This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Landuse effects on runoff generating processes in tussock grassland indicated by mean transit time estimation using tritium

M. K. Stewart¹ and B. D. Fahey²

¹Aquifer Dynamics & GNS Science, P.O. Box 30 368, Lower Hutt 5040, New Zealand
²Landcare Research, P.O. Box 40, Lincoln 7640, New Zealand

Received: 1 February 2010 – Accepted: 2 February 2010 – Published: 10 February 2010

Correspondence to: M. K. Stewart (m.stewart@gns.cri.nz)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The east Otago uplands of New Zealand’s South Island have long been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Early studies showed that afforestation substantially reduced annual water yield, stream peak flows, and 7-day low flows, mainly as a consequence of increased interception. Tritium measurements have indicated that surprisingly old water is present in catchments GH1 and GH2, and the small headwater wetland and catchment (GH5). The old water contributes strongly to baseflow (and therefore also to quickflow). The data have been simulated assuming the presence of two types of water in the baseflow, young water from shallow aquifers connecting hillside regolith with the stream, and old water from deep bedrock aquifers, respectively. The mean transit time of the young water is of the order of months, while that of the old water is 25–26 years as revealed by the presence of tritium originating from the bomb-peak in NZ rainfall in late 1960s and early 1970s. Such a long transit time indicates slow release from groundwater reservoirs within the bedrock, which constitute by far the larger of the water stores. Comparison of the results from catchments GH1 (tussock) and GH2 (pine forest) suggests that about equal quantities of water (85 mm annually) are contributed from the deep aquifers in the two catchments, although runoff from the shallow aquifers has been strongly reduced by afforestation in GH2.

1 Introduction

Understanding streamwater sources and residence times is important for managing the quality and quantity of water produced by catchments, especially if land use is changing. This paper describes the application of dating techniques to the identification of water sources in the Glendhu Experimental Catchments.
The east Otago uplands of New Zealand’s South Island have long been the focus of attention because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. As a response to some of these concerns, a paired catchment study was established at Glendhu in 1980 in the upper Waipori river basin 60 km west of the city of Dunedin to assess the hydrological effects of the afforestation of tussock grassland. After a 3-year calibration period (1980–1982, Pearce et al., 1984), one catchment (GH2, 310 ha) was planted in Monterey pine (Pinus radiata) and the other (GH1, 218 ha) left in native tussock grassland as a control. Subsequent analyses have shown that afforestation has substantially reduced annual water yield, stream peak flows, and 7-day low flows (Fahey and Jackson, 1997) mainly as a consequence of increased interception, but also from increased evapotranspiration.

Previous workers have applied a variety of methods to elucidate the mechanisms responsible for both stormflow and baseflow generation in the control catchment (GH1). Bonell et al. (1990) examined the sources of water for selected storms, based on analyses of the naturally occurring isotope deuterium (2H) and chloride. They found that runoff from storms in the small to moderate size range were dominated by pre-event water (with a composition identical to that prior to the storm event), while larger storms contained both event and pre-event water. Runoff in the later phase of baseflow recession was dominated by pre-event water. They suggested that numerous small wetlands in the headwaters of the larger catchments acted as temporary storage areas supplying pre-event water. Miller (1994), however, concluded that these features may not be important sources of baseflow, but merely serve to link the surrounding hillslopes with the streams that drain them. Fahey et al. (1998) and Bowden et al. (2001) found that storm runoff occurs primarily as interflow, and that baseflow can be sustained for long periods from soil moisture stored in the deep loess horizons blanketing the surrounding hillslopes, but only for a few days from the water in the bog itself.
The present study uses tritium and dissolved CFCs to examine the transit time of water flowing from the tussock and forested catchments (GH1 and GH2), and one of the small headwater catchments containing a wetland (GH5). In particular, the effects of the different land treatments in GH1 and GH2 are investigated.

2 Background

2.1 Glendhu Catchments

The catchments display rolling-to-steep topography, and range in elevation from 460 to 650 m a.s.l. (Fig. 1). Bedrock is moderately-to-strongly weathered schist, with the weathered material filling in pre-existing gullies and depressions. Much of the bedrock-colluvial surface is overlain by a loess mantle of variable thickness (0.5 to 3 m). Well-to-poorly drained silt loams are found on the broad interfluves and steep side slopes, and poorly drained peaty soils in the valley bottoms. Amphitheatre-like sub-catchments (e.g. GH5) are common features in the headwaters of both GH1 and GH2. They frequently exhibit central wetlands that extend downstream as riparian bogs. Snow tussock (*Chionochloa rigida*) is the dominant vegetation cover in the control catchment (GH1); Monterey pine (*pinus radiata*) over 67% of GH2. Headwater wetlands have a mixed cover of sphagnum moss, tussock, and wire grass (*Empodisma minus*). The mean annual temperature at GH5 (elevation 625 m a.s.l.) is 7.6 °C, and the mean annual rainfall is 1350 mm. Annual runoff is measured at all weirs to an accuracy of ±5% (Pearce et al., 1984).

