(\tau_j \) is the bias for neuron \(W_j \) and \(\varepsilon_k \) is the bias for neuron \(Z_k \), \(\beta_{ij} \) is the weight of the connection from neuron \(x_i \) to \(W_j \) and \(\alpha_{jk} \) is the weight of the connection from neuron \(W_j \) to \(Z_k \).

The hyperbolic tangent sigmoid function is used in this study as activation function for the hidden nodes. The function can be written as the following

\[G(s_j) = \frac{e^{s_j} - e^{-s_j}}{e^{s_j} + e^{-s_j}} \]

(3)

Where \(s_j \) is the weighted sum of all incoming information and is also referred to as the input signal

\[s_j = \sum_{i=1}^{n} \beta_{ji} x_i + \tau_j \]

(4)

The major advantage of the MLP is that it is less complex than other artificial neural networks such as Radial Basis Function (RBF), and has the same nonlinear input-output mapping capability (Coulibaly and Evora, 2007). The training of the MLP involves finding an optimal weight vector for the network. The objective function of the training process is:

\[E = \frac{1}{2} \min \sum_{P=1}^{N} \sum_{k=1}^{M} (t_{kp} - Z_{kp})^2 \]

(5)
Where N is the number of training data pairs, M is the output node number, t_{kp} is the desired value of the kth output node for input pattern p, and Z_{kp} is the kth element of the actual output associated with input p (Antar et al., 2006).

4 Model development

The total daily observations was divided into training, validation and cross-validation sets prior to the model building. It is worth noting that the method used to divide the data has significant impact on the results. In other words, the network may use low or high flow samples and give a yield of great precision for training set but fails to simulate outside the range of the training data (Tokar and Johnson, 1999; Shahin et al., 2000). In this study, the rainfall and runoff data were randomized prior to training the network to avoid this problem.

In the first step, we select the input data for MLP networks. According to the auto-correlation properties of daily rainfall and runoff time series and the cross correlation between daily rainfall and runoff series, different input variables can be used for ANN. However, due to the possibility of zero rainfall and runoff in the Zayandehrud basin, the initial efforts to construct the ANN showed that data transformation is necessary to reduce the variance of rainfall and runoff time series. In this study, we apply standardized rainfall and runoff time series to construct the ANN. After trial and error, the following normalized variables were selected as input and output data of ANN. The cross-correlation coefficients (CCC) between streamflow and selected rainfall variables and the autocorrelation coefficients (ACC) of streamflow time series at different lags are also given. All the coefficients are significant at 1% level.

Variable (x_1): $R_1(t−1)$, Daily rainfall of station (1) at lag time 1-day, CCC=0.133
Variable (x_2): $R_1(t−2)$, Daily rainfall of station (1) at lag time 2-days, CCC=0.119
Variable (x_3): $R_2(t−1)$, Daily rainfall of station (2) at lag time 1-day, CCC=0.076
Variable (x_4): $R_3(t−2)$, Daily rainfall of station (3) at lag time 2-days, CCC=0.048
Variable (x_5): $Q(t−1)$, Daily streamflow at lag time 1-day, ACC=0.935

3454
Variable \(x_6\): \(Q(t-2)\), Daily streamflow at lag time 2-days, ACC=0.901

The output of the model is streamflow discharge of the Plasjan River \(Q_t\) at the outlet of the basin. We tested different MLP architectures and found that the MLP with 1-hidden layer (i.e. MLP1) is not appropriate while other MLPs (MLP2, MLP3, MLP4 and MLP5) are suitable networks for modeling rainfall-runoff relationship of Plasjan basin. The observation data set is divided into three training, cross validation and testing data sets. The random order was used for training material and the Levenberg-Marquardt back-Propagatopn algorithm, as the most efficient algorithm (Ramirez-Beltran and Montes, 2002) was used to train neural network and training was stopped at 1000 epochs. The learning rate was set from 0.7 to 0.1 and the learning rule is momentum. Each MLP network contained 7 hidden units positioned in each hidden layer. The performance of these networks is depicted in Fig. 2a–d which shows the network estimated streamflow against observed testing data set.

