Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for model calibration and validation in a large ungauged catchment

C. Milzow¹, P. E. Krogh², and P. Bauer-Gottwein¹

¹Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
²National Space Institute, Technical University of Denmark, 2100 Copenhagen, Denmark

Received: 12 November 2010 – Accepted: 20 November 2010
– Published: 30 November 2010

Correspondence to: C. Milzow (christian.milzow@alumni.ethz.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The availability of data is a major challenge for hydrological modelling in large parts of the world. Remote sensing data can be exploited to improve models of ungauged or poorly gauged catchments. In this study we combine three datasets for calibration and validation of a rainfall-runoff model of the ungauged Okavango catchment in Southern Africa: (i) Surface soil moisture (SSM) estimates derived from SAR measurements onboard the Envisat satellite; (ii) Radar altimetry measurements by Envisat providing river stages in the tributaries of the Okavango catchment, down to a minimum width of about one hundred meters; and (iii) Temporal changes of the Earth’s gravity field recorded by the Gravity Recovery and Climate Experiment (GRACE) caused by total water storage changes in the catchment. The SSM data are compared to simulated moisture conditions in the top soil layer. They cannot be used for model calibration but support bias identification in the precipitation data. The accuracy of the radar altimetry data is validated on gauged subbasins of the catchment and altimetry data of an ungauged subbasin is used for model calibration. The radar altimetry data are important to condition model parameters related to channel morphology such as Manning’s roughness. GRACE data are used to validate the model and to condition model parameters related to various storage compartments in the hydrological model (e.g. soil, groundwater, bank storage etc.). As precipitation input the FEWS-Net RFE, TRMM 3B42 and ECMWF ERA-Interim data sets are considered and compared.

1 Introduction

Hydrological modelling is facing the challenge of decreasing availability of in-situ monitoring data. Worldwide, the number of meteorological stations as well as the number of operational discharge monitoring stations has been decreasing continuously since the 1970s (Fekete and Vörösmarty, 2007; Jones and Moberg, 2003; Peterson and Vose, 1997). Whereas data from such stations are vital for the calibration and validation of
hydrological models, many major river basins of the world are currently poorly monitored.

Satellite based remote sensing provides valuable data for hydrological model calibration and validation. Over the last decades the availability of remote sensing data has increased; many hydrological state variables and water fluxes can now be measured remotely. Precipitation, evapotranspiration, surface soil moisture, total terrestrial water storage variations, river and lake levels have all been studied through remote measurements (Tang et al., 2009). In this study we use remotely sensed data sets of precipitation, surface soil moisture, river stages and total water storage for a hydrological model of an ungauged basin – the Okavango basin in Southern Africa. The purpose of the model developed in this study is to serve as a tool to assess the impact of agricultural development on runoff in the Okavango River. The final target is to apply the model conjunctively with an existing model of the downstream Okavango Delta wetlands (Milzow et al., 2009, 2010) to study the impact of agricultural development in the catchment on the hydrology and ecology of the Okavango Delta.

Precipitation data is available from the Tropical Rainfall Measuring Mission (TRMM) from 1998 onwards. We use the 3B42 product, which has a temporal resolution of three hours and a spatial resolution of 0.5°. The principal components of the mission are a precipitation radar, a passive microwave imager and a visible and infrared scanner (Adler et al., 2007). A time series of similar length, higher spatial but lower temporal resolution is the rainfall estimates product (RFE) available through the Famine Early Warning Systems Network (FEWS-Net) which was launched in 1995. RFE is based on Meteosat infrared images and microwave satellite observations (Herman et al., 1997). The temporal resolution of this data set is 1 day (10 days before 1998) and the spatial resolution is 8 km. TRMM and FEWS-Net data both incorporate ground station precipitation data.

An alternative source for precipitation data is the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (Berrisford et al., 2009). It is produced by near real time modeling of the global circulation with assimilation of large
amounts of observations. ERA-Interim precipitation data comes with a horizontal resolution of 1.5° and a temporal resolution of 6 h. The ERA-Interim product is available since 1989 but an earlier version, ERA-40, with a spatial resolution of 2.5° is available since 1957.