2.2 Master recession curve

Figure 2 shows the master recession curve, not involving snowmelt or additional rainfall, derived by Pearce et al. (1984) from the longest recessions observed during a 3-year study period in GH1 and GH2 (before afforestation). This recession curve
is typical of high to medium runoff events. The plot shows that there is a marked change of slope between the early and late parts of the recessions (at a flow of about 2.6 mm/day, where 1 mm/day equals 0.12 L/s/ha). Quickflow, as defined by Hewlett and Hibbert (1967), comprises 30% of the annual hydrograph and ceases shortly after the change in recession rate in most storm hydrographs (Pearce et al., 1984).

2.3 Deuterium results

Hydrograph separation of event and pre-event water was carried out using deuterium and chloride to investigate the runoff mechanisms operating in GH1 and GH2, and the causes of the transition point in the master recession curve (Bonell et al., 1990). Results showed that for quickflow volumes greater than 10 mm, the first part of the storm hydrograph could be attributed to two sources, pre-event water from a shallow unconfined groundwater aquifer, and event water from saturation overland flow. The pre-event water responded more rapidly to rainfall than the event water. For quickflow volumes less than 10 mm, only pre-event water from groundwater contributed. The second part of the hydrograph consisted only of pre-event water, from a very well-mixed shallow unconfined groundwater body.

2.4 Hydrological balances at GH1 and GH2

Pearce et al. (1984) showed that GH1 and GH2 (before the latter was forested), had very similar runoff ratios. Long term precipitation and runoff at GH1 weir average 1350 mm and 743 mm respectively (Fahey and Jackson, 1997). Actual evapotranspiration of 622 mm was measured for tussock grassland in the period April 1985 to March 1986 at a nearby site in catchment GH1 (570 m a.s.l.) by Campbell and Murray (1990) using a weighing lysimeter. The Priestley-Taylor estimate of PET was 643 mm for the period, and 599 mm for 1996, so ET for GH1 is taken as 600 mm. The GH1 hydrological balance is: Precipitation (1350 mm) – ET (600 mm) = Runoff (743 mm), and loss around the weir is clearly negligible (Pearce et al., 1984).
Comparison of runoff from GH1 and GH2 (after the latter had been forested for 7 years), showed that there was a decrease of 260 mm in GH2 runoff due to afforestation (Fahey and Jackson, 1997). Consequently, the GH2 balance is: Precipitation (1350 mm) – ET (860 mm) = Runoff (483 mm). The increase in ET for GH2 is attributed to increased interception (with evaporative loss) and transpiration. Runoff at GH5 weir was found to be 404 mm, suggesting that there was loss of water around the weir (confirmed by visual inspection).

3 Methods

3.1 Tritium, CFC and other measurements

Samples were collected from the small wetland (0.39 ha) in GH5 (3.64 ha), from different sites along the stream originating in the wetland, and from the outlets of catchments GH1 (218 ha) and GH2 (310 ha), in December 2001, February 2005, and February 2009. The measurements were made at the Water Dating Laboratory of GNS Science.

Tritium samples were collected in 1.1 L glass bottles, which were allowed to overflow before being tightly capped, in order to prevent contact with the atmosphere. The samples were electolytically enriched in tritium by a factor of 70, and counted in an ultra low-background Quantalus liquid scintillation counter (Morgenstern and Taylor, 2009; Hulston et al., 1981). The results are based on the new radioactive half-life of tritium of 12.32 years, and new calibration of standard water SRM4926C (1.100462±0.366% at 3 September 1998, Morgenstern and Taylor, 2009).

Tritium is produced naturally in the atmosphere by cosmic rays, and large amounts were released into the atmosphere by nuclear weapons tests in the early 1960s, giving rain and surface water a relatively high tritium concentration compared to the natural level. The bomb-peak is now much smaller, because of radioactive decay and dispersion, or has completely passed through shorter residence time hydrological systems, but is still the most direct way of determining water ages using tritium. Cosmic ray
tritium can also be used for dating groundwater and streamflow, if sufficiently precise tritium measurements are available (McGlynn et al., 2003; Morgenstern and Taylor, 2009; Stewart et al., 2010).

