Impacts of impervious cover, water withdrawals, and climate change on river flows in the Conterminous US

P. V. Caldwell, G. Sun, S. G. McNulty, E. C. Cohen, and J. A. Moore Myers

USDA Forest Service Eastern Forest Environmental Threat Assessment Center, Raleigh, NC, USA

Received: 19 March 2012 – Accepted: 20 March 2012 – Published: 2 April 2012

Correspondence to: P. V. Caldwell (pcaldwell02@fs.fed.us)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of 2010 impervious cover and water withdrawal on river flow across the Conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 “low” and A2 “high” emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2010 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modelling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
1 Introduction

River flows are essential for the health of aquatic ecosystems and for anthropogenic water supply. Unfortunately, humans have significantly altered the magnitude and timing of river flows with regulation by dams (Graf, 1999; Poff et al., 2007; Biemans et al., 2011), withdrawals (Gerten et al., 2008), interbasin transfers (Jackson et al., 2001), and land cover change (Piao et al., 2007). As a result, the health of aquatic ecosystems has declined (Dudgeon et al., 2006; Carlisle et al., 2011; Poff and Zimmerman, 2010), and some water supplies have become stressed (Vörösmarty et al., 2000; Alcamo et al., 2003). In addition to anthropogenic hydrologic alterations, future changes in climate will likely further impact river flows (Bates et al., 2008; Karl et al., 2009).

While water withdrawals may decrease river flows (Gerten et al., 2008; Döll et al., 2009), changes in land cover as a result of deforestation and expanded agriculture (Piao et al., 2007) and urban development (Sun and Lockaby, 2012) generally increase river flows. Part of the increase in flow as a result of urbanization is associated with reductions in evapotranspiration due to the conversion of vegetative land cover from dense natural forests to sparse urban forests and grass cover (Lull and Sopper, 1969; O’Driscoll et al., 2010). In addition, impervious cover associated with roads, roof tops, and parking lots generates immediate surface runoff to streams, part of which would have otherwise infiltrated the soil and evaporated (Lull and Sopper, 1969). This runoff may convey pollutants to streams, negatively impacting urban aquatic ecosystems (Sun and Lockaby, 2012). Climate change impacts are projected to be highly variable in space, with predicted increases in water yield in some areas and decreases in others (Milly et al., 2008). The complex interactions of human water withdrawals, land cover change, and climate change are present in most watersheds but remain poorly understood (Sun et al., 2008; Praskievicz and Chang, 2009). There is a clear need for research that examines the combined effects of climate and anthropogenic impacts on river flows over a diverse domain.
Several studies have examined the impact of land cover, withdrawals, dams, and/or climate change on water resources over large diverse (regional, continental, or global) domains. These studies have focused on the impact of reservoirs and irrigation withdrawals on river flows (Döll et al., 2009; Wisser et al., 2010; Biemans et al., 2011), impacts of future climate change on runoff (Arnell, 1999; Thompson et al., 2005; Milly et al., 2008), impacts of historic climate change on runoff (McCabe and Wolock, 2010), and impacts of both historic climate change and vegetative land cover change on runoff (Piao, 2007). These studies have largely focused on individual elements of global change (i.e., human water withdrawals, land use, or climate) rather than relative and combined effects, and the impacts of urbanization have been largely left unstudied at this scale.

This study aimed to improve our understanding of combined anthropogenic and climate change impacts on river flows. Specifically, we asked the following questions: 1) what are the individual and combined effects of current levels of impervious cover and water withdrawals on seasonal and mean annual river flows in the Conterminous US, and 2), what are the likely impacts of future changes in water withdrawals, impervious cover, and climate change on river flows by 2060. We achieved our objectives using an enhanced version of the Water Supply Stress Index (WaSSI) integrated monthly water balance and flow routing model (Sun et al., 2008, 2011b; Caldwell et al., 2011), driven by projections of population, impervious cover, and climate under two future emission scenarios. Many new features were added to previous versions of the model, including modelling soil moisture dynamics, channel flow routing, snow melting, and consumptive water use. Model validation was performed using historical long-term flow observations at selected watersheds. Predicted mean annual and monthly-mean river flows for 1981–2000 were compared to those of 2041–2060 at the 8-digit Hydrologic Unit Code (HUC) watershed scale.
2 Methods

2.1 Model description

The WaSSI model has been successfully used in climate change assessments in the Eastern US (Lockaby et al., 2011; Marion et al., 2012) and examining the nexus of water and energy at the national scale (Averyt et al., 2011). WaSSI is an integrated monthly water balance and flow routing model that simulates the full hydrologic cycle for each of 10 land cover classes in 2099 Watershed Boundary Dataset (WBD; Watershed Boundary Dataset, 2010) 8-digit HUC watersheds across the Conterminous United States (Figs. 1 and 2).