Soil moisture influences the microwave backscattering characteristics of the earth surface. This feature can be used to estimate the surface soil moisture (SSM) based on satellite radar measurements. The SHARE project, Technical University of Vienna, provides SSM estimates at 1 km resolution for Africa south of 12° N and Australia (Wagner et al., 2007). The acquiring instrument is the advanced synthetic aperture radar onboard Envisat. The SSM estimates represent the top 5 cm of soil, approximately, and provide soil moisture relative to the driest and wettest conditions ever observed for each ground point. For the Okavango catchment, a good correlation with a lag of three months between SSM data and catchment outflow was observed by Bartsch et al. (2008).

Water levels in rivers and lakes can be monitored by satellite altimeters although these instruments have until now never been specifically designed for continental hydrological applications. Calmant et al. (2008) give a review of the processing technique and the available databases. The River and Lake Altimetry (RLA) product, which we use, is processed at the de Montfort University with altimetry data from the ERS2, Envisat, Jason1 and Jason2 satellites (Berry et al., 2005). We employ the Envisat part of the RLA product. The temporal resolution is equal to the return period of the satellite, which is 35 days for Envisat. The accuracy of the retrieved water levels is strongly dependent upon site characteristics. The wider the river, the better is the accuracy. For smaller rivers, radar returns from off-nadir locations can seriously affect the accuracy.

The Gravity Recovery and Climate Experiment (GRACE) explores temporal changes in the gravitational field of the Earth, through satellite-to-satellite tracking data analysis (Tapley et al., 2004). Global and local gravity fields are recovered from the intersatellite range-rate measurements every 10-days, using the method of mass concentrations (mascons), which is also used at the NASA/Goddard Space Flight Center (e.g.,
Luthcke et al., 2008; Rowlands et al., 2010). Tidal and atmospheric effects are removed by forward models, so that in the absence of tectonic movements, changes in the gravitational field are dominated by changes in the hydrological cycle. With a maximal spatial resolution of 400 km, GRACE data can be used exclusively in large river catchments. GRACE was launched in April 2002, and sufficiently good range-rate data for recovery of mascons are available from April 2003 to present. For more information on the mascon recovery from range-rates, see Krogh (2010).

2 Study area

The Okavango River (Fig. 1) – which includes portions of Angola, Namibia and Botswana – is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The two main tributaries of the Okavango River arise in the southern highlands of Angola. They join on the border to Namibia before the river crosses the 30 km wide Caprivi-Strip. The lowest part of the basin consists of the large Okavango Delta wetlands on Botswana territory. The wetlands constitute a biodiversity hotspot of global importance (Junk et al., 2006; Ramberg et al., 2006) and, through tourism, an important source of economic income for Botswana (Mmopelwa and Blignaut, 2006). The catchment area upstream of the wetlands is of approximately 170 000 km². Non-runoff-generating parts of the basin extend over an additional 220 000 km² into Namibia and Botswana.

Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. Economic growth in Angola is, however, likely to result in agricultural development and consequent impacts on catchment runoff. Management of the Okavango basin represents a multi-objective problem in an international setting.

The Okavango catchment is largely ungauged. No current precipitation measurements are available for the Angolan part of the catchment where most runoff is generated. River discharge and stage are monitored only at the outlet of one of the two main
subbasins and in the main Okavango River before it flows into the Okavango Delta wetlands (Rundu, Andara and Mohembo, see Fig. 1). Some few additional discharge data from within the catchment are available for the 1960s and 1970s.

A conceptual rainfall-runoff model with monthly time step was developed for the Okavango catchment by Hughes et al. (2006, 2010). It achieves a satisfactory fit of the observed discharges but is insufficient in terms of simulated processes to be applied in the present project. Because our final goal is to simulate impacts of land use changes, we opted for a model with daily time step and a more physically-based representation of especially the soil layer.

The model by Hughes et al. (2006, 2010) covers the period 1961 to 1990 whereas our model uses input data available since 1998. A direct comparison of the models for the early period is therefore not possible. However, the input data used by Hughes et al. (2006, 2010) is now available until 2008 such that a comparison for the period 1998 to 2008 would be possible. Hughes et al. (2006, 2010) find that different precipitation data sets result in very different model performances. This is confirmed in our study. A model comparison might therefore indicate differences in the input data rather than in model performance.

