Analysis of parameter uncertainty in hydrological modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China

Z. Y. Shen¹, L. Chen¹, and T. Chen¹

¹State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

Received: 17 August 2011 – Accepted: 19 August 2011 – Published: 31 August 2011
Correspondence to: Z. Y. Shen (zyshen@bnu.edu.cn)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Analysis of parameter uncertainty in hydrological modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China

Z. Y. Shen, L. Chen, and T. Chen

Abstract. The calibration of hydrologic models is a worldwide challenge due to the uncertainty involved in the large number of parameters. The difficulty even increases in the region with high seasonal variation of precipitation, where the results exhibit high heteroscedasticity and autocorrelation. In this study, the Generalized Likelihood Uncertainty Estimation (GLUE) method was combined with Soil and Water Assessment Tool (SWAT) to quantify the parameter uncertainty of the stream flow and sediment simulation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), China. Based on this study, only a few parameters affected the final simulation output significantly. The results showed that sediment simulation presented greater uncertainty than stream flow, and uncertainty even increased in high precipitation condition than dry season. The main uncertainty sources of stream flow came from the catchment process while channel process impacts the sediment simulation greatly. It should be noted that identifiable parameters such as CANMX, ALPHA_BNK, SOL_K could be obtained within an optimal parameter range using calibration method. However, equifinality was also observed in hydrologic modeling in TGRA. This study demonstrated that care must be taken when calibrating the SWAT with non-identifiable parameters as these may lead to equifinality of the parameter values. It is anticipated this study would provide useful information for hydrology modeling related to policy development in the Three Gorges Reservoir Region (TGRA) and other similar areas.
Abstract

The calibration of hydrologic models is a worldwide difficulty due to the uncertainty involved in the large number of parameters. The difficulty even increases in the region with high seasonal variation of precipitation, where the results exhibit high heteroscedasticity and autocorrelation. In this study, the Generalized Likelihood Uncertainty Estimation (GLUE) method was combined with Soil and Water Assessment Tool (SWAT) to quantify the parameter uncertainty of the stream flow and sediment simulation in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), China. Based on this study, only a few parameters affected the final simulation output significantly. The results showed that sediment simulation presented greater uncertainty than stream flow, and uncertainty even increased in high precipitation condition than dry season. The main uncertainty sources of stream flow mainly came from the catchment process while channel process impacts the sediment simulation greatly. It should be noted that identifiable parameters such as CANMX, ALPHA_BNK, SOL_K could be obtained optimal parameter range using calibration method. However, equifinality was also observed in hydrologic modeling in TGRA. This paper demonstrated that care must be taken when calibrating the SWAT with non-identifiable parameters as these may lead to equifinality of the parameter values. It is anticipated this study would provide useful information for hydrology modeling related to policy development in the Three Gorges Reservoir Region (TGRA) and other similar areas.

1 Introduction

Watershed hydrology and river water quality models are important tools for watershed management for both operational and research programs (Quibbe and Rousseau, 2007; Van et al., 2008; Sudheer and Lakshmi, 2011). However, due to spatial variability in the processes, many of the physical models are highly complex and generally characterized by a multitude of parameters (Xuan et al., 2009). Technically, the modification of
parameter values reveals a high degree of uncertainty. Overestimation of uncertainty may lead to overestimation of stormwater and overdesign of watershed management. Conversely, underestimation of uncertainty may result in little pollution abatement (Zhang et al., 2009). In order to apply hydrological models in practical water resource investigations, careful calibration and uncertainty analysis are required (Beven and Binley, 1992; Vrugt et al., 2003; Yang et al., 2008).

Much attention has been paid to uncertainty issues in hydrological modeling due to their great effects on prediction and further on decision-making (Van et al., 2008; Sudheer and Lakshmi, 2011). Uncertainty estimates are routinely incorporated into Total Maximum Daily Load (TMDL) (Quilbe and Rousseau, 2007). Usually, the uncertainty in hydrological modeling is from model structure, input data and parameter (Lindenschmidt et al., 2007). In general, structural uncertainty could be improved by comparing and modifying the diverse model components (Hejberg and Refsgaard, 2005). The uncertainty of model input occurs because of changes in natural conditions, limitations of measurement, and lack of data (Berk, 1987). One way to deal with this issue is to use random variables as the input data, rather than the conventional form of fixed values. Currently, parameter uncertainty is a hot topic in uncertainty research field (Shen et al., 2008; Sudheer et al., 2011).