The model used a conceptual snow model (McCabe and Wolock, 1999; McCabe and Markstrom, 2007) to partition precipitation in each watershed into rainfall and snowfall based on the mean watershed elevation and monthly air temperature, to estimate snow melt rates, and compute mean monthly snow water equivalent (SWE) over each watershed. Infiltration, surface runoff, soil moisture, and baseflow processes for each HUC watershed land cover were computed in WaSSI using algorithms of the Sacramento Soil Moisture Accounting Model (SAC-SMA) (Burnash et al., 1973; Burnash, 1995). The SAC-SMA model has been used successfully by the National Oceanic and Atmospheric Administration (NOAA), National Weather Service (NWS) for river flood forecasting for decades, and State Soil Geographic (STATSGO; Natural Resources Conservation Service, 2011) derived SAC-SMA soil input parameters to drive the model have been developed, tested, and made available for the Conterminous US (Koren et al., 2003, 2005; Anderson et al., 2006). Monthly evapotranspiration (ET) was modelled with an empirical equation derived from multisite eddy covariance ET measurements (Sun et al., 2011a,b). Required data to estimate ET included remotely-sensed monthly leaf area index (LAI), Hamon potential ET (PET) calculated as a function of temperature and latitude (Hamon, 1963), and precipitation (PPT). This estimate of ET was then constrained by the soil water content computed by the SAC-SMA algorithm during extreme water-limited conditions. All water balance components were computed
independently for each land cover class within each HUC watershed and accumulated to estimate the totals for the watershed. For the watershed impervious fraction, storage and ET were assumed to be negligible, thus all precipitation falling on the impervious portion of a watershed for a given month was assumed to generate surface runoff in the same month, and was routed directly to the watershed outlet.

The connectivity and flow accumulation of the 8-digit HUC watershed river network was estimated by overlaying the National Hydrography Dataset (NHD; National Hydrography Dataset, 2010) flow lines on to the WBD 8-digit HUC boundaries. No interbasin transfers (i.e., canals aqueducts, pipelines, etc.) or water storage reservoirs were included in the flow network because these features are not completely represented in NHD and their flows are intensively managed with very little data available at the Conterminous US scale. However, net monthly population-adjusted anthropogenic surface water withdrawals were computed as the total water withdrawals – total groundwater withdrawals – return flows, and were subtracted from the accumulated flow at the outlet of each watershed. It was assumed that all return flows, regardless of whether they originated from surface or groundwater, were discharged to surface water at the inlet of the next downstream watershed. In months where net surface water withdrawals exceeded river flow at a watershed outlet, flow was set to zero and the remaining water demand was assumed to be supplied by an infinite water supply reservoir (e.g., deep water well). All water in the flow network was assumed to be routed in the same month it was generated, and in-stream flow losses to deep groundwater were assumed to be negligible.

2.2 Model validation

The WaSSI predictions for watershed streamflow were validated using monthly observed runoff measurements between 1961 and 2007 at the outlets of 10 representative watersheds across the US (Fig. 2). The sites are part of the US Geological Survey (USGS) Hydro-Climatic Data Network (HCDN), a subset of USGS gauges without significant upstream flow regulation or diversions to other watersheds (Slack et al., 1993).
Mean annual bias, annual correlation, and monthly correlation between the observed and predicted runoff for these sites were compared to test the ability of WaSSI to reproduce historic runoff measurements. No calibration of model input parameters was performed during the model validation process.

2.3 Future scenarios

For prediction of future river flows by mid-century, the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) (Nakicenovic and Swart, 2000) A2 and B1 storylines were selected to represent high and low growth and emission scenarios, respectively. The SRES characterized the A2 storyline (hereafter high) as a very heterogeneous world with continuously increasing global population and regionally-oriented economic growth with relatively slow technological change. In contrast, the B1 storyline (hereafter low) was characterized as a convergent world with a global population that peaks around mid-century, rapid changes in economic structures toward a service and information economy, reductions in material intensity, and the introduction of clean and resource-efficient technologies. In addition to the water resource impacts by climate change as a result of greenhouse gas emissions, these scenarios have implications for water resources due to increased urbanization and associated impervious cover as well as changes in water withdrawals as population increases overall and becomes more concentrated in urbanizing watersheds. Impacts of existing impervious cover and net surface water withdrawals on historic river flows at the outlets of all 2099 8-digit HUC watersheds were estimated by comparing predicted 1981–2000 monthly and mean annual river flows both with and without 2010 levels of impervious cover and surface water withdrawals. Impacts of projected changes in impervious cover, surface water withdrawals, and climate change under the high and low scenarios were estimated by comparing predicted 2041–2060 river flows with 2060 levels of impervious cover and withdrawals to those of 1981–2000 with 2010 levels of impervious cover and withdrawals.
2.4 Databases

The WaSSI model framework was designed to be highly transferable and to require minimal input data for regional applications. Required input data were readily available for the Conterminous US in a grid or county format at a variety of spatial resolutions (Table 1). All input data were rescaled from their native gridded or county resolution to the 8-digit HUC watershed scale for use in the WaSSI model.

