*Table 1 Program
01 :1 Execution interval (seconds)

1: Batt Voltage (P10)
1: 1 Loc [batterie]

2: If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 600 Interval (same units as above)
3: 30 Then Do

3: Signature (P19)
1: 2 Loc [Prog_sig]

4: End (P95)

5: Volt (Diff) (P2)
1: 1 Reps
2: 25 2500 mV 60 Hz Rejection Range
3: 1 DIFF Channel
4: 3 Loc [Sonde1]
5: 0.00062 Multiplier
6: 0.75 Offset

6: Volt (Diff) (P2)
1: 1 Reps
2: 25 2500 mV 60 Hz Rejection Range
3: 2 DIFF Channel
4: 4 Loc [Sonde2]
5: 0.00062 Multiplier
6: 0.75 Offset

7: Volt (Diff) (P2)
1: 1 Reps
2: 25 2500 mV 60 Hz Rejection Range
3: 3 DIFF Channel
4: 5 Loc [Sonde3]
5: 0.00062 Multiplier
6: 0.75 Offset

8: Volt (Diff) (P2)
1: 1 Reps
2: 25 2500 mV 60 Hz Rejection Range
3: 4 DIFF Channel
4: 6 Loc [Sonde4]
5: 0.00062 Multiplier
6: 0.75 Offset
;Probe 1 (psi to mm)

9: Z=F x 10^n (P30)
 1: 0.9986 F
 2: 0 n, Exponent of 10
 3: 7 Z Loc [Sonde1_Z]

10: Z=X-Y (P35)
 1: 3 X Loc [Sonde1]
 2: 7 Y Loc [Sonde1_Z]
 3: 8 Z Loc [Sonde1psi]

11: Z=X*F (P37)
 1: 8 X Loc [Sonde1psi]
 2: 703.07 F
 3: 9 Z Loc [Sonde1_mm]

;Probe 2 (psi to mm)

12: Z=F x 10^n (P30)
 1: 0.9976 F
 2: 0 n, Exponent of 10
 3: 10 Z Loc [Sonde2_Z]

13: Z=X-Y (P35)
 1: 4 X Loc [Sonde2]
 2: 10 Y Loc [Sonde2_Z]
 3: 11 Z Loc [Sonde2psi]

14: Z=X*F (P37)
 1: 11 X Loc [Sonde2psi]
 2: 703.07 F
 3: 12 Z Loc [Sonde2_mm]

;Probe 3 (psi to mm)

15: Z=F x 10^n (P30)
 1: 0.9979 F
 2: 0 n, Exponent of 10
 3: 13 Z Loc [Sonde3_Z]

16: Z=X-Y (P35)
 1: 5 X Loc [Sonde3]
 2: 13 Y Loc [Sonde3_Z]
 3: 14 Z Loc [Sonde3psi]
17: \(Z = X \times F \) (P37)
 1: 14 \(X \) Loc [Sonde3psi]
 2: 703.07 \(F \)
 3: 15 \(Z \) Loc [Sonde3_mm]

;Probe 4 (psi to mm)

18: \(Z = F \times 10^n \) (P30)
 1: 0.99645 \(F \)
 2: 0 \(n \), Exponent of 10
 3: 16 \(Z \) Loc [Sonde4_Z]

19: \(Z = X - Y \) (P35)
 1: 6 \(X \) Loc [Sonde4]
 2: 16 \(Y \) Loc [Sonde4_Z]
 3: 17 \(Z \) Loc [Sonde4psi]

20: \(Z = X \times F \) (P37)
 1: 17 \(X \) Loc [Sonde4psi]
 2: 703.07 \(F \)
 3: 18 \(Z \) Loc [Sonde4_mm]

;System stabilisation every 24 hours

21: If time is (P92)
 1: 0 Minutes (Seconds --) into a
 2: 1440 Interval (same units as above)
 3: 30 Then Do

;Calculation of the difference between the two probes

22: \(Z = X - Y \) (P35)
 1: 9 \(X \) Loc [sonde1_mm]
 2: 12 \(Y \) Loc [Sonde2_mm]
 3: 19 \(Z \) Loc [diff]

;Flag 4 controls pump 1

23: If \((X <= \ F)\) (P89)
 1: 19 \(X \) Loc [diff]
 2: 4 \(< \)
 3: -5 \(F \)
 4: 30 Then Do

24: Do (P86)
 1: 14 Set Flag 4 High
25: Z=X+F (P34)
 1: 19 X Loc [diff]
 2: 5.0 F
 3: 27 Z Loc [CptTmp1]

26: Z=ABS(X) (P43)
 1: 27 -- X Loc [CptTmp1]
 2: 26 Z Loc [CptTmp]

27: End (P95)

;Flag 5 controls pump 2

28: If (X<=F) (P89)
 1: 19 X Loc [diff]
 2: 3 >=
 3: 5 F
 4: 30 Then Do

29: Do (P86)
 1: 15 Set Flag 5 High

30: Z=X+F (P34)
 1: 19 X Loc [diff]
 2: -5.0 F
 3: 26 Z Loc [CptTmp]

31: End (P95)

32: Z=X*F (P37)
 1: 28 X Loc [CmpTmp]
 2: 28.0 F
 3: 25 Z Loc [Cpt]

33: End (P95)
;Pump 1

;If the flag 4 is high, the pump 1 microprogram starts.