The model parameters could be divided into the conceptual group and physical group (Gong et al., 2011). The conceptual parameters such as CN in the SCS curve method are defined as the conceptualization of non-quantifiable processes, and determined by the process of model calibration. Conversely, physical parameters could be measured or estimated based on watershed characteristics, when intensive data collection is possible (Vertessy et al., 1993; Nandakumar and Mein, 1997). As the unknown spatial heterogeneity of studied area and expensive experiments involved, the physical parameters are usually determined by calibrating the model against the measured data (Raat et al., 2004). However, when the number of parameters is large either due to the large number of sub-processes being considered or due to the model structure itself, the calibration process becomes complex and uncertainty issues abound (Rosso, 2005).
It has been shown that parameter uncertainty is inevitable in hydrological modeling and the corresponding assessment should be conducted before model prediction in the decision making process. Studies of parameter uncertainty have been conducted in a variety of integrated watershed management (Zacharias et al., 2005), peak flow forecasting (Jorgeson and Julien, 2005), soil loss prediction (Cochrane and Flanagan, 2005), nutrient flux analysis (Murdoch et al., 2005; Miller et al., 2006), assessment of the effect of land use change (Eckhardt et al., 2003; Shen et al., 2010; Xu et al., 2011) and climate change impact assessment (Kingston and Taylor, 2010) among many others. Nevertheless, parameter identification is a complex, non-linear problem and there might be numerous possible solutions obtained by optimization algorithms (Nandakumar and Mein, 1997). Thus, the parameters cannot be identified easily. Additionally, different parameter sets may result in similar predictions, known as the phenomenon of equifinality (Beven and Binley, 1992). However, to the best of our knowledge, there are few studies about parameter identifiability based on uncertainty analysis in hydrological modeling.

There are several calibration and uncertainty analysis techniques applied in previous researches, such as the first-order error analysis (FOEA) (Melching and Yoon, 1996), the Monte Carlo method (Kao and Hong, 1996) and the Generalized Likelihood Uncertainty Estimation method (GLUE) (Beven and Binley, 1992). The FOEA method is based on linear-relationship and fails to deal with the complex models (Melching and Yoon, 1996). The Monte Carlo method requires repeating model simulation according to the parameter sampling, resulting in tremendous computational time and human effort (Gong et al., 2011). However, the GLUE methodology determine the performance of the model focus on the parameter set, not on the individual parameter (Beven and Binley, 1992). The GLUE method could also handle the parameter interactions and non-linearity implicitly through the likelihood measure (Vazquez et al., 2009). In addition, GLUE is a simple concept and is relatively easy to implement. Therefore, GLUE is used in this study for parameter uncertainty analysis.
The Three Gorges Project—the largest hydropower project in the world—is situated at Sandoupin in Yichang City, Hubei Province, China. It is composed mainly of the dam, the hydropower station, the two-lane, five-stage navigation locks, and the single-lane vertical ship lift. While the Three Gorges Project makes a great use for flood control, power generation, and navigation, it also has a profound impact on the hydrology and environment, such as river interruption and ecosystem degradation. Hydrological models have been used in this region to study the impact of the project (Lu and Higgitt, 2001; Yang et al., 2002; Wang et al., 2007; Shen et al., 2010). However, research on the uncertainty of hydrological models in such important watersheds is lacking. Due to the geographical locations and water systems (Xu et al., 2011), it is of great importance to study the uncertainty of model parameters that affect hydrological modeling process. Previously we had conducted parameter uncertainty analysis for nonpoint source pollution modeling in this region. In the present study, a further study was further developed in hydrological modeling.

Hence, the main objective of this study was to identify the degree of uncertainty and uncertainty parameter for prediction of stream flow and sediment in a typical watershed of the Three Gorges Reservoir Region, China. In this study, a semi-distributed hydrological model, Soil and Water Assessment tool (SWAT), was combined with GLUE (Generalized likelihood uncertainty estimation) method to quantify the uncertainty of parameters to provide necessary reference for hydrological modeling in the entire Three Gorges Reservoir region.