5 Empirical model

In order to compare ANN with an empirical model, we also develop a multiple linear regression (MLR) model for rainfall-runoff relationship. The discharge of Plasjan River \(Q_t\) is selected as the dependent variable and the input variables of ANN are selected as independent variables. The best-fit model is estimated using a stepwise procedure and selected based on the highest coefficient of determination \(R^2\) and residual test for normality. Finally, the following regression model is estimated:

\[Q_t = 0.814x_6 - 0.043x_2 - 0.032x_1 + 0.103x_4 + 0.146x_3 + 0.008x_5 \]

The performance of regression model is depicted in Fig. 3.
6 Comparison of the models: comprehensive multi-criteria analysis

6.1 Global statistics

The performance of hydrologic models is usually evaluated by the comparison of desired and model predicted values. This comparison can be done by graphical or numerical methods. The global statistics (Root Mean Squared Error, Correlation Coefficients, the Coefficient of Efficiency (CE), Index of Agreement (Legates and McCabe, 1999; Harmel and Smith, 2007) are usually used for model calibration or comparison of different models. As there is no single definite evaluation test, it is important to apply a multi-criteria assessment of ANN skill (Dawson et al., 2002; Kumar et al., 2005). These statistics are summarized in a recent paper by Dawson et al. (2007) and could be calculated automatically on the Hydrotest website available at http://www.hydrotest.org.uk. We apply 17 criteria which are listed in Appendix A. The reader is referred to Dawson et al. (2007) for the mathematical formulation of these criteria.

These error statistics are given for different MLP networks in Table 1. It is evident that the MLP4 network is better than all other networks. Comparing with regression model and according to some criteria, i.e. MARE, ME, MRE and MSRE, the regression model performs better than MLP4 network. However, these criteria that are unbounded do not necessarily show the preference of regression model because the low score of these criteria do not necessarily indicate a good model in terms of accurate forecasts, since positive and negative errors will tend to cancel each other out.

6.2 Statistical validation

Although the above error statistics provide relevant information on the overall performance of the models but they do not provide specific information about model performances at high or low flows, which are of critical importance in flood or low flow contexts. This study proposes other criteria to evaluate the performance of ANNs, especially for the rainfall-runoff relationship. These criteria are divided into the following graphical and numerical tests:
6.2.1 Graphical tests

In this section we compare the box-plot and probability plot of the observed and computed flows. The probability plot of the observed and simulated streamflow is fitted by Blom’s method which is based on the fractional rank of the observation. The parameters of the probability function are estimated by maximum likelihood method.

These tests are useful for visual comparison of the upper or lower tail of the distribution of the observed and estimated streamflow. The box-plots of observed and estimated streamflow for different MLP networks and regression model are illustrated in Fig. 4. From box-plots, it is clear that the MLP4 network and regression model most closely match the observed streamflow, especially for high flows.

The probability plots for the observed and MLP4 network reveal that the distribution of observed and MLP4-estimated streamflow data are more similar for a normal distribution (Fig. 5) than for a gamma distribution (Fig. 6) because the lower tail of a gamma distribution is very different for observed and estimated streamflow. The gamma distribution for MLP2 and MLP5 networks are also presented in Fig. 7. It is clear that the networks are not able to reproduce the probability distribution of the observed streamflow and there is a significant difference in both upper and lower tails of the quantile distribution of streamflow. The probability plots of estimated streamflow by regression model are also presented in Fig. 8. The normal probability plot (Fig. 8a) is similar to the normal probability plot of observed streamflow and MLP4 network (Fig. 5a and b, respectively). However, the Gamma probability plot for regression and observed streamflow is different, particularly for lower tail of distribution. These probability plots illustrate that the regression model and ANNs are not able to simulate the probability distribution of the observed streamflow (see also Table 2).