2.4.1 Vegetation and soil parameterization

The 17 land cover categories of the 2006 National Land Cover Dataset (NLCD) (Fry et al., 2011) were aggregated to 10 classes: crop, deciduous forest, evergreen forest, mixed forest, grassland, shrubland, wetland, water, urban, and barren (Fig. 1). For this study, the distribution of these classes was assumed to remain constant over time, although the amount of impervious cover within each land cover class varied over time. A gap-filled version of the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 FPAR/LAI 8-day composite (Zhao et al., 2005) was averaged to monthly mean LAI between years 2000 and 2006 and was overlaid by the land cover data to obtain monthly mean LAI by land cover within each HUC watershed for ET calculations. Like the land cover distribution, monthly mean LAI for each land cover was assumed to remain constant over time. The SAC-SMA soil parameter grids were obtained from the NOAA NWS Hydrology Laboratory, Office of Hydrologic Development and mean watershed elevation was computed from the HYDRO1k Elevation Derivative Database (Verdin, 2011).

2.4.2 Climate

For model validation, monthly observed precipitation and temperature data from 1961 to 2007 (PRISM Climate Group, 2010) were used. This dataset was developed based on historic weather observations using the Precipitation elevation Regression on
Independent Slopes Model (Daly et al., 1994). For evaluation of the impact of climate change on river flows, statistically downscaled 1/8° × 1/8° (≈ 12 × 12 km) 1981–2060 monthly precipitation and temperature predicted by NOAA’s Geophysical Fluid Dynamics Laboratory coupled climate model CM 2.0 for the A2 and B1 emission scenarios were obtained from the World Climate Research Programme Coupled Model Intercomparison Project Phase 3 dataset (Meehl et al., 2007).

2.4.3 Impervious cover

The 2006 NLCD fraction impervious layer was used to compute the fraction of each of the 10 land cover classes with impervious cover for model validation. We incorporated the impervious cover predictions from the US Environmental Protection Agency (EPA) Integrated Climate and Land Use Scenarios (ICLUS) project (US Environmental Protection Agency, 2009; Bierwagen et al., 2010) linked to the main storylines of the SRES for assessment of changes in impervious cover on river flows. These land cover predictions used demographic and spatial allocation modelling to create scenarios of housing density changes with national coverage at 1 × 1 km resolution from 2010 to 2100 based on past land-use patterns and travel time along roads from urban areas. We applied the 2010 impervious cover fraction to the urban land cover class in each watershed for the baseline 2010 scenario. For the future scenarios, the change in impervious cover fraction between 2010 and 2060 for the high and low scenarios was assumed to come equally from the crop, deciduous forest, evergreen forest, mixed forest, grassland, and shrubland land cover classes in each watershed (where present).

2.4.4 Net surface water withdrawals

The 2005 USGS county-level annual total water withdrawal and groundwater withdrawal estimates (Kenny et al. 2009) were used to estimate withdrawals for the domestic, industrial, irrigation, mining, thermopower, livestock, public supply, and aquaculture sectors. These data were disaggregated to the monthly scale using regional regression
relationships based on water use data collected at the State level. Return flow percentages by sector were computed using consumptive use estimates from the 1995 USGS water use report (Solley et al., 1998).

Total water use for all sectors in the US steadily increased from 1950–1980 (Kenny et al., 2009). Since that time, water use for the irrigation, livestock, mining, thermopower sectors have remained relatively constant, industrial water use has decreased, and domestic, public supply, and aquaculture sector water use have increased (Kenny et al., 2009). For this study, we assumed that water use from all sectors with the exception of domestic and the portion of public supply serving domestic water use remained at 2005 levels from 2010 to 2060. The 2010 and 2060 decadal population estimates for the high and low scenarios provided by the EPA ICLUS project (EPA, 2009; Bierwagen et al., 2010) were used to adjust the domestic and the portion of public supply serving domestic uses for population growth using per capita water use rates estimated for each HUC watershed based on 2010 population projections (EPA, 2009; Bierwagen et al., 2010) coupled with 2005 domestic and public supply serving domestic water use (Kenny et al., 2009). The computed per capita rates computed for domestic water use were assumed to remain constant over time. Groundwater withdrawals for all sectors were assumed to remain at 2005 levels, thus the additional water demand for the domestic and public supply sectors was supplied only by surface water sources.