The paper was organized as follows: (1) a description of study area and a brief introduction of the hydrological model and GLUE method; (2) both the impact of parameter uncertainty on model output and parameter identifiability were analyzed in the result and discussion; (3) conclusion was provided.
2. Methods and materials

2.1 Site description

The Daning River Watershed, located in Wushan and Wuxi counties, is in the center of the Three Gorges Reservoir Area (TGRA) (Fig. 1). It is located in Wuxian and Wuxi city of Chongqing, China, covering an area of 4426 km². Mountainous terrain makes up 95% of the total area and hills contribute the other 5%. The average altitude is 1197 m. The land use in the watershed includes 22.2% cropland, 11.4% grassland, and 65.8% forest. The dominant soil of the watershed is yellow soil. This area is characterized by the tropical monsoon and subtropical climates of Northern Asia. A humid subtropical monsoon climate covers this area, featuring distinct seasons with adequate precipitation (an annual mean precipitation of 1124.5 mm). A hydrological station is located in Wuxian County, approximately 2027 km² (Fig. 1).

2.2 SWAT model

The SWAT model (Arnold et al., 1998) is a hydrologic water quality tool developed by the United States Department of Agriculture-Agriculture Research Service (USDAARS). The SWAT model is also available within the DASINSAG as one of the models that the USEPA supports and recommends for state and federal agencies to use to address point and nonpoint source pollution control. The hydrologic processes are divided into two phases: the land phase and the channel phase. The SWAT model uses the SCS curve number procedure when daily precipitation data is used to estimate surface runoff. The SCS curve number equation is:

\[CN = \frac{P - PO}{I} \times 100 \]

where:
- \(CN \) is the curve number,
- \(P \) is the precipitation amount,
- \(PO \) is the initial abstraction,
- \(I \) is the intensity of precipitation.

In this study, the SWAT model was used to simulate the hydrological processes in the Daning River Watershed. The model was calibrated and validated using observed data from the Wuxian hydrological station, located in Wuxian County, approximately 2027 km² (Fig. 1).
where Q_{surf} is the accumulated runoff or rainfall excess (mm H$_2$O); R_{day} is the rainfall depth for the day (mm H$_2$O); I_a is the initial abstractions, which includes surface storage, interception, and infiltration prior to runoff (mm H$_2$O); and S is the retention parameter (mm H$_2$O). The retention parameter varies spatially due to changes in soil, land use, management, and slope and temporally due to changes in soil water content. The retention parameter is defined as:

$$S = \frac{25400}{CN} - 254$$

where CN is the curve number for the day.

The SWAT model uses the Modified Universal Soil Loss Equation (MUSLE) to estimate sediment yield at HRU level. The MUSLE is defined as:

$$Q_{\text{sed}} = 11.8(Q_{\text{surf}} \cdot q_{\text{peak}} \cdot A_{\text{HRU}})^{0.56} \cdot K_{\text{usle}} \cdot C_{\text{usle}} \cdot P_{\text{usle}} \cdot L_{\text{usle}} \cdot F_{\text{CFEG}}$$

where Q_{sed} is the sediment yield on a given day (metric tons); Q_{surf} is the surface runoff volume (mm H$_2$O/ha); q_{peak} is the peak runoff rate (m3/s$^{-1}$); A_{HRU} is the area of the HRU (ha); K_{usle} is the USLE soil erodibility factor; C_{usle} is the USLE cover and management factor; P_{usle} is the USLE support practice factor; L_{usle} is the USLE topographic factor; and F_{CFEG} is the coarse fragment factor.

In order to efficiently and effectively apply the SWAT model, different calibration and uncertainty analysis methods have been developed and applied to improve the prediction reliability and quantify prediction uncertainty of SWAT simulations (Arabi et al., 2007). In this study, a parameter sensitivity analysis was performed prior to calibrating the model. Based on the sensitivity ranking results provided by Morris Qualitative Screening Method, the 20 highest ranked parameters affecting stream flow and sediment yield (shown in Table 1) were selected for the following uncertainty analysis using...
the GLUE method. For modeling accuracy, parameters were calibrated and validated using the highly efficient Sequential Uncertainty Fitting version-2 (SUFI-2) procedure (Abbaspour et al., 2007). The initial parameter range was recommended from the SWAT manual. This calibration method is an inverse optimization approach that uses the Latin Hypercube Sampling (LHS) procedure along with a global search algorithm to examine the behavior of objective functions. The procedure has been incorporated into the SWAT-CUP software, which can be downloaded for free from the EAWAG website (Abbaspour et al., 2009). For the runoff, the Nash-Sutcliffe coefficients during calibration period and validation period were 0.94 and 0.78. For the sediment yield, the Nash-Sutcliffe coefficients in calibration period and validation period were 0.80 and 0.70, respectively. More details can be found in the study of Shen et al. (2008) and Gong et al. (2011).