CFC samples were collected air-free in 2.5 L glass bottles according to methods developed by Busenberg and Plummer (1992) and van der Raaij (2003). The bottles were rinsed in the water to be collected, then filled smoothly from the bottom and allowed to overflow. Care was taken to ensure that there were no small bubbles adhering to the inner sides of the bottle. After overflowing for some time, the tube was slowly removed, leaving a convex meniscus on the top of the bottle. The cap was filled with water, then placed over the meniscus and firmly secured. A shaped nylon liner within the cap expelled any surplus water as the cap was being tightened. Then the bottle was tipped upside down and closely observed to see if any bubbles rose up through the water in the bottle. If any did, the sample was discarded and a new sample was collected. Samples were stored at constant temperature.

Measurements of the dissolved CFC concentrations in the water were made by gas chromatography using a purge and trap method, and EC detector (van der Raaij, 2003). Measurement and use of CFC concentrations for dating groundwater is described by Plummer and Busenberg (1999). Dissolved argon and nitrogen concentrations were also analysed by gas chromatography for the February 2005 samples (van der Raaij, 2003). These were used to determine the excess air concentrations and recharge temperatures of the samples (Plummer and Busenberg, 1999).

SiO$_2$ was measured on the samples collected on 22 May 2005 and 26 February 2009, using inductively coupled plasma optical emission at the GNS Science Water Lab, Wairakei. Silica concentrations are normally low in rainfall, but become higher in water infiltrating the ground because of dissolution or interaction with silicate minerals underground. In general, the longer the residence time of the water in the ground, the greater the silica concentration. Silica concentrations can therefore be used to distinguish rainfall, soil water or short residence time shallow groundwater from longer residence time deeper groundwater.
Deuterium and oxygen-18 were measured on samples from the later sampling trips, using equilibration of the water with H₂ and CO₂ gases respectively. The concentration of ²⁸O in water samples is expressed in the delta (δ) notation as per mil (‰) difference between the ²⁸O/¹⁶O ratio of the sample and that of the international standard VSMOW (Vienna standard mean ocean water):

\[\delta^{18}O = \left(\frac{^{18}O/^{16}O_{\text{sample}}}{^{18}O/^{16}O_{\text{VSMOW}}} - 1 \right) \cdot 1000 \]

The measurement error is ±0.10‰ (standard error based on analysis of duplicate samples).

3.2 Transit time determination

Transport of water along the various flowpaths through catchments results in water in the outflow having a range of transit times. i.e. The water does not have a discrete age, but has a distribution of ages. This distribution is described by a flow model, which reflects the average conditions in the catchment.

Inputs to the catchment (tritium or CFC concentrations in the recharge water) are modified by passing through the hydrological system (as represented by the flow model) before appearing in the output. The convolution integral and an appropriate flow model are used to relate the tracer input and output. The convolution integral is given by

\[C_{\text{out}}(t) = \int_{0}^{\infty} C_{\text{in}}(t - \tau) h(\tau) \exp(-\lambda \tau) d\tau \]

where \(C_{\text{in}} \) and \(C_{\text{out}} \) are the input and output concentrations. \(t \) is calendar time and the integration is carried out over the transit times \(\tau \). \(h(\tau) \) is the flow model or reaction function of the hydrological system. \(\lambda (=\ln2/T_{1/2}) \) is the tritium decay constant. \(T_{1/2} \) is the half-life of tritium (12.32 years).
Two flow models are commonly used in environmental tracer studies. The exponential-piston flow model (EPM) combines a section with exponential transit times followed by a piston flow section to give a model with parameters of mean transit time (τ_m) and exponential fraction (f) (parameters slightly modified from Maloszewski and Zuber, 1982). The response function is given by

\begin{align}
 h(\tau) &= 0 \quad \text{for} \quad \tau < \tau_m(1-f) \tag{3a} \\
 h(\tau) &= (f \tau_m)^{-1} \exp[-(\tau/\tau_m) + (1/f) - 1] \quad \text{for} \quad \tau \geq \tau_m(1-f) \tag{3b}
\end{align}

where f is the ratio of the exponential to the total volumes, and $\tau_m(1-f)$ the time required for water to flow through the piston flow section.

