Interactive comment on “A novel algorithm with heuristic information for extracting drainage networks from raster DEMs” by W. Yang et al.

S. Grimaldi
salvatore.grimaldi@unitus.it

Received and published: 27 January 2010

Authors described an interesting algorithm to define DEM flow direction in flat areas. The topic is surely important and interesting.

In this short communication I am going to generally comment the paper without analyzing the manuscript as a reviewer.

The artifact DEM correction is a complex problem difficult to solve and the approaches described in literature can be grouped in the following three points:

1) Literature is full of flow direction methods and usually the main hypothesis is that the DEM is pit or flat areas free. There are single-flow methods (O’Callaghan & Mark, 1984; Jenson & Domingue, 1988; Fairfield & Leymarie, 1991; Costa-Cabral & Burges, 1994; Garbrecht & Martz, 1997a; Orlandini et al., 2003) and multi-flow methods (Freeman, 1991; Quinn et al., 1991; Lea, 1992; Costa-Cabral & Burges, 1994; Holmgren, 1994; Quinn et al., 1995; Tarboton, 1997; Pilesjo et al., 1998; Lindsay, 2003, Seibert & McGlynn, 2007) D8 is the common approach (implemented in ArcGIS) but can often provide wrong results (straight and parallel blueslines).

2) Concerning flow direction definition in flat areas the most common approach (implemented in ArcGIS) is described in Jenson & Domingue, 1988

3) Flat area and pit removal problem. This is a very important point. Pit and consequently flat areas, do not allow either to correctly define the flow direction (causing straight and parallel blueslines) and to have a correct blueline altimetric profile. This latter point is serious since the 5-10% of cells are usually affected by slope=0 value. There are some approaches available in literature...among others: Garbrecht & Martz (1997a,b) Grimaldi et al., 2007. In Nardi et. al 2008 a complete review and comparison among several methods are provided. One conclusion of this paper is that that effect of flat area removal approach overcomes the choice of the flow direction method. If the analyst removes the flat areas he will have also a reasonable planimetric blueline representation.

Therefore, the general comment to the submitted manuscript: it is better to modify the DEM flat area elevation (in order to eliminate slope=0 cells) instead to propose a new flow direction algorithm for flat areas.

In any case, I think that the paper could be of interest if Authors improve the manuscript adding:

- a better description of literature in the introduction; a better description of the problem to allow the reader to understand in which contest the proposed method can give an
added value; a better description of the method. A simple, didactic case study (just
few cells) would help to understand it; a better description of the results;...comparing if
possible the application of the proposed approach with and without the application of a
flat removal method; a better description of results in any case....in the manuscript the
comparison is done just visually while some useful indexes can be used (see Nardi et

REFERENCES

methods for the determination of nondispersive drainage directions in grid-based

A model of flow over hillslopes for computation of contributing and dispersal areas.
Water Resour. Res. 30(6), 1681–1692.

tool for topographic evaluation, drainage identification, watershed segmentation and
subcatchment parameterization. In: TOPAZ User Manual. ARS Publ. GRL 97-4,
US Dept Agric., Agric. Res. Service, Grazinglands Research Laboratory, El Reno,
Oklahoma, USA.

Freeman, T. G. (1991) Calculating catchment area with divergent flow based on a reg-

Quinn, P., Beven K. J., Chevallier P. & Planchon, O. (1991) The prediction of hillslope
flow paths for distributed hydrological modeling using digital terrain models. Hydrol.
Processes 5, 59–79.

& Hall, New York, USA.

Quinn, P., Beven, K. J. & Lamb, R. (1995) The ln(a/tanB) index: how to calculate it and
how to use it within the TOPMODEL framework. Hydrol. Processes 9, 161–182.

Tarboton, D. G. (1997) A new method for the determination of flow directions and ups-

Lindsay, J. B. (2003) A physically based model for calculating contributing area

computing upslope areas from gridded digital elevation models. Water Resour. Res. 43,
W04501. doi:10.1029/2006WR005128

physically-based method for removing pits in digital elevation models. Adv. Water
Resour. 30, 2151–2158.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 7, 441, 2010.

C13