INCREASING PARAMETER CERTAINTY AND DATA UTILITY THROUGH MULTI-OBJECTIVE CALIBRATION OF A SPATIALLY DISTRIBUTED TEMPERATURE AND SOLUTE MODEL

C. Bandaragoda*, B.T. Neilson

1 Silver Tip Solutions, LLC., Mukilteo, WA, 98275, USA
2 Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 84322, USA

*Corresponding author: christina@silvertipsol.com
Abstract

To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS) model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.

Index Terms: 1805, 1847, 1874, 1860, 1846
1. **Introduction**

Typically, the calibration of models involves fitting simulations to either single or multiple variables, error measures at a single location, or combining information from multiple locations (Duan, 2003). Early calibration techniques were notorious for converging to local optimal solutions and did not reliably find the global optimum (Schakke, 2003). Additionally, many hydrological modeling procedures do not make the best use of available information (Wagener et al., 2001). Current research on the calibration problem primarily focuses on uncertainty analysis and consideration of multiple objectives (Fu and Gomez-Hernandez, 2009; Blasone et al., 2008; Ajami et al., 2007; Duan et al., 2007; and Vrugt and Robinson, 2007). Rather than selecting a single preferred parameter set, equifinality of models recognizes that there may be no single, correct set of parameter values for a given model and that different parameter sets may give acceptable model performance (Beven, 2001).

All calibration algorithms have basic design requirements, including the selection of calibration parameters, objectives, and the a priori space within which to search for an optimum solution or set of solutions. The measure of “acceptable” and “optimal” is left to the design of the optimization problem, the model application, and the modeler. In this study, we consider a global optimum as the solution where there is acceptable tradeoff between fitting the model at all locations there is data available versus just matching data at one location well; this can be accomplished by using a range of multiple local optima defined by a narrowly bounded global optima. Since a model is not an exact representation of reality, and observed data used for verification is not perfect, the theoretical global optimum of a process based model distributed in space and in time may be an unrealistic goal. However, a practical goal is to resolve the multiple local optima which simultaneously perform well on a local scale to narrowly bound the region surrounding the theoretical global optimum. In other words, there is a need to narrowly bound the global optimum region where good results exist for all data distributed throughout the system. Performing well locally and globally, or glocalization, can be used to define an optimum in model calibration which bridges scales between local and global performance. A systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within optimization algorithms is relevant to instream and hydrologic models ranging in applications from the stream reach to the watershed scale.
The Two-Zone Temperature and Solute (TZTS) model (Neilson et al., 2010a and b) was developed to capture the dominant instream processes associated with heat and solute fate and transport. The TZTS model separates transient storage (Bencala and Walters, 1983) into two zones, (1) dead zones or the surface transient storage (STS) zone that represents the eddies, recirculating zones, and side pockets of water and (2) subsurface or hyporheic transient storage (HTS) zone that represents the flow into or out of the stream substrate. As discussed in Neilson et al. (2010a), sources and sinks of heat include fluxes across the air-water interface, bed conduction, conduction between the bed and deeper ground substrate, HTS exchange, and STS exchange. Solute mass is primarily influenced by HTS and STS exchange (Neilson et al., 2010b). To account for each of these fluxes, the TZTS model calculates energy and mass balances on the main channel, the STS zone, and the HTS zone for each reach or control volume. As described further in Neilson et al., 2010a,b, the model equations are:

\[
\frac{\partial T_{MC}}{\partial t} = -U_{MC} \frac{\partial T_{MC}}{\partial x} + D \frac{\partial^2 T_{MC}}{\partial x^2} + \frac{J_{\text{atm}}}{\rho C_p Y_{MC}} + \alpha_{\text{STS}} T_{\text{STS}} - T_{MC} + \frac{Q_{\text{HTS}}}{V_{MC}} (T_{\text{HTS}} - T_{MC}) + \frac{P_{\text{sed}} C_{p,\text{sed}} \alpha_{\text{sed}}}{\rho C_p Y_{MC} Y_{\text{HTS}}} (T_{\text{HTS}} - T_{MC})
\]

\[
\frac{d T_{\text{SYS}}}{d t} = \frac{J_{\text{atm,STS}}}{C_{p,\text{SYS}}} + \alpha_{\text{SYS}} (T_{MC} - T_{\text{SYS}}) + \frac{P_{\text{sys}} C_{p,\text{sys}} \alpha_{\text{sys}}}{\rho C_p Y_{\text{SYS}} Y_{\text{HTS}}} (T_{\text{SYS,sed}} - T_{\text{SYS}})
\]