The dispersion model (DM) assumes a tracer transport which is controlled by advection and dispersion processes (Maloszewski and Zuber, 1982)

\begin{equation}
 h(\tau) = \frac{1}{\tau \sqrt{4\pi DP(\tau/\tau_m)}} \exp[-(1-\tau/\tau_m)^2 / 4DP(\tau/\tau_m)] \tag{4}
\end{equation}

The model parameters are the mean transit time (τ_m) and dispersion parameter (DP). Although this equation was derived as a solution to the dispersion equation, implying transport and dispersion along a single flowpath, the fact that DP is a fitted parameter means that it effectively includes transit time variance due to space variance from the recharge distribution at the surface, and any diffusive exchange of tracer with stagnant water in the aquifer, as well as the dispersive-convective transport in the aquifer. Hence, the expression has wider application than just aquifer dispersion.

Models can be combined to represent more complicated systems, as illustrated by the EPM model above. Based on the understanding of the system gained from earlier studies at Glendhu, we have used a model comprising two DM models in parallel; a “double dispersion” model (DDM) (e.g. Stewart and Thomas, 2008). The two DMs
describe short-transit-time and long-transit-time flow components. The DDM model is simply formed by adding the two DM models:

$$\text{DDM} = b \text{DM}_1 + (1 - b) \text{DM}_2$$

(5)

where b is the fraction of the young component. The model has five parameters.

4 Results

4.1 Tritium and other patterns

Samples were collected from two tubes permanently inserted in the central wetland of GH5 (Fahey et al., 1999; Bowden et al., 2001). One was a piezometer tube drawing from 1 m depth near the mid-bog piezometer nest, the other from an aluminium tube drawing from 1.2 m depth near the lower piezometer nest. The latter tube (referred to as the N-tube) was used for neutron moisture probe measurements in the past. Not enough water could be extracted from the mid-bog tube for tritium analysis in 2005. The results are given in Table 1. The bog samples generally have higher tritium values than the stream samples (see below). CFC samples could not be collected from the bog sites as the entire amount of water extractable from the tubes was needed for tritium measurement.

Samples were collected from the small stream originating below the GH5 wetland. The stream gains in flow as it traverses the gradually steepening section away from the bog. The distance of each sample site from the head of the bog is given in Table 1. Tritium concentrations generally decrease away from the bog. CFC samples were collected at the stream sites. The CFC-11 and CFC-12 concentrations in the stream near the wetland are considerably less than the concentrations expected for water in equilibrium with the atmosphere at the time of sampling, but are substantially above zero. Whether the streamwater retains its original CFC concentrations when recharged, or has been affected by chemical degradation in the bog is not clear, but the latter is likely.
As the stream flows away from the wetland, the CFC concentrations tend to increase to approach equilibrium values with respect to the atmosphere.

The final samples were collected from the streams at the outlets of GH1 and GH2 catchments. Tritium concentrations were slightly higher than that of the rainfall average for 2001 on 6 December 2011, were close to the average for 2004 on 22 May 2005, and were lower than the average for 2008 on 26 February 2009. The CFC concentrations of GH1 were close to atmospheric levels in 2001 and 2005.

The tritium data are plotted in Fig. 3a. Water from depth in the wetland had tritium concentrations much higher than mean rainfall, suggesting that the water contains “bomb” tritium (i.e. tritium originating from atmospheric nuclear weapons testing in the 1960s and 70s), and consequently part of the water has an age of 30 or more years. The stream draining the wetland (GH5) also has higher tritium than recent rainfall, and therefore is also likely to contain some of the old water. The peak tritium concentration may be gradually moving downstream, from the midbog sample in 2001, to the N-tube sample in 2005, and to the 5 m u/s GH5 sample in 2009.

The CFC concentrations increase with distance away from the wetland (Fig. 3b), and quite quickly approach equilibrium with respect to the atmosphere. This shows that the CFC concentrations are affected by interaction with the atmosphere as well as by input of young water, and therefore the GH1 and GH2 samples are not useful for estimating mean transit times of the water (Stewart et al., 2005).

Silica concentrations also tend to increase away from the bog (Table 1, Fig. 3c). The 2009 N-tube sample has zero silica, which appears to be due to chemical degradation due to the high organic content and acid condition at depth in the bog. The other bog samples are also relatively low in silica, while GH1 and GH2 have the highest silica concentrations. The $\delta^{18}O$ values show very little variation (Table 1, Fig. 3d) except for the 2005 N-tube sample, which may have retained its original $\delta^{18}O$ value. The 2009 δ^2H values also show little variation; their values (Table 1) are very close to those observed by Bonell et al. (1990) in February–April 1988 for the “remarkably well-mixed shallow unconfined groundwater body” (i.e. -60.8 to $-62.4‰$). Note that Glendhu lies
close to the -60% contour given by Stewart et al. (1983) for New Zealand precipitation.