3 Results

3.1 Model validation

The WaSSI model performed well in representing the annual and monthly runoff patterns at the ten validation sites (Table 2, Fig. 3). Correlations between both annual and monthly observed and predicted runoff were all significant ($P < 0.01$) indicating that the model successfully captured the temporal variability in monthly runoff at these sites. Bias in mean annual runoff prediction was within 20% at most sites, but model
predictions at some sites had relatively high bias (e.g., the Gila River near Gila, New Mexico, and the Turkey River at Garber, Iowa). Errors in runoff predicted by the WaSSI model may be attributed to uncertainty in input data (e.g., climate and soil properties), as well as uncertainty in the simplified representation of the physical processes that govern runoff magnitude and timing. For example, the large positive model bias (i.e., model over predicted flow rates relative to measured values) for the Gila River, a watershed located in arid New Mexico receiving approximately 510 mm of precipitation annually, may be associated with terrestrial or instream losses to deep groundwater. The moderate positive bias for the Turkey River at Garber, Iowa, a watershed comprised of 71 % crop land cover, much of which is irrigated, may be associated with the under-estimation of ET for irrigated crops. Flow regulation by dams and diversions to other watersheds were also not represented in the model, but may exist even in watersheds upstream of these relatively unaltered sites. Despite the differences between observed and predicted runoff at some sites, the WaSSI model captured the temporal and spatial variability in runoff, with performance that was comparable to other uncalibrated continental-scale monthly water balance models used for global change impact assessment (e.g., McCabe and Wolock, 2010).

3.2 Impervious cover and withdrawal impacts on 1981–2000 river flows

The impacts of 2010 levels of impervious cover and water withdrawals on mean annual and monthly mean 1981–2000 river flows were evaluated by comparing the following scenarios to the 1981–2000 river flows without impervious cover or withdrawals base case: 1) 2010 impervious cover and no withdrawals, 2) no impervious cover and 2010 withdrawals, and 3) 2010 impervious cover and 2010 withdrawals.

3.2.1 River flows without impervious cover or withdrawals

The 8-digit HUC watershed river network was apparent in the spatial variability of predicted 1981–2000 mean annual river flows (Fig. 4a), reflecting the influence of both
climate regime and drainage area. The mean annual river flow, averaged across all HUC watersheds in each Water Resource Region (WRR), ranged from 480 Mm³ yr⁻¹ to 32 000 Mm³ yr⁻¹, and was highest in WRR 8, 6, 5, and 7 (Fig. 5) due to the cumulative effects of drainage area, PPT, and ET. For example, WRR 6 had the smallest drainage area of all WRR, but had the second highest mean annual flow because the mean annual PPT in this WRR (1447 mm) was higher than all other regions except 08, and watersheds in this region had the second lowest ET/PPT ratios (0.52) among all WRR. In contrast, WRR 7 had a much larger drainage area, but had a lower mean annual river flow than WRR 6 because watersheds in this region and WRR 10 draining to it had lower mean annual PPT (851 mm and 559 mm, respectively) and higher ET/PPT ratios (0.67 and 0.84, for WRR 7 and 10, respectively). The top five predicted mean annual river flows by WRR included the WRR 8-lower Mississippi River (746 000 Mm³ yr⁻¹), WRR 5-Ohio River (304 000 Mm³ yr⁻¹), WRR 7-Upper Mississippi River (280 000 Mm³ yr⁻¹), WRR 17-lower Columbia River (166 000 Mm³ yr⁻¹), and WRR 10-Missouri River (142 000 Mm³ yr⁻¹).

3.2.2 Impact of 2010 impervious cover

In 2010, approximately 102 100 km² of area across the 2099 HUC watersheds of the Conterminous US were classified as impervious (1.3 % of the total land area; roughly the size of the state of Virginia), and was concentrated in major population centers. HUC watershed fraction impervious cover ranged from 0.01 % in the Upper Selway basin (HUC 17060301), Idaho to 40 % in the Bronx Basin (HUC 02030102), New York. The area-weighted mean impervious cover fraction across all watersheds was 1.3 %.