\[
\frac{d T_{\text{HTS}}}{d t} = \frac{\rho C_p Q_{\text{HTS}}}{\rho C_p V_{\text{HTS}}} (T_{MC} - T_{\text{HTS}}) + \frac{\alpha_{\text{sed}}}{Y_{\text{HTS}} Y_{gr}} (T_{gr} - T_{HTS})
\]

\[
\frac{d T_{\text{SYS,sed}}}{d t} = \frac{\alpha_{\text{sed}}}{Y_{\text{SYS}}} (T_{\text{SYS}} - T_{\text{SYS,sed}}) + \frac{\alpha_{\text{sed}}}{Y_{\text{HTS}} Y_{gr}} (T_{gr} - T_{\text{SYS,sed}})
\]
\[
\frac{\partial C_{MC}}{\partial t} = -U_{MC} \frac{\partial C_{MC}}{\partial x} + D \frac{\partial^2 C_{MC}}{\partial x^2} + \frac{\alpha_{STS} Y_{STS}}{A_{c,MC} B_{tot}} (C_{STS} - C_{MC}) + \frac{Q_{HTS}}{V_{MC}} (C_{HTS} - C_{MC})
\]

(5)

\[
\frac{dC_{STS}}{dt} = \frac{\alpha_{STS}}{(\beta B_{tot})^2} (C_{MC} - C_{STS})
\]

(6)

\[
\frac{dC_{HTS}}{dt} = \frac{Q_{HTS} (C_{MC} - C_{HTS})}{Y_{HTS} A_{S,MC}}
\]

(7)

where \(T \) = temperature (°C), \(Q \) = volumetric flow rate (m³ s⁻¹), \(V \) = zone volume (m³), \(D \) = longitudinal dispersion (m² d⁻¹), \(\Delta x \) = volume length (m), \(\alpha_{STSi} \) = exchange between the MC and the STS (m² d⁻¹), \(Q_{HTS} \) = HTS advective transport coefficient (m³ d⁻¹), \(A_{c,MC} \) = cross-sectional area of the MC (m²), \(B_{tot} \) = total volume width (m), \(\beta \) = the STS fraction of the total channel width, \(Y \) = volume depth (m), \(\rho \) = density of the water (g cm⁻³), \(C_p \) = specific heat capacity of the water (cal g⁻¹ oC⁻¹), \(\rho_{sed} \) = density of the sediment (g cm⁻³), \(C_{p,sed} \) = heat capacity of the sediment (cal g⁻¹ oC⁻¹), \(\alpha_{sed} \) = coefficient of thermal diffusivity of the sediment, and \(J_{atm} \) = atmospheric heat flux (cal cm⁻² d⁻¹) (consisting of net shortwave radiation (0.31 to 2.8 µm), atmospheric longwave radiation (5 to 25 µm), water longwave radiation, conduction and convection, and evaporation and condensation), and \(C \) = concentration (mg L⁻¹).

The subscripts \(MC \), \(STS \), and \(HTS \), \(STS, sed \), and \(gr \) specify the main channel, surface transient storage, and the hyporheic transient storage, sediments below the STS and the deeper ground layer, respectively.

To support TZTS model applications, simultaneous data collection of temperature and solute tracer data (referred to more simply as tracer data throughout the rest of the paper) in the main channel and storage zones distributed laterally (e.g., within the main channel, HTS, and STS) at one location and longitudinally along a river segment, has created datasets that can be used to address the high dimensional problems associated with predicting heat and solute movement within streams and rivers. In recent studies, beginning with Neilson et al. (2010a,b), the TZTS model was calibrated using the Multi-Objective Shuffled Complex Evolution Metropolis algorithm (MOSCEM; see Vrugt et al., 2003a for algorithm description) and used to predict solute concentrations and temperatures in the Virgin River, Utah, USA, in two storage zones at two different locations within the study reach. Using
temperature and tracer observations at two different sites illustrated that using more
spatially distributed information and two different environmental tracers
(temperature and solute) in the optimization improves the overall performance of the
model. These studies found that even with the use of multi-objective calibration,
many optimal parameter sets were indistinguishable based on the objective functions,
fairly broad parameter ranges resulted, and parameter uncertainty was still a concern.