2.3 GLUE method

The GLUE method (Beven and Freer, 2001) is an uncertainty analysis technique inspired by importance sampling and regional sensitivity analysis (Hornberger and Spear, 1981). In GLUE, parameter uncertainty accounts for all sources of uncertainty, i.e., input uncertainty, structural uncertainty, parameter uncertainty and response uncertainty. Therefore, this method has been widely used in many areas as an effective and general strategy for model calibration and uncertainty estimation associated with complex models. In this study, the GLUE analysis process consists of the following three steps:

Step 1: Definition of likelihood function

The likelihood function was used to evaluate SWAT outputs against observed values. In our study, Nash-Sutcliffe coefficient (NS) was picked because it is the most frequently used likelihood measure for GLUE based on literature (Beven and Freer, 2001; Freer...
et al., 1996; Arabi et al., 2007).
\[
E_{MS} = 1 - \frac{\sum_{i=1}^{n} (Q_{sim,i} - Q_{mea,i})^2}{\sum_{i=1}^{n} (Q_{mea,i} - \overline{Q}_{mea})^2}
\]
(4)

Where \(X_i\) represents the outputs of time \(i\), \(n\) represents the times, \(Q_{mea}\) is the observed data, \(Q_{sim}\) is the simulated data, \(\overline{Q}_{mea}\) is the mean value of the observed data, and \(n\) is the simulation time.

Step 2: Sampling parameter sets

Due to the lack of prior distribution of parameter, uniform distribution was chosen due to its simplicity (Lenhart et al., 2002; Muleta and Nicklow, 2005; Migliaccio and Chaubey, 2006). The range of each parameter was divided into \(n\) overlapping intervals based on equal probability (Table 1) and parameters were identically chosen from spanning the feasible parameter range. The drawback of typical GLUE approach was its prohibitive computational burden imposed by its random sampling strategy. Therefore in this study, an improved sampling method was introduced by combining Latin Hypercube Sampling (LHS). Compared to random sampling, LHS can reduce sampling times and provide a 10-fold greater computing efficiency (Vachaud and Chen, 2002). Therefore, LHS was used for random parameter sampling to enhance the simulation efficiency of the GLUE simulation. Values then were randomly selected from each interval.

If the initial sampling of the parameter space was not dense enough, GLUE sampling scheme probably could not ensure a sufficient precision of the statistics inferred from the retained solutions (Bates and Campbell, 2001). Hence, a large number of sampling sets (10,000 times) were made. Because SWAT module and the SWAT-CUP software were in different interfaces, all of the 10,000 simulations were calculated manually. The whole simulation period lasts six months on a Centrino Duo @ 2.8 GHz computer.
Step 3: Threshold definition and results analysis

In this study, we

Compared to other applications (Gassman et al., 2007), 0.5 was judged as a reasonable E_{NS} value for SWAT simulation. This study set 0.5 as threshold value of E_{NS} and if the acceptability was below a certain subjective threshold, the run was considered to be "non-behavioral" and that parameter combination was removed from further analysis. In this study, SWAT model was performed 10,000 times with different parameter sample sets. For each output, the dotty plot, cumulative parameter frequency and 95CI were analyzed.

3 Results and discussion

3.1 Uncertainty of outputs

For the purpose of determining the extent to which parameter uncertainty affects model simulation, the degree of uncertainty of outputs was expressed by 95CI, which was derived by ordering the 10,000 outputs and then identifying the 2.5% and 97.5% threshold values. The 95CI for both stream flow and sediment period were shown in Fig. 2. It was evident that the 95CI of stream flow and sediment was 1.73 m3 s$^{-1}$ and 2000007.657.800 t, respectively. In addition, sediment simulation presented greater uncertainty than stream flow, which might be due to the fact that sediment was affected and dominated by both stream flow processes as well as other factors such as land use variability (Shen et al., 2008; Migliaccio and Chaubey, 2008).