2010 levels of impervious cover generally resulted in small increases in HUC watershed 1981–2000 mean annual river flows (mean 9.9 %, median 2.2 %, n = 2099) compared to 1981–2000 flows without impervious cover (Fig. 4b), with 480 of the 2099 HUC watersheds (23 % of land area) predicted to have less than 1 % increases in mean annual flow. River flows in the arid southwest region were most sensitive to impervious cover on a relative basis, but given the low flows of this region, absolute increases in
flow were small. Impervious cover in highly urbanized areas of the east led to large relative and absolute changes in river flows. For example, the mean annual flow in HUC 07120004-Des Plaines River draining part of the Chicago, Illinois metropolitan area (18 % impervious) increased from 1899 Mm3 yr$^{-1}$ to 2544 Mm3 yr$^{-1}$ as a result of impervious cover, a 35 % increase (655 Mm3 yr$^{-1}$). The impact of the impervious cover associated with the city of Chicago resulted in 5–10 % increases in mean annual flows in downstream HUC watersheds along the Illinois River until the confluence with the Mississippi River in WRR 7 (Fig. 4b). Increases in mean annual flow as a result of impervious cover, averaged over all HUC watersheds in each WRR, were generally less than 5 % (Fig. 5), ranging from less than 1 % in WRR 17 to 5.8 % in WRR 12.

3.2.3 Impact of 2010 net surface water withdrawals

In 2010, total estimated water withdrawals in the Conterminous US were approximately 483 000 Mm3 yr$^{-1}$. Groundwater supplied approximately 23 % of the total water demand, and was most heavily used in the Western US for irrigation, supplying approximately 41 % of irrigation water demand in this region (Kenny et al., 2009). In the Eastern US (WRR 1–7), the thermopower sector was the largest gross water use sector, representing 69 % of the total water use in this region. However, return flow rates from the thermopower sector were generally very high (95 % on average) so much of that water was returned to surface water. In the Western US (WRR 8–18), irrigation was the largest gross water use sector (65 % of the total water use), but return flow rates were much lower (39 %). Across the US, domestic and public supply water use serving the domestic sector was highest in HUC watersheds supporting urban population centers.

The net surface water withdrawals in each HUC watershed were computed as the total withdrawal – groundwater withdrawals – return flows from all water use sectors. Depending on the relative withdrawals of surface water and ground water, and the total return flow in a HUC watershed, the net surface water withdrawal as defined above may be positive (water removed from river flow) or negative (water added to river flow). Because we assumed that all return flows were discharged to surface water regardless
of whether the water came from ground or surface water sources, accounting for these withdrawals increased river flows if the groundwater fraction of the total withdrawals (GWF) was greater than 1 – return flow fraction (1 – RFF) across all water use sectors in a given watershed. For example, total withdrawals in HUC 11010013-Upper White-Village were 456 Mm3 yr$^{-1}$, groundwater withdrawals were 398 Mm3 yr$^{-1}$, and the net RFF was 0.28. Thus GWF (0.87) was greater than 1 – RFF (0.73) resulting in a net surface water withdrawal of –67 Mm3 yr$^{-1}$ (water added to river flow). In contrast, total withdrawals in adjacent HUC 11010004-Middle White were 98 Mm3 yr$^{-1}$, groundwater withdrawals were 39 Mm3 yr$^{-1}$, and the net RFF was 0.55. In this case, GWF (0.40) was less than 1 – RFF (0.45) resulting in a net surface water withdrawal of +4.9 Mm3 yr$^{-1}$ (water removed from river flow).

Changes in mean annual river flows due to withdrawals across the Conterminous US were within 5% in 1490 (71%) of the 2099 HUC watersheds compared to flows without withdrawals (Fig. 4c). The impact of high GWF relative to 1 – RFF resulting in increases in river flows due to withdrawals was evident in the groundwater irrigated areas of the upper mid-west (WRR 7), Mississippi Alluvial Valley (WRR 8), portions of coastal WRR 3, and the Southern Great Plains (WRR 11 and 12). Mean annual river flows were predicted to have decreased as a result of withdrawals in much of WRR 10–18 excluding the Southern Great Plains region. Thirty-four HUC watersheds (all located in WRR 10, 11, 14, 15, 16, 17, and 18) were predicted to have mean annual flows decrease by 50% or more as a result of withdrawals, seven of these watersheds were predicted to have river flows decrease by 100% (all in Southern WRR18 and WRR 15). While perhaps decreases in river flows of this magnitude as a result of withdrawals are possible, these large relative changes in river flows are likely a result of uncertainty in the withdrawal estimates and/or the lack of representation of interbasin transfers in this study. Most of these watersheds had very low predicted mean annual flow without withdrawals (less than 70 Mm3 yr$^{-1}$) thus uncertainty in withdrawal estimates may be large relative to river flows leading to unrealistic withdrawal impacts. The average changes in mean annual flow by WRR as a result of withdrawals were within 1% in
WRR 1–9, smaller than the impact of impervious cover in these regions (Fig. 5). However, withdrawals were projected to decrease mean WRR mean annual river flows in WRR 10–18, ranging from decreases of 0.9 % (WRR 11) to 9.6 % (WRR 14).