In this paper, we address these issues by presenting a systematic approach to
using various data types at spatially distributed locations to decrease parameter
bounds sampled within optimization algorithms in the context of a case study. Our
hypothesis is that there is a narrowly bounded parameter range that best represents
the hydrologic processes controlling the system, which can be determined by using
key data sets as multiple optimization objectives. To do investigate this, we
developed a simulation matrix of data types and sites that is used first to locally
optimize parameter sets by fitting the respective main channel data using both single
and multi-objective optimization algorithms. These results were then used to resolve
which parameter sets perform best at individual locations (distributed laterally and
longitudinally) or have the best local fit, and which parameter sets result in the best
global fit. Throughout this process we also test the utility of single and multi
objective optimizations and determine the most informative calibration datasets
resulting in global data fits.

2. Study area and data

A highly managed portion of the Virgin River, Utah, USA (Fig. 1), is
considered impaired due to elevated temperatures that have adversely affected two
endangered fish species (Virgin River Chub – Gila seminuda and woundfin –
Plagopterus argentissimus) and other native fishes unique to this river system. An
11.94 km study reach of the Virgin River (Fig. 1) was divided into two main sections
on the basis of bed slope (0.0039 between S1 and S2 and 0.0012 between S2 and S3)
and stream substrate distribution identified from a previous mapping effort (Neilson
et al. 2010a).

To support the TZTS model population, calibration, and model testing,
various data types were collected from 22–25 June 2007. The instream flow during
the study period was found to be an average of 1.06 m3 s$^{-1}$ at Site 1 and 1.96 m3 s$^{-1}$
at Site 3. Information regarding several lateral inflow rates and temperatures were
also collected during the study. The largest is the return flow from Quail Creek
Reservoir (0.6 m3 s$^{-1}$). Groundwater exchanges were set according to Herbert (1995)
with a total gain 0.17 m3 s$^{-1}$ over the entire reach. Weather information (air
temperature, solar radiation, wind speed, and relative humidity) was gathered at Site
1 using a Davis Wireless Vantage Pro (Hayward, CA) weather station to provide the
data necessary to calculate the atmospheric fluxes (J_{atm} in Eqn. 1). Similar to Neilson
et al. (2010a,b), solute and temperature information were collected at Site 2 and Site 3 to support model calibration and testing. The data included solute tracer experiments resulting in main channel and STS concentrations at both Site 2 and Site 3. Simultaneous temperatures at Site 2 and Site 3 were also collected in the main channel (sensor 2), STS (sensor 1 and 3), and HTS (sensor 4, 5, and 6) (Fig. 2). The temperature sensors were Hobo® Water Temp ProV1 (Onset Corporation, Bourne, MA) with a ±0.2°C accuracy and resolution of 0.02°C.

As with Neilson et al. (2010b), a 180 g instantaneous pulse of fluorescent Rhodamine WT dye was injected at 02:00:00 on 6 June 2007, at the head of a riffle just upstream of Site 1. A Self-Contained Underwater Fluorescence Apparatus (SCUFA) (Turner Designs, Sunnyvale, CA) was deployed in the main flow of the channel at both Site 2 and Site 3. Measurements were taken in situ every ten seconds for approximately seven hours at Site 2 and 6 h at Site 3. Grab samples were also collected at both Site 2 and 3 near the SCUFA to provide an independent measure in the main channel and in two representative STS locations. The grab samples were kept cool, stored in the dark in amber bottles with PTFE caps, and analyzed using a Turner Model 450 fluorometer (Turner Designs, Sunnyvale, CA). As discussed in Neilson et al. (2010b), loss of Rhodamine WT due to sorption to streambed sediments (mineral and organic) was not a concern in this study because the organic matter content in the bed sediments was extremely low (averaging 0.05% at four sampling locations). Additionally, a recent sorption study within this portion of the Virgin River (Bingham, 2010) provided average Kd values of 1.5mL/g, which is low based on other Rhodamine WT sorption studies (Bencala and Walters, 1983; Everts and Kanwar, 1994; Lin et al., 2003; Shiau et al., 1993).

3. Methods

3.1. Simulation Matrix

With the overall goal of iteratively reducing the size of the global search space, while simultaneously investigating the information content within the available data types, we established a simulation matrix (Table 1) to test the use of the most commonly collected main channel data sets used in calibration of instream temperature and solute models. Each row and column denotes a data type that represents both heat and tracer fate and transport at Site 2 and 3 along the study reach and within different zones at each location.