From Fig. 2, the temporal variation of outputs was presented in which it was evident to obtain the clear relationship between the amount of the rainfall and the width of confidence interval. This result highlighted an increased model uncertainty in high precipitation condition. The variability in the uncertainty of sediment was the same as that for runoff, because runoff affects both factors. This could be explained by the fact that uncertainty was inherent in precipitation due to variability in time of occurrence,
location, intensity, and tempo-spatial distribution (Shen et al., 2008). In hydrology model such as SWAT, although a rainfall event may affect only a small portion of the basin, the model assumes it affects the entire basin. Hence, it may cause a larger runoff event observed in simulation although little precipitation was recorded due to the limited local extent of certain precipitation event. In the Three Gorges Reservoir area, the daily stream flow changes frequently and widely, thus the monthly mean value of runoff might not represent the actual change very well and the discrepancy between the measured mean value and simulated mean value would be high. Hence, daily precipitation data might be invalid for GRA and more detailed precipitation data and stations should be obtained for hydrology modeling in TGRA.

From Fig. 2, it was clear that most of the observations were bracketed by the 95 CI, 54 % for stream flow outputs and 95 % for sediment. However, several stream flow observations were bracketed above the 97.5 % threshold values (such as March, April, November 2004; March, April, May, June, July, August and October 2005; February, March, April, May and July 2006; March, May, June, July and August 2007). Conversely, only one observation (October 2006) was observed below the 2.5 % threshold of sediment output. Measured value was not entirely in the range of 95 CI, indicating that the SWAT model could not fully simulate the flow and sediment processes. However, it was acknowledged that parameter, model structure and data input also caused uncertainty in model simulation (Bates and Campbell, 2001; Yang et al., 2007). Based on the results presented in this study, it was not possible to tell the extent to which the errors in the input and model structure contribute on the total simulation uncertainty. However, as parameter uncertainty was only able to account for a small part of total uncertainty in hydrological modeling, this study suggests further studies on model structure and input in TGRA.

Another concern in hydrologic modeling was the equifinality of model parameters (Beven and Binley, 1992; Wagener and Kollat, 2007). Table 2 showed multiple combinations of parameter values yield the same E_{NS} during hydrologic modeling in TGRA. The so-called equifinality showed there was no unique parameter estimation and hence
uncertainty in the estimated parameters in TGRA was obvious. This result agreed well with many other studies (Beven and Binley, 1992; Gupta and Sorooshian 2005). This may due to the fact that parameters obtained from calibration were affected by several factors such as correlations amongst parameters, sensitivity or insensitivity in parameters, spatial and temporal scales and statistical features of model residuals (Wagener et al., 2003; Wagener and Kollat, 2007). It could be inferred that the identifiability of optimal parameter obtained from calibration should also be evaluated. For an already gauged catchment, a virtual study can provide a point of reference for the minimum uncertainty associated with a model application. This study highlighted the importance of monitoring task for several important physical parameters to determine more credible results for watershed management.

3.2 Uncertainty of parameters

Fig. 3 and 4 illustrate the variation of Enso and Intra River watershed as a function of variation of each of the 20 parameters considered in this study. By observing the dotty plot from Fig. 3, it was evident that the main sources of streamflow uncertainty were initial SCS CN values, available water capacity of the layer (SOLAWC), maximum canopy storage (CANMX), base flow alpha factor for bank storage (ALPHA_BNK), saturated hydraulic conductivity (SaLK), and soil evaporation compensation factor (ESCO). Among these six parameters, SOLAWC and CANMX were the most identifiable parameters for Intra River watershed. This could be explained that SOLAWC represented soil moisture characteristics or available water. This parameter plays an important role in evaporation which is associated with runoff (Burba and Verma, 2005). It has also been suggested that the soil water capacity had an inverse relationship with various water balance components (Kannan et al., 2003). Therefore, an increase in the SOLAWC value would result in a decrease in base flow, tile drainage, surface runoff, and, consequently, water yield. As shown in Fig. 3, the optimal range of SOLAWC was between 1.0 and 2.0 and better results could be obtained in this interval.
The Nash-Sutcliffe model efficiency for CN2 and ESCO indicated that the parameter estimations might not be feasible. However, it should be noted that non-identifiability of parameters does not indicate that the model performance would be poor. Generally, CN2 was considered as the primary source of uncertainty in stream flow simulation (Eckhardt and Arnold, 2001; Helberty et al., 2002). This study showed that CN2 exhibited non-identifiability in the simulation of the Fanning River watershed. This is similar to the study proposed by Kannan et al. (2006). The potential cause would be that there was an explicit provision within the SWAT model to update the CN2 value for each day of simulation based on the available water content in the soil profile. Therefore, a change in the initial CN2 value would not greatly affect water balance components.