3.2.4 Combined impacts of 2010 impervious cover and withdrawals

The combined effects of impervious cover and net surface water withdrawals on 1981–2000 mean annual river flows generally resulted in flow increases in the Eastern US (WRR 1–9) and flow decreases in the Western US (WRR 10–18) compared to 1981–2000 flows without impervious cover or withdrawals (Figs. 4d and 5). The flow increases in the east were largely driven by the flow increases due to impervious cover (Fig. 5), and to a lesser extent where GWF was greater than 1 – RFF, by net surface water withdrawals that increased river flows. The increase in river flows as a result of impervious cover in much of the west was offset by the decreases in river flows as a result of withdrawals. Under the combined effects of impervious cover and withdrawals, the average change in mean annual river flows by WRR were increases of 1.5 % to 4.4 % in WRR 1–9 and decreases up to 8.8 % in WRR 10–18. In 186 HUC watersheds (primarily in the arid southwest) the mean annual ratio of total withdrawals to total supply from surface and groundwater sources exceeded 1.0 (Fig. 4d). In part this may be related to uncertainty in water use and/or supply estimates, but may also indicate that these watersheds receive water from other basins by interbasin transfer.

3.2.5 Case studies

Two HUC watersheds of contrasting climate, land cover, and water withdrawals were selected to illustrate the annual and seasonal impacts of 2010 levels of impervious cover and withdrawals on 1981–2000 river flows. The HUC watershed 03130001-Upper Chattahoochee River is a headwater watershed that provides much of the water supply for the Atlanta, GA metropolitan area. The watershed was 49 % forested, with impervious cover comprising 10 % of the watershed area. Net surface water withdrawals were
49 Mm3 yr$^{-1}$, or 1.6 % of mean annual flow without impervious cover or withdrawals. River flow from this watershed was greatest during the winter months (Fig. 6a), driven primarily by the seasonal pattern of ET and to a lesser extent the pattern of PPT. While impervious cover increased mean annual flow by 11.1 % (327 Mm3 yr$^{-1}$), this increase was largest in the summer low flow months. For example, the mean July flow increased 29 % (34 Mm3 yr$^{-1}$) as a result of impervious cover while mean February flow increased by 4.7 % (21 Mm3 yr$^{-1}$) (Fig. 6a). Net surface water withdrawals decreased mean annual flow by 1.7 % (50 Mm3 yr$^{-1}$) and the decreases in flow were greatest in the summer months of high water use, decreasing monthly flow in July, August, and September approximately 3 % (4 Mm3 yr$^{-1}$). The impervious cover more than offset the impact of withdrawals on river flow in this watershed resulting in a 9.4 % (277 Mm3 yr$^{-1}$) increase in mean annual flow, with the largest impacts occurring in the summer low flow months.

The HUC watershed 14010001-Colorado Headwaters lies on the western face of the Rocky Mountains, and serves as a water supply to many watersheds to the east by interbasin transfer, including the Denver, CO metropolitan area (Petsch, 1985). This watershed is downstream of two other HUC watersheds, the combined drainage area over the three watersheds was 54 % forested, with only 0.7 % of the watershed area in impervious cover. Net surface water withdrawals over the three watersheds in the drainage area were 129 Mm3 yr$^{-1}$. River flow in this watershed peaked in late spring and early summer, driven by snow accumulation and melt processes (Fig. 6b). Impervious cover had a minimal effect on mean annual flow (0.7 % increase, or 28 Mm3 yr$^{-1}$), and in monthly river flow through much of the year except in the early spring (Fig 6b) when river flows were low resulting in large relative but small absolute increases in flow (e.g. 18 % relative change, 1.4 Mm3 yr$^{-1}$ absolute change in March). Net surface water withdrawals decreased mean annual river flows by 3.3 % (129 Mm3 yr$^{-1}$), and most of this decrease was a result of decreases during the summer months.
3.3 Impacts of future changes in impervious cover, withdrawals, and climate on river flows

The impacts of projected changes in impervious cover, water withdrawals, and climate on river flows by 2060 were evaluated by comparing the following scenarios to the 2010 impervious cover, 2010 water withdrawals, and 1981–2000 climate base case: (1) 2060 impervious cover, 2010 withdrawals, 1981–2000 climate, (2) 2010 impervious cover, 2060 withdrawals, 1981–2000 climate, (3) 2010 impervious cover, 2010 withdrawals, 2041–2060 climate, and (4) 2060 impervious cover, 2060 withdrawals, 2041–2060 climate. Each scenario was evaluated using both the low and high growth and emission scenarios.