4.2 Estimation of mean transit times

Using tritium to estimate mean transit times requires knowledge of the tritium input to the catchment. The tritium concentration in precipitation is based on measurements on monthly samples at Kaitoke (near Wellington), adjusted for latitude and altitude (Stewart and Taylor, 1981; Stewart and Morgenstern, 2001). Many years of monthly tritium measurements at Kaitoke and Invercargill Airport showed that while they had very similar variations, Invercargill Airport had tritium concentrations higher than Kaitoke by a factor of 1.1 because of its higher latitude. Adjusting for the 600 m altitude of the Glendhu Catchments increases this factor to 1.3. Other elevated locations for which this scale factor has been estimated are the Wairau River catchment (factor 1.35, northeast South Island, mean altitude 1100 m), the Waimakariri River (factor 1.2, east South Island, mean altitude 700 m), and the Upper Motueka River (factor 1.2, north South Island, mean altitude 1000 m) (Taylor et al., 1989, 1992; Stewart et al., 2005). These all support a scale factor of about 1.3 for Glendhu.

We also need to adjust the precipitation for evapotranspiration (ET) as the water infiltrates the ground. ET preferentially removes summer precipitation during the recharge process. Precipitation is distributed uniformly throughout the year as demonstrated by records at Mahinerangi Dam located 20 km east of Glendhu. The 30-year mean summer and winter rainfalls at Mahinerangi were 490 and 482 mm respectively for 1961–1990. The mean annual tritium concentrations in recharge (C_{in}) for both GH1 and GH2 were corrected for ET as described in Stewart et al. (2007), using the equation

$$C_{in} = \frac{\sum_{i=1}^{12} C_i R_i}{\sum_{i=1}^{12} R_i} \quad (6)$$

where C_i and R_i are the tritium concentrations in bulk rainfall and the recharge amounts for the ith month, respectively. The resulting tritium concentrations in recharge for catchment GH1 are plotted in Fig. 4a.
The double dispersion model (DDM) described above is used to simulate the output tritium concentrations, assuming that both young and old water components contribute to the wetland and stream samples. The conceptual flow model and best-fit transit time distribution for GH1 are shown in Fig. 4b, c. The model fit is assessed using least squares regression (expressed as the standard deviation of the tritium simulation about the tritium measurements, i.e.

\[
\text{sd} = \sqrt{\sum [(C_{si} - C_{mi})^2]/N} \tag{7}
\]

where \(C_{si}, C_{mi}\) are the simulated and measured tritium values respectively, and \(N\) is the number of measurements).

4.2.1 GH1 and GH2 catchments

The tritium measurements and simulations for GH1 and GH2 are plotted in Fig. 5a and b, with an expanded tritium scale. The measurement errors for tritium are shown. The parameters of the old component and the fraction of young water producing the best fits are given in Table 2. The young component is assumed to have a one month mean transit time and dispersion parameter of 0.1 (the fit is insensitive to the latter). The 1-month mean transit time is considered approximate because average annual tritium input data has been used. To investigate the transit time distribution of the young component in more detail would require monthly tritium measurements for a few months or more. The variation of the goodness-of-fit (sd) with the mean transit time of the old component is shown in Fig. 5c. The best fits are at MRT of 25 years (GH1) and 26 years (GH2). Other lesser minimum values are at 4 and 40 years. (These are rejected, but more tritium data in the future would help to eliminate them more definitely.) The sd values at 25–26 years are smaller than the tritium measurement error of ±0.05 TU. The young fractions indicate that the majority of the water in the streams is young. This young water is expected to be derived from the shallow groundwater connecting the near-surface layers of the wetlands and the surrounding hillslopes with the stream.
(Bonell et al., 1990; Fahey et al., 1999; Bowden et al., 2001). But there is a substantial fraction of old water in the streamflow in both catchments.