34: If time is (P92)
 1: 0 Minutes (Seconds --) into a
 2: 1 -- Interval (same units as above)
 3: 30 Then Do

35: If Flag/Port (P91)
 1: 14 Do if Flag 4 is High
 2: 30 Then Do

;If the counter is greater than zero, the system runs normally.

36: If (X<=F) (P89)
 1: 25 X Loc [Cpt]
 2: 3 >=
 3: 0 F
 4: 30 Then Do

37: Z=X+F (P34)
 1: 25 X Loc [Cpt]
 2: -1.0 F
 3: 26 Z Loc [CptTmp]

38: Z=X (P31)
 1: 26 -- X Loc [CptTmp]
 2: 25 Z Loc [Cpt]

39: Do (P86)
 1: 41 Set Port 1 High

;Otherwise the system is off until the next day.

40: Else (P94)

41: Do (P86)
 1: 51 Set Port 1 Low

42: Do (P86)
 1: 24 Set Flag 4 Low

43: End (P95)
End (P95)

End (P95)

;Pump 2

;If the flag 5 is high, the pump 2 microprogram starts.

If time is (P92)
1: 0 Minutes (Seconds --) into a
2: 1 -- Interval (same units as above)
3: 30 Then Do

If Flag/Port (P91)
1: 15 Do if Flag 5 is High
2: 30 Then Do

;If the counter is greater than zero, the system runs normally.

If (X<>F) (P89)
1: 25 X Loc [Cpt]
2: 3 >=
3: 0 F
4: 30 Then Do

Z=X+F (P34)
1: 25 X Loc [Cpt]
2: -1.0 F
3: 26 Z Loc [CptTmp]

Z=X (P31)
1: 26 -- X Loc [CptTmp]
2: 25 Z Loc [Cpt]

Do (P86)
1: 42 Set Port 2 High

;Otherwise the system is off until the next day.

Else (P94)

Do (P86)
1: 52 Set Port 2 Low

Do (P86)
1: 25 Set Flag 5 Low
;End of balancing.

;Rain Gauge

58: Pulse (P3)
 1: 1 Reps
 2: 1 Pulse Channel 1
 3: 2 Switch Closure, All Counts
 4: 24 Loc [rain_mm]
 5: 0.254 Multiplier
 6: 0.0 Offset

59: If time is (P92)
 1: 0 Minutes (Seconds --) into a
 2: 15 Interval (same units as above)
 3: 10 Set Output Flag High (Flag 0)

;Data recording every 15 minutes.

60: Set Active Storage Area (P80)
 1: 1 Final Storage Area 1
 2: 28 Array ID

61: Real Time (P77)
 1: 1110 Year/Day,Hour/Minute (midnight = 0000)

62: Sample (P70)
 1: 1 Reps
 2: 9 Loc [sonde1_mm]

63: Sample (P70)
 1: 1 Reps
 2: 12 Loc [Sonde2_mm]

64: Sample (P70)
 1: 1 Reps
 2: 15 Loc [Sonde3_mm]
65: Sample (P70)
1: 1 Reps
2: 18 Loc [Sonde4_mm]

66: Sample (P70)
1: 1 Reps
2: 19 Loc [diff]

67: Totalize (P72)
1: 1 Reps
2: 24 Loc [rain_mm]

68: Do (P86)
1: 20 Set Output Flag Low (Flag 0)

69: Minimum (P74)
1: 1 Reps
2: 0 Value Only
3: 1 Loc [batterie]

*Table 2 Program
02 : 0.0000 Execution Interval (seconds)

*Table 3 Subroutines
End Program

;Input locations

1 [batterie]
2 [Prog_sig]
3 [Sonde1]
4 [Sonde2]
5 [Sonde3]
6 [Sonde4]
7 [Sonde1_Z]
8 [Sonde1psi]
9 [Sonde1_mm]
10 [Sonde2_Z]
11 [Sonde2psi]
12 [Sonde2_mm]
13 [Sonde3_Z]
14 [Sonde3psi]
15 [Sonde3_mm]
16 [Sonde4_Z]
17 [Sonde4psi]
18 [Sonde4_mm]
19 [diff]
20 -
21 -
22 -
23 -
24 [rain_mm]
25 [Cpt]
26 [CptTmp]
27 [CptTmp1]
28 [CmpTmp]