However, the MLP4 network seems to be a superior model for rainfall-runoff modeling of the Zayandehrud basin. However, it would wise to check the validation of the ANN network by statistical measurements presented in the following section.
6.2.2 Statistical tests

In this section, we suggest useful statistical tests to evaluate the performance of the ANNs and to compare these ANNs with each other. These statistical methods include non-parametric tests to compare mean, standard deviation and the cumulative distribution function (CDF) of observed and estimated streamflow. Khan et al. (2006) used these statistics to compare different precipitation downscaling methods including ANN and Modarres (2007) used a non-parametric method to evaluate drought time series forecasting with ARIMA model for the Plasjan River.

Non-parametric test for the difference of two population means

The Wilcoxon rank sum method (Conover, 1980) is a robust non-parametric method for constructing a hypothesis test p-value for $\mu_1-\mu_2$ (difference of two population means). At any significance level greater than the p-value, one rejects the null hypothesis, and at any significance level less than the p-value one accepts the null hypothesis. For example, if p-value is 0.04, one rejects the null hypothesis at a significance level of 0.05, and accepts the null hypothesis at a significance level of 0.01. The null hypothesis of Wilcoxon test can be defined at:

$$H_0: \mu_1-\mu_2=0$$

$$H_a: \mu_1-\mu_2 \neq 0$$

(6)

(7)

Non-parametric test for the equality of two population variances

The equality of two population variances can be tested using Levene’s test. The hypothesis for the Levene’s test can be defined as (Khan et al., 2006):

$$H_0: \sigma_1=\sigma_2=\ldots=\sigma_k$$

$$H_a: \sigma_i \neq \sigma_j \neq \ldots \neq \sigma_k \quad \text{for at least one pair } (i, j)$$

(8)

(9)
In performing Levene’s test, a variable X with sample size N is divided into k subgroups, where N_i is the sample size of the ith subgroup, and the Levene test statistic is defined as:

$$W = \frac{(N-K) \sum_{i=1}^{k} N_i (\bar{Z}_i - \bar{Z})^2}{(k-1) \sum_{i=1}^{k} \sum_{j=1}^{N_i} (Z_{ij} - \bar{Z}_i)^2}$$

(10)

where Z_{ij} is defined as:

$$Z_{ij} = |X_{ij} - \bar{X}_i|$$

(11)

where \bar{X}_i is the median of the ith subgroup, \bar{Z}_i is the group mean of the Z_{ij} and \bar{Z} is the overall mean of the Z_{ij}. The Levene’s test rejects the hypothesis that the variances are equal if

$$W > F(\alpha, k-1, N-k)$$

(12)

where $W > F(\alpha, k-1, N-k)$ is the upper critical value of the F distribution with $k-1$ and $N-k$ degrees of freedom at a significant level of α.

Non-parametric test for equality of CDFs of two populations

Kolmogorov-Smirnov (K-S) non-parametric test (Conover, 1980) is used to compare cumulative distribution function (cdf) of observed and simulated streamflow series. Suppose, $F_1(x)$ and $F_2(x)$ are cdfs of two sample data of a variable x. The null hypothesis and the alternative hypothesis concerning their cdfs are:

$$H_0: F_1(x) = F_2(x) \quad \text{for all } x$$

(13)

$$H_a: F_1(x) \neq F_2(x) \quad \text{for at least one value of } x$$

(14)
and the test statistics, Z is defined as

$$Z = \sup_x |F_1(x) - F_2(x)|$$

(15)

which is the maximum vertical distance between the distributions $F_1(x)$ and $F_2(x)$. If the test statistic is greater than the critical value, the null hypothesis is rejected.

To evaluate the performance of MLP networks, we apply the tests in two cases. First, the observed and simulated streamflow time series are compared for the overall validation test. For the second case, the percentiles of observed and simulated streamflow time series are compared in order to check the validation of ANNs for the prediction of high, medium and low streamflows. The streamflow time series are divided into the first 0–25% (P1), the second 25–75% (P2) and the third 75–100% (P3) percentiles.