4.2.2 GH5 catchment and stream

Some insight into the nature of the deep component can be gained from looking at the results for GH5 and the stream deriving from it (Fig. 6a to d). Only two tritium samples were collected from the midbog tube. Application of the DDM model (Fig. 6a, Table 2) gives a two-component mixture containing 23% 34-year-old water, with the remainder being young water (MRT ~1 month). The N-tube samples can only be fitted with a 40-year-old sharply-peaked old component, with no young component present. The “GH5 stream” samples (the averages of the 20 m u/s GH5 and GH5 samples from 4 December 2001, 15 m u/s GH5 and 20 m d/s GH5 samples on 22 February 2005, and 5 m u/s GH5 sample on 26 February 2009, see Table 1) are matched by 31% of the same old component (39 years, DP of 0.01), and 69% of the young component. The “70 m d/s GH5” stream samples (30 m d/s on 4 December 2001, 100 m d/s on 22 February 2005 and 70 m d/s on 26 February 2009) have 8% old component (34 years, DP 0.01) and 92% young component. With increasing distance downstream, the flow in the stream increases and the proportion of young water rises. Old water drains from the bog, but it is probably sourced ultimately from deep storage (groundwater), which rises through or around the bog.

5 Discussion

5.1 Choice of transit time distribution model

It is apparent that streamflow can be supplied by a variety of sources, each of which will have their own particular flowpaths and transit times depending on their nature. McDonnell et al. (2010) have pointed out that the resulting distribution of transit times
in streams is largely unknown at present. However, there are indications that the distribution can be very wide with substantial amounts of both very young water and “surprisingly” old water (Kirchner et al., 2000). They showed that chloride results on Plynlimon streams implied very wide transit time distributions that could be described by the gamma flow model, but not by the exponential or dispersion models. The presence of substantial amounts of old water in many streams has also been established by Stewart et al. (2010) from a survey of the literature on tritium measurements in streams. At Glendhu, there are indications of very old water in the stream from the presence of bomb-peak tritium, while the bulk of the water appears to be quite young. Consequently, a two-component transit time distribution was considered appropriate for interpreting the results. The two components have transit time distributions represented by dispersion models, and the combination of the two in parallel is the “double dispersion” model (DDM).

5.2 Flow components – relation to master recession curve

Previous hydrometric studies at Glendhu revealed a marked change of slope in the recession hydrographs for GH1 and GH2 (Pearce et al., 1984), suggesting that there is a change in the dominant runoff generating processes at that point. Deuterium and chloride measurements in streamflow (Bonell et al., 1990) showed that the first part of the recession (quickflow) contained pre-event water (with very uniform deuterium and chloride concentrations), plus new water from the current event if quickflow yields exceeded 10 mm. The second part of the recession (baseflow) contained only the very uniform pre-event water. These observations were explained by runoff being supplied by groundwater bodies connecting regolith on the hillsides with the stream. When sufficient rain has fallen to exceed near-surface storage in the wetlands and lower slopes, runoff is augmented by event water via saturation overland flow. When rainfall is insufficient, only pre-event water is seen in the stream. In the former case, pre-event water responds more rapidly to rainfall than event water.
This study has probed the transit times of water contributing to the second part of the recession. Tritium measurements have indicated that surprisingly old water is present in the streams and contributes significantly to baseflow and therefore quickflow, although the remainder of the water is quite young (with transit times of a few months). The age of the old water component is revealed by the presence of tritium originating from the bomb-peak in NZ rainfall in the late 1960s and early 1970s. A mean transit time of 25–26 years is obtained for catchments GH1 and GH2. At GH1, annual baseflow amounts to about 520 mm (i.e. 70% of annual runoff). The old component runoff is therefore 83 mm annually (16% of baseflow). For GH2, the old component runoff is about 88 mm annually (26% of baseflow). The closeness of these figures shows that roughly equal amounts of old water are supplied to the streams in the two catchments per catchment area.

Old water is also observed within the GH5 wetland (Midbog, N-tube and GH5 stream sampling sites), although only the N-tube site has 100% old water. Such water is held at depth within the peat and only slowly released. It appears to be associated with outflow of a deep aquifer into the bog peat. There may also be gradual movement of bomb-tritium water downstream along the wetland as younger water penetrates from the head end of the bog (Fig. 3a). The midbog and GH5 sites have 23 and 31% of the deep-sourced old water respectively. Young water flowing through the near surface of the wetland and slopes contributes the remainder.