This matrix represents all possible combinations of single and two-objective calibrations that use the available main channel temperature and tracer data. The calibration tests were Tests 1 through 4, which are single-objective calibrations using
main channel temperature and tracer at Site 2 and Site 3, and Tests 5 through 10
which are various combinations of data resulting in two-objective optimizations. The
latter two objective tests include the following combinations: main channel
temperatures at Site 2 and Site 3 (Test 5), main channel tracer observations at Site 2
and Site 3 (Test 6), main channel temperature and tracer observations at Site 2 (Test
7), main channel temperature at Site 3 and tracer observations at Site 2 (Test 8), main
channel temperature at Site 2 and tracer observations at Site 3 (Test 9), and main
channel temperature and tracer observation at Site 3 (Test 10).

3.2. Calibration Technique

Similar to previous TZTS calibration studies (Neilson et al., 2010a,b; Bingham, 2010), SCEM (for single-objective calibration) and MOSCEM (for multi-objective calibration) (Vrugt et al., 2003a,b) were the optimization algorithms utilized to evaluate each model test. To ensure that we were adequately searching the parameter space, MOSCEM was run with a random sample of 300 parameter sets that evolved using two complexes for a total of 3000 model runs for each of the ten tests. In this case, a parameter set consists of a different combination of parameter values for each of the 11 parameters that were calibrated and a complex is a group of parameter sets within which objective function results are compared. The parameter sets with the best results from each complex are selected, new randomly selected parameter sets are added, and the complexes are shuffled with each search iteration. We experimented with a range of sample and complex sizes (e.g., 400 samples and four complexes with a total of 10 000 model runs) and we found that an increase in the simulations and complexes did not significantly improve calibration results. We therefore, decided to maintain the smaller number of simulations for efficiency. However, we recognize that future work with extended simulations may improve the search for globally optimal parameter sets, particularly with such a highly dimensional parameter space.

In this application, measurements within the STS and HTS were withheld during calibration and used to assess the predictive capacity of these components as “ungauged” model outputs. As will be described in detail later, the STS data were used to assist in selecting globally acceptable parameter sets. The HTS data were reserved for corroboration and testing of the model calibration. Since temperature and tracer data in the main channel are the most commonly collected data sets, we needed to further understand whether model calibration to main channel temperature and tracer data results in realistic and representative STS and HTS predictions. Likewise, little was known about how single-objective model calibration at individual sites controlled the resulting parameterization at other site locations and for other data types. In addition to investigating how to narrow the optimization parameter space, our methods are designed to test how a priori choices in study and
project design, as well as data availability, may affect the model calibration and resulting simulation performance.

3.3 Model Parameters

The a priori uniform distribution of the feasible parameter space was determined primarily based on earlier work that included a sensitivity analysis using Latin Hypercube sampling (Neilson et al., 2010). For this study, these ranges were further expanded for some parameters based on preliminary optimization tests that resulted in parameter values consistently at the upper or lower bounds of their respective range (Table 2). The calibration parameters include: STS fraction of the total channel width (β), cross-sectional area of the STS ($A_{cs \ STS}$), exchange between the main channel and the STS (A_{STS}), HTS advective transport coefficient (Q_{HTS}), and HTS depth (Y_{HTS}) for each of the two sections within the study reach (resulting in 10 parameters). The depth of the ground layer below the HTS (Y_{gr}) was also estimated, but was represented by one value for both sections and became the eleventh calibration parameter. The total width of the main channel (B_{tot}) and the Manning’s roughness coefficient (n) were set based on the results of Bingham (2010). In this effort, multi-spectral and thermal imagery of the river system were used to physically estimate the average width of the channel over each section and therefore, reduced the number of parameters estimated in the calibration. With B_{tot} established, n was then set to result in appropriate average travel times. The longitudinal dispersion (D) coefficient was set based on the methods described in Neilson et al. (2010a).

3.4 Calibration Objectives

To evaluate local and global model performance, various types of statistical measures were investigated. Each of the ten tests shown in Table 1 were run using different statistical objectives including bias, Nash-Sutcliffe Efficiency (E), log error, and root-mean square error. Similar to Neilson et al. (2010a,b), we found that E (Eq. 1; Nash and Sutcliffe, 1970) provided the most consistent calibration results and we used this objective function throughout the remainder of the study and to quantify all local calibrations.
\[E = 1 - \frac{\sum_{t=1}^{N} (T^t - T_0)^2}{\sum_{t=1}^{N} (T^t - T_0)^2} \]

Where, for \(N \) timesteps: \(T^t_o \) = observations, \(T^t_m \) = modeled simulations (at time \(t \)) and \(T_0 \) is the mean of the observations. When used in calibration, the algorithm minimizes the result of \(1 - E \), since the bounds of \(E \) are \([1, -1]\). The normalization of the difference in error by the difference between the observed and the mean of the observed, allows comparison of results when the observations at different locations have different scales of variability, as is the case of temperature and tracer information.