3.3.1 Impervious cover, withdrawals, and climate projections

The HUC watershed population density in the US under baseline 2010 conditions was highest near major metropolitan areas, with a total population of approximately 310 million across the 2099 watersheds considered in this study. This total was projected to increase to 390 million (26% increase) and 458 million (48% increase) by 2060 under the low and high scenarios, respectively. Changes in population across the Conterminous US were not uniform, rather some areas were projected to have decreases in population under both the low and high scenarios (e.g., Maine, Western Pennsylvania, Montana, and Wyoming) while other more urbanized areas were projected to have increases in population (e.g., much of the Atlantic seaboard, South Texas, and the Southwest).

The increases in population have direct implications for impervious cover and domestic water withdrawals. Because impervious cover did not decrease with decreasing population, the spatial patterns of increases in impervious cover were related only to patterns of population increases. In contrast, spatial patterns of domestic water use were related to both population increases and decreases. The total impervious area across the US by 2060 was projected to be approximately 117,300 km² under the low
scenario (increase of 15 200 km2, or 15 %) and 128 800 km2 under the high scenario (increase of 26 700 km2, or 26 %). The additional demand for water resulting from population growth led to the same relative increases in total US domestic water use as the relative increases in population (26 % and 48 %, low and high scenarios, respectively), but this increase in domestic water use led to small changes in total US water use across all sectors (2.3 % low and 4.2 % high). The largest increases in total water use were in Texas (WRR 12; 8.5 % low, 13.4 % high), Mid-Atlantic and Southeast coastal states (WRR 2 and WRR 3; 7.3 % and 4.2 % low, 8.9 % and 8.4 % high), and the Southwest (WRR 13, 15, 16, 18; 3.8 %–5.7 % low, 6.6 %–12.1 % high). Despite the overall increases in domestic and total water use, more than 50 % of the 2099 HUC watersheds were projected to experience decreases in water use as a result of decreases in population by as much as 28 % and 43 % under the low and high scenarios, respectively.

Spatial patterns of changes in CM2.0 climate model projected mean annual precipitation and temperature between the 1981–2000 and 2041–2060 time periods under the low and high scenarios were similar, but the magnitude of the changes were generally more severe under the high scenario. Under both scenarios, there were modest increases in precipitation across much of WRR 1–7, while WRR 8, 10–16, and 18 were projected to have decreases in precipitation. The mean annual precipitation averaged across all 2099 HUC watersheds of the US was projected to decrease from 789 mm in 1981–2000 to 767 mm (2.8 %) in 2041–2060 under the low scenario and to 778 mm (1.4 %) under the high scenario. Mean annual temperature averaged across all watersheds was projected to increase from 11.3 °C in 1981–2000 to 13.1 °C mm (+1.8 °C) in 2041–2060 under the low scenario and to 13.8 °C (+2.5 °C) under the high scenario, with the largest increases in temperature projected to in Iowa, Kansas, Missouri, and Nebraska.
3.3.2 Individual and Combined impacts of 2060 impervious cover, withdrawals, and climate