The 70 m downstream GH5 site has the smallest amount of old water (8%). Enough young water has entered the stream at this point to strongly dilute the old water from the GH5 wetland (streamflow is much larger here than in the stream near GH5). And the young water itself must contain an even smaller proportion of old water. Lower down in the GH1 catchment (at GH1 weir) the larger streamflow nevertheless contains a higher proportion of old water (16%) suggesting that more deep groundwater is supplied to the stream lower down in the catchment.
5.3 Source of old component

What do these long transit times mean in regard to water flows in the catchment? The importance of interflow in producing stormflow has been demonstrated by earlier workers (Miller, 1994; Bowden et al., 2001). Bowden et al. (2001) showed that lateral flow in the thin Organic and A Horizon layers was substantial and probably often emerged as flow over the wetland surface in high quickflow events, contributing to the new water inputs to the streams. They identified slow drainage from deep loess horizons (layers B and C) as the source of the extended baseflow in the catchments. Such drainage from the 1.5 m loess horizons and weathered bedrock colluvium mantling the slopes would be connected by a shallow groundwater system to the stream. While this is a likely source of young water in the baseflow, it is highly improbable that the loess could introduce the mean delay of 25–26 years identified by tritium in the old water fraction. Water flowing over bedrock would be expected to travel quite rapidly hence the long delay would have to derive from drainage from the unsaturated loess and bedrock colluvium. It is much more probable that the old water results from slow flow through the bedrock itself, as schematically illustrated in Fig. 7a and b. Wetlands in valley bottoms may also help to trap old water at depth by slowing the egress of water from the deep groundwater systems.

Consideration of the storage required to produce such old water supports the presence of bedrock aquifers. A water store of 2.2 m thickness is required to supply 85 mm annually for 25.5 years (catchments GH1 and GH2). Assuming total porosity of 0.1, this implies an aquifer thickness of 22 m over the catchments – far too much to be accommodated in the loess and colluvium.

5.4 Land use difference

Afforestation of GH2 has reduced the runoff substantially (by 260 mm after 7 years) mainly by increased interception loss (Fahey and Jackson, 1997). However, the fraction of old water in baseflow at GH2 (26%) is higher than that at GH1 (16%), leading to
roughly equal amounts of runoff of old water in the two catchments. This may be showing that runoff has been reduced from the shallow regolith aquifer of GH2, but not yet from the deep bedrock aquifer.

The transit time distribution in runoff affects how long soluble contaminants are retained in a catchment. The presence of long transit time water in the Glendhu Catchments means that soluble contaminants will be retained in the catchment and stream concentration will be elevated for many years following a contamination event. Concentrations will initially fall because of the young water present, but then the decline will slow as old water feeds into the stream.

6 Conclusions

The east Otago uplands of New Zealand's South Island have been studied because of the environmental consequences of converting native tussock grasslands to other land covers, notably forestry and pasture for stock grazing. Tritium measurements have been used to estimate the transit times of water contributing to baseflow. The tritium measurements showed that minor but substantial amounts of old water contribute to the GH1 and GH2 streams, and the stream draining the GH5 wetland. The remainder of the water is young. It appears that baseflow derives from two sources, shallow aquifers connecting regolith on the hillsides with the stream and including shallow layers of the headwater wetlands, and deep aquifers within bedrock connecting with the stream and deep layers of the wetland. Although the latter only provides 16% (GH1) and 26% (GH2) of baseflow, it constitutes by far the larger of the two water stores. The old water apparently reaches the streams mainly from low down in GH1 and GH2 catchments, but also via wetlands like GH5. About 85 mm of runoff is contributed annually from the deep aquifers in both catchments – it appears that afforestation has not yet affected the flow from deep storage in catchment GH2.
Acknowledgements. We thank the staff of Rayonier New Zealand Ltd, Invercargill, for giving us access to Glendhu Forest. This research was partially funded by the New Zealand Foundation for Research, Science, and Technology, the Korean Research Foundation (KRF 2001-013-G00012), the Hellaby Indigenous Grasslands Research Trust, and the Dunedin City Council.

References

Table 1. Analytical results for samples collected from the Glendhu Catchments.