3 Modelling concept

We conduct water balance modelling and stream flow routing using the Soil and Water Assessment Tool, SWAT (Arnold et al., 1998; Neitsch et al., 2005). SWAT is a daily time step, physically based rainfall-runoff model for large river basins. It has been developed for studies of land management impact on stream flow quantity and quality. SWAT includes a vegetation growth component which allows simulating irrigation and fertilizer requirements for cultivated crops. Simulated vegetation growth is driven by water availability, radiation and nutrient availability. SWAT is therefore adequate to study the impact of agricultural intensification in the Okavango catchment. SWAT includes several process parameterization options for hydrological processes such as
e.g. surface runoff, flow routing etc. In the following we only discuss the parameterizations used in our model.

The modeled basin is divided into subbasins, which are in turn divided into hydrological response units (HRUs). Individual HRUs of a subbasin have different soil, land use and slope characteristics but are not assigned a specific position within the subbasin. The water balance component of the model takes place at the HRU level. The uppermost simulated component is an interception reservoir, followed by percolation through the soil column or surface runoff. The amount of surface runoff is calculated with the SCS curve number procedure (Rallison and Miller, 1981), which accounts for soil type, land use and antecedent moisture conditions. Surface runoff can infiltrate into lower soil layers as bypass flow through cracks if the soil water content of upper layers is below one tenth of the field capacity. Cracks close with rising water content (Neitsch et al., 2005). Lateral flow in each soil layer is calculated based on a kinematic storage model (Neitsch et al., 2005). Potential evapotranspiration is computed using Hargreave’s formula, as measurements of windspeed and relative humidity are unavailable for the catchment. HRUs contribute fluxes to a groundwater reservoir for each subbasin (percolation through the soil column and the vadose zone) and directly to the stream reach associated with the subbasin (surface flow, lateral flow). Groundwater reservoirs contribute baseflow to the stream depending on a baseflow recession constant that links changes in groundwater recharge to changes in outflow.

Flows are routed through the stream network using the variable storage routing method. Manning’s equation is used to calculate flow rates and velocities. Seepage from the river to the groundwater reservoir is simulated depending on flow width and hydraulic conductivities of river beds. A first-order interaction between the river and a bank storage reservoir is further considered for each reach. For this purpose changes to the original SWAT code were implemented. The infiltrating or exfiltrating flux Q_{filter} is calculated based on the difference in water levels between river and bank storage Δh, the leakage factor of the river bed λ_{bed} (equal to the hydraulic conductivity of the river bed divided by its thickness), the wetted perimeter P_{wet} of the channel cross...
Evapotranspiration from the bank storage is simulated as in the default SWAT version.

4 Model implementation

4.1 General model setup

The Okavango catchment is divided into 7 subbasins and a total of 86 HRUs. A model version with 85 subbasins was considered in the beginning of the development phase but was later abandoned. It turned out that given the lack of data for the catchment area, a calibration with 85 subbasins does not produce better results than a version with 7 subbasins. The stream network is delineated using the ArcSWAT interface (Winchell et al., 2007). ArcSWAT requires solely a digital elevation model for this processing step. We have used the shuttle radar topographic mission data (SRTM, Farr et al., 2007) as input. The general structure of the stream network generated in ArcSWAT corresponds to the observed stream network and is used for the model. The length of all reaches is however corrected because the SRTM topography with its 90 m resolution is too coarse to reflect the accurate position of meandering streams. A digital stream map is available through the online database of the Sharing Water Project (RAISON, 2004) and was used to calculate accurate reach lengths. The width for every reach is picked from GoogleEarth imagery.

Schuol et al. (2008) have set up a SWAT model for the entire African continent and generated SWAT compatible databases for soil type and land use. These are used in this study. The original data that Schuol et al. (2008) used have global coverage. Land cover characteristics were derived from the 1 km resolution Global Land Cover Characterization Database of the US Geological Survey (USGS, 2008). Soil parameters...
were extracted from the 2 layer and 10 km horizontal resolution digital soil map of the world published by the World Food and Agricultural Organization (FAO, 1995). For the Okavango model the thickness of the upper soil layer is reduced by 5 cm and a new top layer, 5 cm in thickness with identical properties, is introduced above it for consistency with the SSM data.