Non-identifiability of parameters, such as CN2 and ESCO, would cause difficulties in parameter estimation, especially for CN2 and ESCO, ESCO is more or less skewed. This non-linearity further implied that the uncertainty in model inputs did not translate directly into uncertainty in model outputs but might rather appear significantly dampened or magnified in the output (Sahrabi, 2002). The result of the model calibration methods could also be obtained for the model uncertainty analysis.

Figures 4 and 5 illustrate the cumulative parameter frequency for both stream flow and sediment in the Fanning River watershed. As shown in Fig. 4, the parameters were not uniformly distributed, especially for CN2, SOLWC, CAMMX, and ESCO. ESCO represented the influence of capillarity and soil evaporation in each layer. A change in the ESCO value affected the entire water balance components. When there were higher ESCO values, the estimated base flow, drainage and sediment increased. The greater uncertainty of this parameter indicated that the soil evaporation probably played a greater role in the whole evaporation process. A change in the initial ESCO value further implied that the uncertainty in model inputs did not translate directly into uncertainty in model outputs but might rather appear significantly dampened or magnified in the output (Sahrabi, 2002). This result of the model calibration methods could also be obtained for the model uncertainty analysis.
important opinion that the model output was influenced by the set of parameters, not a single parameter (Beven and Binley, 1992).

Similar to stream flow simulation, even though many of the parameters were sensitive and affected the sediment simulation, only a small number of the sensitive parameters were identifiable. As shown in Fig. 5, the factors of uncertainty for sediment were CN2, Manning’s value for main channel (CH.N2), maximum canopy storage (CAMMX), base flow alpha factor for bank storage (ALPHA.BNK), exp.Re-entrainment parameter for channel sediment routing (SPEXP), lin.re-entrainment parameter for channel sediment routing (SPCON), channel cover factor (CH.COV), channel erodibility factor (CH.EROD). Clearly, the parameter samples were very dense around the maximum limit (Fig. 6). From Figs. 3, 4, 5, and 6, it could be summarized that the parameters with greater uncertainty of stream flow mainly came from surface corresponding process and the parameters with greater uncertainty of sediment focused on channel response process. The results matched well with those of Yang et al. (2011) and Shen et al. (2010).

4 Conclusions

In this study, the GLUE method was employed to assess the parameter uncertainty in SWAT model applied in the Daning River Watershed of the Three Gorges Reservoir Region (TGRA), China. The results indicate that only a few of the parameters were sensitive and affected the stream flow and sediment simulation. It should be noted that identifiable parameters such as CAMMX, ALPHA.BNK, SOLK could be obtained optimal parameter range using calibration method without much difficulties. Conversely, presence of multiple peaks in non-identifiability parameters (CN2 and ESCO) indicate that calibration of these parameters might be feasible. In addition, multiple combinations of parameters contributed the same ENS during hydrologic modeling in TGRA. Care must be taken when calibrating the SWAT with non-identifiable parameters as these might lead to equifinality of the parameter values. Under such cases, a user
should check if the final parameter values correspond to the watershed characteristics and its underlying hydrologic processes. It was anticipated this study would provide a practical and flexible implication for hydrology modeling related to policy development in the Three Gorges Reservoir Region (TGRA) and other similar areas.

It is suggested that more detailed measured data and more precipitation stations should be obtained in the future for hydrology modeling in TGRA. And also further studies should be continued in the field of model structure and input to quantify hydrology model uncertainty in TGRA.

Acknowledgements. The study was supported by National Science Foundation for Distinguished Young Scholars (No. 51025932), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0809) and the Nonprofit Environment Protection Specific Project (No. 200709024).

References