Table 2 indicates the results of non-parametric tests at 95% significant level for the first case. It is evident that none of the networks can simulate statistical characteristics of the observed streamflow except multi-layer perceptron with 4 hidden layers (MLP4) because all estimated p-values are less than 0.05 except for the MLP4 network.

Although the p-value of the K-S test is near 0.05 for MLP4 network, the Kolmogorov-Smirnov test does not verify the equality of the CDFs of the observed and ANN simulated streamflow. Table 2 confirms the dissimilarity in the probability plot of the observed and simulated streamflow by different ANN networks and regression model (see Figs. 6, 7 and 8).

For comparing high, medium and low flow in the second case, the streamflow time series are divided into three percentile groups and the above non-parametric tests are applied for each group. Table 3 represents the global statistics of the networks for each percentile group. Those values highlighted in bold in this table indicate the “best” model out of the five when assessed using each particular evaluation metric.

For the first percentile, or the low flows, MLP4 network performs better than other networks based on most of the criteria. However, for some criteria such as AME, PDIFF and PEP, the MLP2 is better than other MLP networks. These criteria illustrate the error of the highest output between the modeled and the observed dataset which
is not suitable for low flow error measurement. For the second percentile, the same results can be seen for MLP4 and MLP3 networks. However, for the third or the upper percentile which shows the efficiency of the model for estimating high flows, the MLP4 is the best network. Jain and Srinivasulu (2004) also mentioned that the high flows can be effectively modeled by MLP networks. However, they concluded that for medium and low flow simulation by ANNs, the use of genetic algorithm (GA) may be advantage because the watershed condition is much more complex and dynamic for low flows than high flows.

On the other hand, the regression model seems to be more effective than MLP networks for rainfall-runoff modeling according to almost all criteria and different percentiles. The regression model scores well in terms of most of the metrics. However, the MLP is still better than regression model in terms of PDIFF and PEP. In other words, the MLP4 networks estimate high flows more accurate than regression model while the regression model performs better than MLP4 for medium and low flows. The results of the total data (Table 1) also indicated the better performance of MLP4 network over regression model for high flows.

Table 4 presents the results of non-parametric tests for three percentile groups. It is found that MLP2 is still an insignificant model for rainfall-runoff relationship modeling for the Plasjan River because all p-values are below 0.05.

The MLP3 network can reproduce the mean of observed streamflow for the second and third percentiles but the network is weak in simulating standard deviation and the probability distribution of the observed streamflow because the p-values are below 0.05. The MLP4 network indicates the best simulation results for the mean and standard deviation of the observed streamflow but similar to the MLP5, it also fails to reproduce the mean and standard deviation of the observed streamflow. On the other hand, the regression model is similar to the MLP4 network.

However, the Kolmogorov-Smiornov test demonstrates that neither the ANNs nor the regression model can reproduce the probability distribution of streamflow in the validation phase of the modeling. Although the MLP4 network and regression model
are able to simulate the mean and standard deviation of the observed streamflow but they could not reproduce the probability distribution of the observed streamflow.

7 Conclusion and summary

Artificial neural networks are powerful tool for modeling nonlinear relationships in hydrology such as rainfall-runoff relationship. The validation phase of the neural network modeling plays an important role in the efficiency testing of the modeling. The global statistics are common methods used in this phase. However, the findings reported in this paper show that the global statistics broadly reflect the accuracy of the model but are insufficient indicators of the best ANN because they do not capture the mean, standard deviation and probability distribution of the observed streamflow. This paper also illustrates the dangers of relying on one metric alone to evaluate and select different models.

Although the multi layer perceptron with four hidden layers was selected as the best neural network based on the global statistics, it failed to reproduce the probability distribution of observed streamflow. The MLP4 network also gives better results than regression model for entire testing data set.