The required temperature input is derived from the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts (Berrisford et al., 2009) with 1.5° spatial and 3 h temporal resolutions. Because of that time step, the minimum and maximum daily temperatures are necessarily missed. We therefore compared ERA-Interim data with in-situ data of stations in the proximity of the Okavango catchment. We found that the minimum of the 3 hourly ERA-Interim data must on average be decreased by 2.7 °C and the maximum increased by 0.1 °C to best reflect the in-situ station data. These corrections are applied to the ERA-Interim data of the Okavango catchment before they are used for evapotranspiration calculations in SWAT.

The three precipitation products described in the introduction (ECMWF ERA-Interim, TRMM 3B42, FEWS-Net RFE) are considered as model inputs. The differences between these data sets are very large for the Okavango catchment and result in significantly different runoff simulations (Fig. 2a). Annual sums over the catchment are on average 26% higher in the FEWS-Net product than in the TRMM product but the latter still gives a higher annual sum for 2008. ERA-interim data provide an average annual sum as much as 53% higher than TRMM data. Based on earlier in-situ precipitation measurements available as monthly data through the Nicholson database (Nicholson and Entekhabi, 1986) for the period 1954–1984 we selected the FEWS-Net data for the final model setup. A scatter plot of the annual precipitation sums against annual discharges reveals that the FEWS-Net data lie in the same range with the Nicholson data and that the TRMM and ECMWF data are respectively too low and too high (Fig. 2b). The calibration of the model was carried out using FEWS-Net data but for comparison, additional model setups were completed with scaled ECMWF and TRMM data. The two data sets were multiplied with a constant so that the same long term (2000–2010)
precipitation sum over the Okavango catchment was achieved as with FEWS-Net data. This resulted in multipliers of 0.82 for ECMWF and 1.26 for TRMM data.

4.2 Pre-processing of altimetry data

Satellite altimetry has to our best knowledge never been applied to detect water level changes in streams as narrow as the Okavango and its tributaries. With approximately 150 m in width, the cross sections we analyse are at the detection limit for today’s satellite based altimeters. Two of the virtual stations in the Okavango catchment coincide with in-situ river gauging stations. For each, a supplementary virtual station is located less than 20 km away from the gauging station. The accuracy of the remotely sensed levels can thus be assessed. The original RLA data contain all altimeter measurements in a corridor of 2 km width centred on the river. All measurements taken during one crossing of the corridor are then averaged to one value. We consider a subset of this data by selecting and averaging only those measurements in a corridor of 1 km width. Further, we applied an automatic correction for the slope of the river. This correction can be necessary because measurements at one virtual station are not always taken at exactly the same location along the stream centreline because of variations in the satellite orbit. The orbit changes result in changes in retrieved water levels caused by different measurement positions but being interpreted as changes of the river stage. We correct for this by fitting a linear relationship between all measured elevations of a virtual station and their position along the river. The slope of the linear relationship is then removed from the data.

For all pre-processing methods we compute the root mean squared error (RMSE) relative to the in-situ measurements. Our results (Table 1) show that the width of the corridor has a considerable effect on the accuracy. While resulting in better accuracy, a narrower corridor reduces the number of available samplings only slightly. Combining measurements from two nearby virtual stations approximately doubles the number of observations but reduces the accuracy (see also Fig. 3). The effect of the channel slope correction differs between virtual stations. The virtual station at Rundu is located...
at a very regular and straight river section with little slope so that the correction brings little improvement. At the second virtual station of the Andara location the river splits up in several nearby branches to flow down a series of minor topographic steps. The channel slope is higher there and the correction very beneficial, reducing the RMSE from 0.51 to 0.30 m for the combined stations with a 2 km corridor.

A virtual station is also located along the lowest part of the ungauged Cuito tributary (Fig. 1). Based on the findings for the two virtual stations with in-situ gauging we applied a 1 km corridor and the slope correction to the Cuito altimetry data. We assume that the Cuito data have an inaccuracy similar to data at the gauged virtual stations, i.e. a RMSE of approximately 0.4 m.