To achieve an acceptable globally optimal calibration, we considered the need to match all local data regardless of the differences in optimal parameter sets associated with various calibrations. In this study, our local problem is that an acceptable parameter set must be found that results in adequately reproducing the dominant processes as measured by an individual time series. Our global problem is that we have ten time series distributed in space, six temperature and four tracer datasets, with 11 different parameters that need to be estimated based on matching both the observed temperature and tracer data in all zones and at all locations. The six locations for temperature calibration or comparisons based on available data include: Site 2 main channel (\(E_{MC2\ Temp} \)), STS (\(E_{STS2\ Temp} \)), HTS (\(E_{HTS2\ Temp} \)); and, Site 3 main channel (\(E_{MC3\ Temp} \)), STS (\(E_{STS3\ Temp} \)), HTS (\(E_{HTS3\ Temp} \)). Note that each observed time series used in these \(E \) values for the STS and HTS consists of the average of temperatures observed within the two representative STS zones and the most representative HTS time series, respectively. The appropriate HTS time series was determined based on the calibrated \(Y_{HTS} \) values: when \(Y_{HTS} < 3 \) cm, the 3 cm HTS data were used, when \(3 \) cm < \(Y_{HTS} < 9 \) cm, an average of the 3 and 9 cm HTS time series were used, when \(9 \) cm < \(Y_{HTS} < 20 \) cm, an average of the 9 and 20 cm HTS time series were used; and when \(Y_{HTS} > 20 \) cm, the 20 cm HTS time series was used. The four local tracer data locations used for comparison or calibration include: Site 2 main channel (\(E_{MC2\ Tr} \)), STS (\(E_{STS2\ Tr} \)); and, Site 3 main channel (\(E_{MC3\ Tr} \)), STS (\(E_{STS3\ Tr} \)). The observed STS time series used in these calibrations are the average concentrations observed within the two representative STS zones.

The first step in our calibration method was to populate the simulation matrix (Table 1) based on available observations. We then identified the a priori parameter search bounds and the most appropriate statistical objective function, \(E \). To compare the global calibration results (i.e., matching the observations at all ten locations) for each of the tests within the simulation matrix (Table 1), we then calculated the arithmetic average (AE) of various combinations of local \(E \) values (Eq. 2).
An AE that used only surface data (AE_s) was first defined and included the local E values for all tracer and temperature data collected in the main channel and STS, but did not include the HTS information. AE_{all} included both surface data and HTS information. AE was used to assess the global results; only E was used as the calibration objectives using the MOSCEM algorithm.

3.5 Narrowing search bounds

Using the initial a priori bounds (Table 2), we defined Level 1 results as calibrated parameter sets from the single-objective optimizations (Tests 1–4). Level 2 results represent the parameter sets from the two-objective optimizations with these same a priori bounds (Tests 5–10). The local criteria (E > 0.8) and global criteria (AE_s > 0.7) were calculated for each parameter set within each test run in the matrix. For all parameter sets that met both of criteria (E > 0.8 and AE_s > 0.7), a minimum and maximum for each individual parameter was determined. These ranges were then used to set the narrower search bounds. All simulations in Table 1 were repeated using these narrower bounds. Level 3 results represent the new parameter sets from all single-objective optimizations (Tests 1–4) and Level 4 represent the new two-objective simulation (Tests 5–10) results given the narrowed search range.

The last step was using Level 3 and 4 results to further test the model calibration. Similar to the AE_s, a new AE_{all} value was calculated for the Level 3 and 4 simulations that used all of the data including the temperatures within the HTS. Together the AE_s and AE_{all} measures were used to summarize the spatially aggregated performance of model predictions of temperature and tracer at multiple locations, and determine the ability to predict the HTS temperatures if only surface data were available. This gave an indication of the added utility of collecting subsurface data and whether the model can be calibrated sufficiently in this watershed using only surface data collected at multiple locations and within different zones.