However, it is important to reproduce streamflow statistics such as the mean, standard deviation and probability distribution for high, medium and low flows. According to the objectives of the ANN, i.e. flood or low flow simulation or forecasting, it is very important to check the accuracy of the ANN output separately in future studies. For example, the best ANN in this study, MLP4, gives better estimation for high flows than for low flows. But the MLP4 network is not able to reproduce the probability functions of different percentiles according to the Kolmogorov-Smirnov test. Although the regression model is better than ANNs based on different criteria, it is also inadequate to reproduce probability distribution of the observed streamflow.

In general, the findings of this study conclude that, for validation phase of ANN, the common global statistics are not sufficient and relying on one measurement is not
relevant. A multi-criteria assessment based on different global and non-parametric tests is essential for verifying and selecting an optimum ANN. One should use a range of methods to evaluate the methods.

Appendix A

Abbreviations for global criteria used in this study:

AME: Absolute maximum error
CE: Coefficient of efficiency
IoAd: Index of agreement
MAE: Mean absolute error
MARE: Mean absolute relative error or relative mean error (RME)
MdAPE: Medium absolute percentage error
ME: Mean error
MRE: Mean relative error
MSRE: Mean squared relative error
PDIFF: Peak difference
PEP: Error in peak
PI: Coefficient of persistence
R^2: Correlation of determination
RAE: Relative absolute error
R4MS4E: Fourth root mean quadrupled error
RMSE: Root mean squared error
RVE: Relative volume error
References

Legates, D. R. and McCabe Jr, G. J.: Evaluating the use of “goodness-of-fit” measures in
Table 1. Performances indices for MLP models.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>ANNs</th>
<th>Regression model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLP2</td>
<td>MLP3</td>
</tr>
<tr>
<td>AME</td>
<td>2246.52</td>
<td>1296.85</td>
</tr>
<tr>
<td>CE (%)</td>
<td>82</td>
<td>96.5</td>
</tr>
<tr>
<td>IoAd</td>
<td>0.93</td>
<td>0.991</td>
</tr>
<tr>
<td>MAE</td>
<td>190.95</td>
<td>65.77</td>
</tr>
<tr>
<td>MARE</td>
<td>6.85</td>
<td>1.88</td>
</tr>
<tr>
<td>MdAPE</td>
<td>41.78</td>
<td>13.68</td>
</tr>
<tr>
<td>ME</td>
<td>−53.49</td>
<td>−6.11</td>
</tr>
<tr>
<td>MRE</td>
<td>−6.72</td>
<td>−1.79</td>
</tr>
<tr>
<td>MSRE</td>
<td>406.46</td>
<td>31.87</td>
</tr>
<tr>
<td>PDIFF</td>
<td>1262.15</td>
<td>−1066.84</td>
</tr>
<tr>
<td>PEP</td>
<td>19.47</td>
<td>−15.90</td>
</tr>
<tr>
<td>PI</td>
<td>0.9119</td>
<td>0.9824</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9365</td>
<td>0.9582</td>
</tr>
<tr>
<td>RAE</td>
<td>0.53</td>
<td>0.18</td>
</tr>
<tr>
<td>R4MS4E</td>
<td>435.28</td>
<td>282.48</td>
</tr>
<tr>
<td>RMSE</td>
<td>247.17</td>
<td>112.21</td>
</tr>
<tr>
<td>RVE</td>
<td>−0.121</td>
<td>−0.014</td>
</tr>
</tbody>
</table>
Table 2. Test results (p-values) of non-parametric methods for the difference between observed and ANN simulated streamflow at 95% confidence level.

<table>
<thead>
<tr>
<th>Nonparametric method</th>
<th>ANNs</th>
<th>Regression model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLP2</td>
<td>MLP3</td>
</tr>
<tr>
<td>Wilcoxon</td>
<td>0.003</td>
<td>0.035</td>
</tr>
<tr>
<td>Levene</td>
<td>0.002</td>
<td>0.023</td>
</tr>
<tr>
<td>K-S</td>
<td>0.001</td>
<td>0.011</td>
</tr>
</tbody>
</table>
Table 3. Performances indices for MLP models and different percentile groups.