4.3 Pre-processing of SSM data

Since the surface soil moisture (SSM) data give moisture conditions relative to the wettest and driest conditions observed for each pixel, assumptions are necessary to transform the data into water content. We assume that the driest conditions observed correspond to the residual water content of the soil. Quantifying the residual water content accurately is difficult with the lack of knowledge for the catchments soils. We use the value of 6%, which is given by Chesworth (2008) as a maximal value for sandy soils. The wettest conditions are equally difficult to quantify. We evaluate the SSM data using water content either at field capacity or at saturation as wettest conditions observed. In SWAT the water content at field capacity Θ_{fc} is calculated based on other soil properties as

$$\Theta_{fc} = \Theta_{aw} + 0.4 \cdot \rho_b \cdot m_c$$ \hspace{1cm} (2)

Where Θ_{aw} is the plant available water content, ρ_b is the bulk density, and m_c is the fraction of clay material of the soil. The average field capacity for the Okavango catchment is 0.22, the average porosity is 0.49. The differences in soil water content resulting from the two possible assumptions for the wettest conditions are obviously large (Fig. 4).
Two important differences between the observed SSM data and the conceptional setup of the SWAT model make a direct comparison of simulated topsoil moisture with SSM data difficult:

- SWAT does not simulate the residual water content of soils. An exponential decay of soil evaporation is simulated when the soil water content falls below field capacity, allowing a complete drying of the soil because the evaporative flux approaches a non-zero value for infinitesimal small soil water contents.

- Precipitation events can occur shortly before or after the acquisitions of the SSM data, so that the measured data would respectively reflect wet or dry conditions relative to the average of the day. The simulation in SWAT operates with a constant daily sequence of precipitation – percolation – evapotranspiration. We therefore use daily simulation outputs of soil moisture immediately after precipitation and at the end of the sequence to get estimates of daily maximum and minimum soil moisture conditions. A simulation with sub-daily time steps would be necessary for a sound comparison of the SSM data with the simulation. But this is impossible for the Okavango catchment given the current precipitation data situation.

A direct comparison of simulated and observed surface soil moisture is thus presently not feasible in the case of the Okavango. A relative comparison is possible if we assume that the unknown bias is constant over time. This is the case for the residual water content of the soil and for the water content at driest and wettest observed conditions. Also, the relative timing of measurements and precipitation events is expected to be on average the same at least when comparing e.g. wet seasons with each other.

4.4 Parameter sensitivity and calibration

Although it is physically based, SWAT requires calibration of a number of parameters that must be estimated. We have performed a manual calibration for the model to...
best fit the available observations of discharge, water levels and total water storage.
For the period in which satellite based precipitation estimates are available (from 1998
onwards) in-situ flow observations are very limited. Gauging stations are operated only
at the outlet of the western subbasin and at the outlet of the entire catchment. From
the difference of the two, an estimate of flow from the eastern subbasin is derived. Our
calibration was therefore targeted at achieving a parameter set with which the rainfall-
runoff characteristics and water levels of the two subbasins and the entire catchment
are well reproduced, and which fitted the GRACE observations of total water storage
for the entire catchment best. This is clearly a multiple objective problem and a slightly
better fit of the discharge could be achieved when not considering the other objectives.
However, the present model represents the best compromise between achieving the
best fit of discharge, stages, and water storage, respectively.

The two headwater regions have very different flow regimes that result from different
geologies. Thicker layers of Kalahari Sands in the eastern headwaters lead to a more
baseflow-dominated regime. An earlier and much higher flood peak is observed for
the western headwaters. In terms of model parameters, this resulted in a much lower
baseflow recession constant value for the eastern headwaters.

The sensitivity of the model outputs for discharge, water levels, total storage variabil-
ity and surface soil moisture are evaluated using composite scaled sensitivities (CSS, Hill and Tiedeman, 2007). The CSS of a simulated time series f with n elements to
a parameter p is defined as

$$CSS = \frac{1}{n} \sum_{i=1}^{n} \left(\left| \frac{\Delta f_i}{f_i} \frac{\Delta p}{p} \right| \right)$$

(3)

Where Δp is the change in parameter value and Δf_i the change in the time series at
time step i.

We find that discharge and water levels are more sensitive than the water storage
and that the topsoil water content has little sensitivity (Fig. 5). The higher sensitivity
of discharge can be explained by the non-linearity relating percolation and river runoff
in a catchment. River runoff represents only a small fraction of the precipitation inputs (approx. 6% for the Okavango at Andara) so that a small relative change in evapotranspiration can result in a large relative change in runoff. By contrast, a small change in evapotranspiration induces only a small change of total storage. The only two parameters to which the total storage variation is more sensitive than the other model outputs are SURLAG and CH_N1. Both are related to the delay of surface runoff.