<table>
<thead>
<tr>
<th>Sample site</th>
<th>Date</th>
<th>Distance m</th>
<th>Tritium TU</th>
<th>CFC-11 pptv</th>
<th>CFC-12 pptv</th>
<th>Temp °C</th>
<th>SiO₂ mg/L</th>
<th>δ¹⁸O ‰</th>
<th>δ²H ‰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midbog</td>
<td>4 Dec 01</td>
<td>75</td>
<td>2.97</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-tube</td>
<td>4 Dec 01</td>
<td>106</td>
<td>2.77</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20 m u/s GH5</td>
<td>4 Dec 01</td>
<td>187</td>
<td>2.78</td>
<td>165.1</td>
<td>353.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH5</td>
<td>4 Dec 01</td>
<td>207</td>
<td>2.78</td>
<td>139.4</td>
<td>335.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30 m d/s GH5</td>
<td>4 Dec 01</td>
<td>237</td>
<td>2.71</td>
<td>175.6</td>
<td>379.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH1</td>
<td>5 Dec 01</td>
<td>1357</td>
<td>2.63</td>
<td>258.2</td>
<td>491.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH2</td>
<td>6 Dec 01</td>
<td>–</td>
<td>2.69</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rainfall</td>
<td>2001</td>
<td>–</td>
<td>2.55</td>
<td>257.6</td>
<td>539.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-tube</td>
<td>22 Feb 05</td>
<td>106</td>
<td>3.25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>15 m u/s GH5</td>
<td>22 Feb 05</td>
<td>192</td>
<td>2.72</td>
<td>112.3</td>
<td>318.1</td>
<td>7.6</td>
<td>8.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20 m d/s GH5</td>
<td>22 Feb 05</td>
<td>227</td>
<td>2.61</td>
<td>208.3</td>
<td>494.9</td>
<td>8.3</td>
<td>10.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>100 m d/s GH5</td>
<td>22 Feb 05</td>
<td>307</td>
<td>2.45</td>
<td>228.4</td>
<td>522.5</td>
<td>8.3</td>
<td>11.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH1</td>
<td>21 Feb 05</td>
<td>1307</td>
<td>2.29</td>
<td>245.4</td>
<td>540.9</td>
<td>10.0</td>
<td>14.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH2</td>
<td>22 Feb 05</td>
<td>–</td>
<td>2.34</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rainfall</td>
<td>2004</td>
<td>–</td>
<td>2.30</td>
<td>257.6</td>
<td>539.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Midbog</td>
<td>26 Feb 09</td>
<td>75</td>
<td>2.59</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-tube</td>
<td>26 Feb 09</td>
<td>106</td>
<td>2.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td><0.05</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5 m u/s GH5</td>
<td>26 Feb 09</td>
<td>202</td>
<td>2.90</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3.7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>70 m d/s GH5</td>
<td>26 Feb 09</td>
<td>277</td>
<td>2.71</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6.3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH1</td>
<td>26 Feb 09</td>
<td>1357</td>
<td>2.54</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GH2</td>
<td>26 Feb 09</td>
<td>–</td>
<td>2.42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Waipori R</td>
<td>26 Feb 09</td>
<td>–</td>
<td>2.37</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rainfall</td>
<td>2008</td>
<td>–</td>
<td>2.65</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2. Best-fit parameters of the old component and fraction of the young component (b), for simulations to the tritium concentrations. (sd represents the goodness-of-fit, see text.)

<table>
<thead>
<tr>
<th>Sample site</th>
<th>MRT<sub>old</sub> yr</th>
<th>DP<sub>old</sub></th>
<th>b</th>
<th>sd TU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH1</td>
<td>25</td>
<td>0.04</td>
<td>0.84</td>
<td>0.04</td>
</tr>
<tr>
<td>GH2</td>
<td>26</td>
<td>0.03</td>
<td>0.74</td>
<td>0.01</td>
</tr>
<tr>
<td>Midbog</td>
<td>34</td>
<td>0.01</td>
<td>0.77</td>
<td>0.00</td>
</tr>
<tr>
<td>N-tube</td>
<td>40</td>
<td>0.01</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>GH5</td>
<td>39</td>
<td>0.01</td>
<td>0.69</td>
<td>0.11</td>
</tr>
<tr>
<td>70 m d/s GH5</td>
<td>34</td>
<td>0.01</td>
<td>0.92</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Fig. 1. Map of Glendhu Catchments (GH1, GH2 and GH5).
Fig. 2. Master recession curve for Glendhu Catchments (from Pearce et al., 1984).
Fig. 3. Variation of tritium, CFC, silica and oxygen-18 concentrations in waters with distance from the head of the wetland in GH5 catchment. Average values for tritium in precipitation for the years 2001, 2004 and 2008, and CFCs in the atmosphere for 2001–2004 are given. The black stripe shows the position of the GH5 weir, the arrow shows that the GH1 weir is far to the right (1357 m from the boghead).
Fig. 4. (a) Tritium concentrations for GH1 recharge, stream measurements and stream simulation. (b) Conceptual flow model for baseflow at GH1. (c) Transit time distribution for shallow and deep groundwaters according to the best-fit GH1 simulation.
Fig. 5. (a) and (b) Tritium measurements and simulations for stream sites GH1 and GH2. (c) Quality of fit of simulations to measurements.
Fig. 6. Tritium measurements and simulations for midbog, N-tube, GH5 and 70 m d/s GH5 sites.
Fig. 7. Longitudinal and cross sections for catchment GH5, showing the inferred deep flows. The dotted line indicates the water table.