By comparing Levels 1 and 2, a wide parameter search space, to Levels 3 and 4, a narrow parameter search space, we investigated the importance of a priori parameterization. In comparing Levels 1 and 3, single-objective calibrations, to Levels 2 and 4, two-objective calibration, we gained information about how best to utilize available calibration algorithms and various types of spatially distributed information simultaneously.
4. Results

4.1. Level 1

The AE_s and individual E values for each calibration location and data type are presented in Table 3 for the calibrations from the simulation matrix (Table 1). The ten rows correspond to model outputs by test and shaded boxes represent the data used from that location for calibration. All other observations were used as validation data sets. Level 1 results (Table 3) provide initial information regarding how optimization at single locations can impact the model performance at ungauged locations. Of Tests 1–4, no tests with the main channel tracer data at Site 2 or Site 3 as the objective had results that met the selection criteria of AE_s > 0.7, with the best results \(^2AE_s = 0.65 \) and \(^2EMC3, \, Temp =0.95 \) and \(^2AEs =0.6 \) (preceding superscripts indicate Test numbers). Although the E for each of these tests meet the criteria of E > 0.8 and the calibration did well at fitting the dataset used as the objective, the calibration was not acceptable at other locations.

Figures 3 and 4 show the highest performing single-objective Level 1 results (Test 2) for each of the ten total data locations. The observed temperature and tracer data at Site 2 and Site 3 are shown as black circles (Figs. 3 and 4), and the E values for each location are shown within each subplot. The predicted values are shown in grey, and in this case there is a single line since a single objective calibration results in a single optimal parameter set. The calibrated \(Y_{HTS} \) value is also shown with the HTS subplots (Fig. 3d and e) since this value is used to determine the most representative HTS temperature time series for calculating \(E_{HTS} \). Although the temperature results seem to fit the observations well (Fig. 3), the tracer results (Fig. 4) show how the model optimized to temperature at Site 3 \(^2EMC3, \, Temp =0.95 \) is not able to capture the timing and magnitude of the tracer pulse. This may be in part due to fixing the Manning’s n parameter in calibration.

4.2. Level 2

Level 2 simulations were used to determine which parameter sets resulting from the two-objective optimizations (Tests 5–10) converge to the established criteria of \(E >0.8 \) for all calibration data sets and AE_s > 0.7 (Table 3). The E values reported for the two-objective optimizations are based on the parameter set that represents the best compromise solution or the pareto solution (Vrugt et al., 2003a; 2003b, Boyle et al., 2000, Gupta et al., 1998; 2003, and Neilson et al. 2010a) with the smallest Euclidean distance from the origin. The best results are from Test 7 with values of \(^2EMC2, \, Tr =0.94, \, ^2EMC2, \, Temp = 0.91 \), and AE_s = 0.81. Figures 5 and 6 present Test 7 results where the uncertainty bounds resulting from pareto optimal parameter
sets are shown. The uncertainty in the temperature predictions are less at Site 2 (Fig. 5) and there is a much better fit in terms of timing of the tracer curve at Site 2 (Fig. 6), but there are still relatively large bounds. It should also be noted that this calibration does not capture the tail of the tracer curve at Site 2, which is critical to understand the transient storage within the study reach (Bencala and Walters, 1983). Similar to what Neilson et al. (2010a) found, comparing Level 1 and 2 results (Table 3) illustrates the relative benefit of using two-objective optimization compared to single-objective optimizations. For Tests 5–10, Tests 6 and 10 did not meet the local criteria of $E > 0.8$ with tracer data used as a calibration objective, although Test 6 did meet the global criteria (Table 3).

Since Test 7 met the local and global criteria, all the acceptable parameter sets (i.e., the pareto optimal parameter sets that also met the local and global criteria) from this test were used to define the narrowed upper and lower bounds for a new round of calibrations using the simulation matrix (Table 1). The narrowed minimum and maximum parameter range (Table 4) represent a parameter range reduction with a high of 67% for the $A_{cs, STS}$ in Sect. 1 and the least reduction of 4% for the B in Sect. 2. Comparing between sections, Sect. 1 had an average of 40% reduction in bounds while Sect. 2 had an average of 17% reduction. To visually compare the a priori parameter range and the narrowed parameter range derived from Test 7 results, each of the 11 calibrated parameters were normalized or scaled between the lower bound, 0, and the upper bound, 1 (Fig. 7). The thick black solid lines represents the parameter bounds if all pareto rank one sets resulting from the Test 7 calibrations are considered. The grey shaded area represents the narrowed parameter bounds for parameter sets that resulted in meeting both local and global criteria from the Test 7 optimizations.

4.3 Level 3 and Level 4

Similar to Level 1 results, Tests 1 through 4 all converged to $E > 0.9$ for the data used in calibration during the Level 3 calibrations (Table 5). However, model performance at other locations was poor with the exception of Test 3, which had better AE results than Level 1: $^3AE_s = 0.76$, and $^3AE_{all} = 0.62$. While these results are promising, it is important to note that only the tracer at Site 2 (the calibration objective) fit the observations well (not shown here for brevity).