The reduced sensitivity of the topsoil water content is due to the small volume of water that can be stored in this thin layer and the sequential order of computation in SWAT. Only few parameters have an influence on the topsoil water content, these are the parameters related to canopy interception and to the topsoil layer itself. Soil moisture is extremely sensitive to some of these parameters: These are AAW controlling the water retention capacity, SoilFactor a multiplier to the soil thickness, and ESCO controlling the amount of soil evaporative demand that can be taken from lower soil layers.

The ranking order of the parameters in terms of sensitivity shows similar trends for simulated runoff, stages and storage but has some noteworthy exceptions. ALPHA_BF, the base flow recession constant controlling changes in groundwater flow to the streams in response to changes in recharge, ranks higher for discharge than for storage variations. CH_N2, the channel Manning’s roughness coefficient ranks much lower for water levels than for discharge.

These differences show that the observational data of discharge, water levels and total storage can be used to calibrate and validate different parts of the hydrological model.

5 Results

The model’s capability of predicting accurate discharge rates at the outflow of the catchment is limited as shown by the large differences between simulated and observed flows (Fig. 6). The FEWS-Net data result in the best fit of the observed discharge
relative to the other two precipitation data sets. The typical multiple flow peaks per year are captured when using FEWS-Net data but their amplitude is often wrong. The Nash-Sutcliffe model efficiency coefficient (NSC, Nash and Sutcliffe, 1970) on discharge at Andara is relatively poor with a value of 0.31. However, if the high flow period of 2008 is excluded the value improves to 0.59. The high sensitivity of NSC to a single year, for which we argue in the following that precipitation is probably overestimated, indicates that the absolute value of the NSC should be assessed with care.

Simulated water levels must be corrected when compared to observations. The 1-D stream flow routing component of SWAT accounts for one uniform stream cross section geometry per subbasin. In our large scale model setup these geometries must be representative for reaches of several tens of kilometres. In reality, however, stream geometries change within shorter distances and the stream width at gauging stations or virtual stations is thus not necessarily equal to the width assigned as representative for the corresponding subbasin. Stream widths influence the amplitude of water level fluctuations. To compare simulated and measured water level fluctuations we therefore correct the simulated levels by multiplying them with the ratio of simulation channel width over channel width at in-situ measurement location. The corrected simulated levels at Rundu and Andara (Fig. 3) fit the in-situ observations well in terms of timing of flood peaks. The amplitudes are often less well reproduced, which is also true for the simulated discharges. The comparison of simulated and remotely sensed water levels at Cuito, where the latter is the only observational data source, is satisfactory. Simulated levels fall mostly within one standard deviation (RMSE at the stations with in-situ gauging) of the remote observations. Over- or underestimations of the maximal flood levels occur in the same years as for the Cubango tributary.

Despite the model’s limitations in simulating daily discharges, the flow regime of the Okavango River and its two tributaries is satisfactorily simulated (Fig. 7). Flow gauging data for the Cubango tributary and the entire catchment can be used to derive flow regimes for the second tributary, the Cuito. The model satisfactorily simulated the very different flow regimes of the eastern and western headwaters. We note that the rising
limbs of the simulated hydrographs are a little to steep and that the annual maximal flows are therefore too early. This feature could not be corrected during the calibration of the model.

The comparison of simulated and observed surface soil moisture shows very striking disagreements. Soil moisture during the dry season is simulated as close to zero by the model but is of approximately 20 to 30% of saturation in the SSM data (Fig. 4). Limitations in the conceptual setup of SWAT (Sect. 4.3) lead to this difference. For a relative comparison we apply a linear transformation of \(f(x) = a \cdot x + b \) to the observed SSM data with parameters \(a \) and \(b \) constant in time. The parameters are chosen so that the resulting time series best fits the simulated values. The relative comparison reveals that there is good agreement of the onset of wet and dry seasons and that within the wet period the timing of individual rises and falls of the soil water content is often consistent. Two important differences are identified. The SSM dataset shows a slow increase at the end of the dry season before the more pronounced increase at the beginning of the wet season. The simulation misses this first increase. For the year 2008 the simulated soil moisture of the first half of the wet season is largely higher than the observed one. Both of these differences have their analogy in the simulated catchment outflow. The simulated discharges tend to increase too late after the onset of the wet season and the high flows of 2008 are strongly over-predicted by the simulation. The over-prediction of discharge in 2008 is most likely due to a bias in the precipitation product.