Criteria	Regression model	P1	P2	P3											
AME	580.95	418.24	2246.52	607.66	361.82	1943.9	625.06	976.76	1429.71	620.9	976.76	2972.94	23.19	28.91	1390.61
CE (%)	22	14	81	94	89	93	95	85	94	75	47	83	22	89	98
MAE	273.89	118.44	251.33	73.35	37.75	118.29	48.23	32.07	105.73	158.69	32.07	179.95	20.21	8.81	44.5
MARE	25.41	0.72	0.32	6.99	0.17	0.13	4.64	0.13	0.10	14.90	0.13	0.44	1.81	0.05	0.02
MdAPE	1320.22	35.15	22.83	366.66	9.42	7.17	227.11	6.90	6.27	765.54	6.90	2972.94	2.16	2.06	
MRE	-25.41	-0.66	-0.32	-6.99	-0.07	-0.09	-4.64	-0.04	-0.05	-14.90	-0.28	0.42	-1.81	-0.04	0.02
MSRE	1600.33	1.25	0.25	125.53	0.068	0.13	58.72	-0.04	0.03	558.01	0.05	11.79	7.81	0.007	0.001
PEDF	-522.95	-86.41	-1262.15	-569.66	-151.82	-1296.85	-577.06	-872.76	-1903.2	-572.32	-872.76	-1636.13	-19.86	8.12	657.19
PEP	-761.24	-14.54	-24.18	-799.4	-25.55	-16.67	-824.25	-146.92	-3.02	-818.31	-146.92	-33.77	-28.36	1.36	10.14
Pi	-426337.79	-11 251.92	-0.84	-3421.35	-1390.95	0.50	-18043.25	-1917.65	0.52	-146902.42	-1917.65	-0.72	-2312.78	-61.3	-0.80
R²	0.40	0.72	0.96	0.42	0.95	0.97	0.42	0.92	0.98	0.32	0.69	0.94	0.93	0.95	0.98
RAE	18.10	0.89	0.61	4.84	0.28	0.20	3.18	0.24	0.18	10.48	0.24	0.34	1.34	0.06	0.08
R4M5E	277.04	172.25	607.73	135.60	82.92	490.81	137.01	185.33	407.15	177.23	185.33	785.21	20.30	13.2	310.77
RMSE	274.6	61.3	410	78.1	41.2	230	79.6	50.5	209	162.1	61.3	368	20.25	10.6	100.91
RVE	-10.89	-0.28	-0.27	-2.91	0.016	-0.03	-1.91	0.01	-0.01	-6.31	-0.05	-0.15	-0.80	-0.01	0.038
Table 4. Test results (p-values) of non-parametric methods for the difference between observed and ANN simulated streamflow percentile groups at 95% confidence level.

<table>
<thead>
<tr>
<th>Nonparametric method</th>
<th>MLP2</th>
<th>MLP3</th>
<th>MLP4</th>
<th>MLP5</th>
<th>Regression model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>Wilcoxon</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.466</td>
</tr>
<tr>
<td>Levene</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.028</td>
<td>0.01</td>
</tr>
<tr>
<td>K-S</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Fig. 1. Location of Zayandehrud watershed in Isfahan Province and the location of Plasjan Basin.
Fig. 2. Scatter plot of observed versus simulated streamflow (m3/s) for (a) MLP2 network, (b) MLP3 network, (c) MLP4 network, (d) MLP5 network.
Fig. 3. Scatter plot of observed versus simulated streamflow (m3/s) with regression model.

$$R^2 = 0.9208$$
Fig. 4. Comparison of Box-plots of observed runoff and simulated runoff by MLP networks.
Fig. 5. Normal cumulative probability plots for (a) observed and (b) MLP4 simulated streamflow.
Fig. 6. Gamma cumulative probability plots for (a) observed and (b) MLP4 simulated streamflow.
Fig. 7. Gamma cumulative probability plots for (a) MLP2 and (b) MLP5 simulated streamflow.
Fig. 8. Normal (a) and Gamma (b) cumulative probability plots for simulated streamflow by regression model.