Level 4 had improved results when compared to Levels 1–3. The AE_{all} and AE_s values increased for most tests (Tables 3 and 5), and the maximum value increased to 0.78 and 0.9 for AE_{all} and AE_s, respectively. Although Test 6 met the global and local criteria, the temperature simulations at Site 2 overestimated the high temperatures and underestimated the low temperatures by approximately 3 C in the
main channel, STS, and HTS zones. Figures 8 and 9 show the best overall result for Level 4 temperature and tracer predictions, Test 9: $9AE_S = 0.9$ and $9AE_{all} = 0.78$.

Not only are the temperature predictions more representative, but the tracer responses are generally captured better in the tail of the tracer curves. As with the Level 2 calibrations, both temperature and tracer objectives at different locations seem to provide the information necessary to achieve an acceptable global calibration.

Figure 10 shows the parameter ranges resulting from the Test 9 optimization that met the local and global criteria and the bounds of all the pareto optimal sets. The dashed line shows the narrowed parameter range within the original a priori search range (normalized here [0,1]). The thick black line is the bounds of the pareto optimal parameter sets. The grey area is the parameter variability given the parameter sets which meet both local and global performance criteria.

5. Discussion

Comparing the results of the simulation matrix calibrations when using only the main channel temperatures or tracer concentrations as an objective (Test 1–4, Table 3), we see how the choice of a calibration objective affects the global performance of the model by comparing the AE and AE_{all} values. In general, the best temperature and tracer main channel result is from a single objective optimization of that parameter at that location, but the corresponding model results are generally inappropriate at other locations. Our results also show that when a main channel temperature objective at one location results in reasonable predictions, the temperature at the other location will also be reasonable. However, this is not necessarily the case when using tracer data in single objective optimizations in this study.

The best Level 2 local results at Site 2 and Site 3 for tracer are $^8E_{MC2,\ Tr} = 0.98$ and $^6E_{MC3,\ Tr} = 0.99$ and for temperature are $^5E_{MC2,\ Temp} = 0.96$ and $^{10}E_{MC3,\ Temp} = 0.95$ (Table 3). It is interesting that the best fit for tracer at Site 3 uses tracer information at both Site 2 and 3 (Test 6), but the best fit at Site 2 uses tracer information at Site 2 and temperature information at Site 3 (Test 8). In this case, the tradeoff between solute at two sites is greater than the tradeoff between solute and temperature. For temperature, the best fit at Site 2 uses temperature data at both Site 2 and Site 3 (Test 5). However, the best temperature fit at Site 3 uses temperature and tracer data at Site 3 (Test 10). It should be noted that when temperature data at Site 3 and tracer data at Site 2 were used (Test 8), $^8E_{MC2,\ Temp} = 0.94$ which is not significantly different than Test 10. Having both main channel temperature and tracer data at two different longitudinal locations provided more information about the system than just one data type.
While these local results give insight into the utility of calibration data, it is important to acknowledge how each of these calibrations perform globally. Given a broad parameter search range (Level 2), Test 7 had the best overall results with $AE_s = 0.81$ and provided some corroboration of the model representing the dominant processes through an $AE_{all} = 0.75$. Most Level 2 AE_s and AE_{all} values were higher than Level 1 values. This is consistent with the findings of Neilson et al. (2010a) where they found two-objective calibrations performed better at locations not used in model calibration than did single objective calibrations. While Test 7 had the best global value, the individual results were not nearly as good as the best fits at each location for each data type. It did, however, provide the necessary information to narrow the search bounds for the Level 3 and 4 simulations.

With this initial understanding of the importance of single versus two-objective calibration and various data types in model calibration to narrow the search space, Level 3 and 4 results provide a more complete picture of how the system is functioning (Table 5). The majority of the Level 3 single-objective optimizations have AE_s and AE_{all} values that are higher than those in the Level 1 simulations. The actual E values for the location being used in the calibration are also higher with the exception of Test 1. This suggests that the more narrow search range was appropriate. The best Level 4 results at Site 2 and Site 3 for tracer are $E_{MC2, Tr} = 0.98$ and $E_{MC3, Tr} = 0.99$ and for temperature are $E_{MC2, Temp} = 0.95$ and both $E_{MC3, Temp} = 0.94$ and $E_{MC3, Temp} = 0.94$ (Table 5). The best tracer results at Site 2 are consistent with the Level 2 results where tracer information at Site 2 and temperature information at Site 3 is most appropriate (Test 8). The best Site 3 tracer results now suggest that both temperature and tracer data at Site 3 (Test 10) is better than tracer data at Site 2 and Site 3 (Test 6). Within the narrow search bounds, the best tracer results rely on temperature information at some location.