Simulated water storage variations are derived from the 10 reservoirs considered in SWAT:

- Snow storage (irrelevant in our case)
- Canopy interception
- Surface runoff lag
- Lateral flow runoff lag
– Soil storage
– Vadose zone percolation lag
– Shallow aquifer storage
– Deep aquifer storage (inactivated in our case)
– River storage
– River bank storage.

We find that the lion's share (98.7%) of the simulated total storage variations result from the soil-, vadose zone-, shallow aquifer-, and surface runoff lag storages (Fig. 8). The total water storage variations derived from GRACE data have similar dynamics but generally a bit higher annual amplitudes. The over-estimation of water storage amplitudes in the simulation is often an indication for an under-estimation of the precipitation input. In the 2004 and 2007 flood seasons for example, both discharge and total water storage are consistently under-predicted by the model. Overall, there is a deficit of water in the simulation in these years, which is not caused by too high river outflows. The deficit could be due to either too high evapotranspiration rates or too low precipitation inputs. Because of the under-estimation of the storage amplitude, the likely reason for the insufficient fit in 2004 and 2007 is under-estimation of the precipitation input. The simulation of the 2005 flood season therefore starts with too low total water storage, but the simulated increase is of the same amplitude as the increase in the GRACE data. Simulated and observed discharges are also consistent in 2005. For 2006 we observe a slight over-prediction of discharge whereas the total storage amplitude is strongly under-estimated. Similar to 2005, the simulation of the 2008 flood season starts with too low total water storage, because of under-estimated storage in the previous year. Despite a strong over-estimation of runoff in 2008, the storage amplitude is not over-estimated. This indicates that the excess runoff may be due to overland flow processes.
An increasing trend might be visually identified in the relative water storage derived from GRACE data. This impression is however caused only by the wetter year 2008. A linear fit of the GRACE data from 20 October 2003 to 20 October 2008 (20 October being the driest time for both years) has indeed a slope of $+13.5\, \text{mm yr}^{-1}$ but a linear fit until 20 October 2007 has a slope of $-9.1\, \text{mm yr}^{-1}$. The simulation shows similar behavior with slopes of respectively $+12.3$ and $-3.1\, \text{mm yr}^{-1}$ for linear fits over the same periods. Our data do therefore not show any trends in the relative water storage of the catchment.

6 Discussion

Given the poor performance of the model to simulate daily discharges, an application for flow forecasting is not possible yet. We expect the main reason for this in erroneous precipitation amounts caused by lack of in-situ precipitation measurements. The very large differences between the three applied precipitation products indicate that accurate remote measurements of precipitation over the Okavango catchment are currently infeasible. The runoff-generating part of the catchment does not include any operational precipitation gauge and it is questionable if remote sensing products can at all provide accurate quantitative precipitation amounts for ungauged basins. The performance of the precipitation products is difficult to assess because over ungauged catchments per se no in-situ measurements are available and in gauged basins the data are already used for the generation of the precipitation product.

The relatively good fit of the flow regimes suggests that the model is able to simulate the proper rainfall-runoff characteristics of the catchment. The model can thus be used for long term scenario analyses. It will be applied to study the impact of land use changes through intensified agriculture on catchment outflow.

It is remarkable that consistent time series of water levels could be extracted for the tributaries of the Okavango River approximately 150 m in width. Previously altimetry data had been used only for lakes and major river systems such as the Amazon.
For relatively narrow rivers the altimetry data might not render good results when processed automatically but with manual selections of the individual target points based on knowledge of the water body position good results can be achieved. These results are very promising also since future satellite missions (Sentinel3, SWOT) will operate at higher spatial resolutions thereby definitely expanding the number of river basins for which satellite altimetry is a valuable data source.

7 Conclusions

We have set up a hydrological model for the ungauged Okavango catchment using data with near-global coverage. The model is calibrated against in-situ discharge measurements and remotely sensed observations of river stages and total water storage variations. Simulated discharge, stages, and storage are found to have different model parameters to which they are most sensitive. The remotely sensed data sets can thus be used to condition different parameters and equifinality of the parameter set can be reduced.

The three employed precipitation products exhibit very large differences in annual sums of precipitation estimates for the catchment. Consequently they result in very different runoff simulations. We found that for our period of investigation (2000–2009) and the Okavango catchment, FEWS-Net RFE data perform better than TRMM 3B42 and ECMWF ERA-Interim data. Discrepancy in specific periods between simulated and observed surface soil moisture as well as total storage allowed identifying likely errors in the precipitation data. The model’s accuracy in simulating catchment outflow is largely diminished by the errors in the precipitation data.

Satellite altimetry was used to retrieve water level fluctuations at three locations in the catchment for channels approximately 150 m in width. Comparisons with in-situ observations at two of these locations revealed a root mean squared error of the remotely sensed levels of 0.4 m or below.
Acknowledgements. We acknowledge the Department of Water Affairs of the government of Namibia and the Department of Water Affairs of the government of Botswana for providing river stage and discharge data. Altimetry data was processed under ESA contract ESRIN/RFQ/3-12093/07/I-LG (EAPRS, De Montfort University; CEG, Newcastle University; DTU Environment, Technical University of Denmark). This work was funded by the Swiss National Science Foundation (PBEZP2-127760) and hosted at the Department of Environmental Engineering, Technical University of Denmark.

References

FAO: Digital soil map of the world and derived soil properties (CD-ROM), Version 3.5, Land and Water Digital Media Series Number 1, Rome, Italy, 1995. 9131

Table 1. Root mean squared errors (m) of satellite based water levels relative to in-situ measurements at the stations Rundu and Andara using satellite altimetry data from one or two virtual stations, and, in brackets, number of samplings in the period 2003–2009. The benefit of taking a subset of the data from within a narrower corridor around the river and applying a slope correction is evaluated. (VS: virtual station, SC: slope correction.)

<table>
<thead>
<tr>
<th></th>
<th>Rundu</th>
<th>Rundu, 2 VS</th>
<th>Andara</th>
<th>Andara, 2 VS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 km corridor</td>
<td>0.46 (67)</td>
<td>0.56 (129)</td>
<td>0.28 (72)</td>
<td>0.51 (141)</td>
</tr>
<tr>
<td>2 km corridor+SC</td>
<td>0.46 (67)</td>
<td>0.55 (129)</td>
<td>0.25 (72)</td>
<td>0.30 (141)</td>
</tr>
<tr>
<td>1 km corridor</td>
<td>0.36 (63)</td>
<td>0.46 (123)</td>
<td>0.23 (70)</td>
<td>0.30 (131)</td>
</tr>
<tr>
<td>1 km corridor+SC</td>
<td>0.34 (63)</td>
<td>0.40 (123)</td>
<td>0.21 (70)</td>
<td>0.24 (131)</td>
</tr>
</tbody>
</table>
Fig. 1. The Okavango River Basin. The inset shows Southern Africa with the active (filled area) and non-active (outline) parts of the Okavango Basin.
Fig. 2. (a) Annual precipitation sums averaged over the Okavango catchment for three precipitation products. (b) Scatter plot of annual precipitation against annual discharge for the three used products and earlier in-situ data of the Nicholson database.
Fig. 3. Water levels at Rundu, Andara, and for the Cuito tributary. Simulations, remote sensed levels and in-situ observations (where available). For Rundu and Andara the satellite altimetry data is a combination from 2 virtual stations each (columns 2 and 4 in Table 1).
Fig. 4. Simulated top soil moisture (5 cm layer) using FEWS-Net rainfall estimates (RFE) and remotely sensed SSM. In this representation both moisture time series are averaged over the entire Okavango catchment and filtered with a moving average over 14 days.
Fig. 5. Composite scaled sensitivities (CSS) of the main model outputs with respect to different model parameters. The parameters are sorted in order of decreasing sensitivity with respect to discharge at Andara.
Fig. 6. Observed and simulated discharge at Rundu and Andara. Simulations were forced with the three different precipitation products (FEWS-Net, TRMM, ECMWF).
Fig. 7. Simulated and observed flow regimes of the Okavango River and its two main tributaries. Station locations are indicated in Fig. 1.
Fig. 8. Storages variations within the Okavango catchment derived from GRACE and simulated with the SWAT model. The 4 storage compartments shown in the plot account for 98.7% of the simulated total water storage variation. (The minimum value of all curves is set to zero.)