For Level 4 temperature results, the best fit at Site 2 uses temperature and tracer data at Site 2 (Test 7), however the Test 5 results are quite similar. The best temperature fit at Site 3 still uses temperature and tracer data at Site 3 (Test 10), but the results for Test 5 (which uses Site 2 and 3 temperatures) has the same E. These results demonstrate the need to use both temperature and solute data in two-objective TZTS calibration. The Level 4 results also showed a marked improvement in most AE_s and AE_{all} values from Level 1–3 simulations. This improvement can be related to the increased parameter certainty when comparing Level 2, Test 7 (Fig. 7) with Level 4, Test 9 (Fig. 10). These figures show the usefulness of using more information, or local data, to define a narrow range bounding the global optimum. They also highlight the importance of multi-objective calibrations to capture the spatial heterogeneity within streams and rivers and the need to determine the appropriate optimization parameter ranges.
To further incorporate important processes and continue advancing our predictive capabilities, there is a need for a connected cycle of inquiry that includes model development and refinement, identification of data types and scales of measurement required to support modeling, and establishing the most effective approach for calibration based on the application of interest. Inclusion of all available site specific data in model calibration assists these efforts by providing information that decreases the number and range of parameters, provides information about model certainty, can guide the incorporation of processes missing in the conceptual model, and will assist in prioritization of future data collection efforts. Future work varying additional parameters or holding others constant may improve overall results. Expanding the simulation matrix to examine the use of STS temperature and tracer observations in the calibration would further highlight the utility of these datasets.

6. Conclusions

With the overall goal of iteratively reducing the size of the global search space while simultaneously investigating the information content within the available data types, we established a simulation matrix to test the use of the most commonly collected main channel data sets used for model calibration of instream temperature and solute models. This systematic approach to using multiple types of distributed information allowed us to examine the application of both single and multi-objective optimization algorithms to the TZTS model using both temperature and solute data available within the main channel and transient storage zones (STS and HTS). In the context of a case study in the Virgin River, Utah, USA, our global problem was to optimize the model given ten time series distributed in space. Our local problem was that any unacceptable parameter set (i.e., the model does not represent one observed time series well) signified a failure to adequately reproduce the dominant processes affecting both the heat and solute response at that location. Using data representing the effects of both main channel and transient storage processes, we found that two-objective calibrations consistently performed better at all locations where data were available within the study reach for corroboration than did single objective calibrations. However, we also found neither single objective results nor multiple objective pareto optimal results alone were able to produce acceptable global calibrations or appropriately match all 10 data sets available. This led to using parameter sets from initial calibration efforts (Level 1 and 2) to narrow parameter ranges used within optimization resulting in a reduction of bounds in the upstream section of the river by an average of 40%, and in the downstream section by an average of 17%. In doing this, Level 3 and 4 calibrations, which used these narrow parameter bounds, led to improved predictions of instream temperatures and
tracer concentrations at multiple locations and zones in the study area not used in calibration. This global fit resulted a better representation of the dominant processes controlling instream processes, where the final reduction of bounds in the upstream section was by an average of 49% and the in the downstream section by an average of 69%.

Another key finding was that, in general, using both main channel temperature and solute data in calibration provided better global results. Therefore, we suggest that both data types be collected at different locations, for example, solute at one calibration site and temperature at another. Based on the results of this study, and the need to use resources associated with data collection more efficiently, we recommend future data collection focused on collecting a single tracer observation time series in the main channel, with temperatures collected simultaneously in multiple locations and zones to be used in model calibration and testing.

Acknowledgements. We are indebted to those who helped collect the data that supported this paper (Quin Bingham, Noah Schmadel, Jonathan D. Bingham, Andrew Hobson, Ian Gowing, and Drs. Bayani Cardenas, Enrique Rosero, and Lindsey Goulden). We would also like to thank the USGS and Washington County Water Conservancy District for providing funding and/or support for multiple data collection efforts within the Virgin River.
References

Gupta, H. V., Bastidas, L. A., Vrugt, J. A. and Sorooshian, S.: Multiple Criteria Global Optimization for Watershed Model Calibration, in Calibration of Watershed Models, Duan,