Increases in impervious cover by 2060 from 2010 levels resulted in minimal increases in mean annual flow (< 1%) in 1846 and 1699 of the 2099 HUC watersheds under the low and high scenarios, respectively. Fifty-seven HUC watersheds located in Southern California, Arizona, Colorado, Texas, Georgia, and Florida were projected to have changes in mean annual flow of more than 5% as a result of impervious cover change under the low scenario, while 117 watersheds were projected to have more than 5% differences under the high scenario. Similarly, changes in withdrawals as a result of population change led to small differences in mean annual river flow (less than 1.0% difference) in 1972 HUC watersheds under the low scenario, and 1903 watersheds under the high scenario. Thirty-nine HUC watersheds were projected to have decreases in mean annual flow of more than 5% under the low scenario (87 watersheds under the high scenario), all of which were located in Southern California, Southern Nevada, Arizona, Colorado, New Mexico, and Texas. Changes in river flows as a result of climate change were much greater than those predicted as a result of increases in impervious cover and withdrawals from 2010 levels. In contrast to the impacts of impervious cover and withdrawals, climate change impacts led to greater than 5% changes in river flows in 1677 HUC watersheds under the low scenario, and 1735 watersheds under the high scenario. Relative changes in mean annual river flows across all HUC watersheds were positively correlated to relative changes in PPT between the time periods of 1981–2000 and 2041–2060 (low scenario: $R^2 = 0.56, p < 0.01$; high scenario: $R^2 = 0.61, p < 0.01$) and negatively correlated to absolute changes in temperature (low scenario: $R^2 = 0.27, p < 0.01$; high scenario: $R^2 = 0.18, p < 0.01$). The correlation between river flows and PPT was stronger (i.e., higher R^2) than the correlation of river flows with temperature indicating that river flows are more responsive to PPT than temperature. McCabe and Wolock (2011) reported similar findings using historical climate and modelled runoff across the Conterminous US.
The combined effects of future changes in impervious cover, withdrawals, and climate change were predicted to result in a mean decrease in river flows across all HUC watersheds in the Conterminous US of 11.8 % under the low scenario and 11.0 % under the high scenario (Fig. 7). Under the low scenario, HUC watersheds in WRR 1–3 were predicted to have modest increases (1.7 %–5.9 %) in mean annual river flows on average, however mean annual flows in all other WRR were predicted to decrease up to 38 % (WRR11) by 2041–2060 (Fig. 7). Like the low scenario, mean annual flows in WRR 1 and 2 were predicted to increase under the high scenario (6.6 % and 11 %, respectively), but also were predicted to increase in WRR 4 (7.6 %) and WRR 9 (8.8 %). All other WRR were predicted to have decreases in mean annual flow up to 48 % (WRR 11). In the 2010 baseline case, 186 HUC watersheds were predicted to have mean annual WaSSI greater than 1.0 (Fig. 4d), indicating likely transfer of water from another watershed to meet current water demands. By 2060, the number of HUC watersheds with WaSSI greater than 1.0 increases to 248 under the low scenario and 244 under the high scenario (Fig. 7), indicating that expansion of water transfer infrastructure would be required to meet projected water demand under future climate conditions. The extent of current and future interbasin transfers are likely under estimated because many watersheds with WaSSI values less than 1.0 receive water by interbasin transfer, but the data to determine whether they do does not exist at this scale.

3.3.3 Case studies

The case study HUC watersheds presented in Sect. 3.2.5 were examined to illustrate the potential watershed-level impacts of projected changes in impervious cover, withdrawals, and climate change. Impervious cover in HUC 03130001-Upper Chattahoochee River was projected to increase from 10 % of the total watershed area in 2010 to 17 % (low scenario) and 19 % (high scenario) of the watershed area by 2060. These changes in impervious cover were predicted to increase mean annual flow from this watershed by 6 % (low) and 9 % (high). Net surface water withdrawals in this watershed as a result of population change was predicted to increase by 52 % (low) and
89% (high), resulting in a decrease in mean annual flow at the watershed outlet of 0.8% (low) and 1.4% (high). Mean annual PPT was predicted to increase 1.9% (low) and 4.2% (high), while mean annual temperatures were predicted to increase 1.3°C (low) and 2.1°C (high), resulting in increases in PET of 10% (low) and 15% (high). These changes in PPT and temperature resulted in virtually no change in mean annual flow (low: −0.2%, high: 0.7%). The combined effects of changes in impervious cover, withdrawals, and climate resulted in predicted increases in mean annual flow of 5.6% and 8.9% for the low and high scenarios, respectively, driven largely by the increases in impervious cover. Similar to the 2010 baseline condition, the impact of increases in impervious cover were most pronounced during the summer low flow months (Fig. 8a). Despite the large relative increases in net surface water withdrawals projected for the low and high scenarios, monthly river flows from this watershed were not impacted to a significant extent (less than 3%) because these withdrawals were still small relative to the total river flow at the watershed outlet. Climate change impacts, while not significant on the annual scale, altered the timing of river flows, with predicted flow decreases of 14%–24% during March–August, and increases in September–January of 13%–40%. The flow decreases during the summer months were partially offset by the predicted flow increases as a result of increased impervious cover, which also led to increased river flows during the late fall and winter months.

HUC watershed 14010001-Colorado Headwaters, and the watersheds draining to it were projected to have impervious cover increase from 0.7% of the total watershed area in 2010 to 0.9% (low) and 1.2% (high) by 2060, resulting in changes in mean annual flow from 2010 of less than 1.0% at the outlet of HUC 14010001. Net surface water withdrawals were predicted to increase 2% (low) and 5% (high), again resulting in changes in mean annual flow of less than 1%. The impact of climate change, however, was predicted to decrease mean annual flow by 22% (low) and 25% (high), driven partly by reductions in mean annual PPT of 4.9% (low) and 4.3% (high), but mostly because increases in temperature of 2.2°C (low) and 2.9°C (high) resulted in PET increases of 18% (low) and 24% (high). Because the impacts of changes in impervious
cover and withdrawals were minimal in this watershed, the changes in mean annual flow as a result of the combined changes in impervious cover, withdrawals, and climate change were almost completely driven by the changes in climate. River flows in early spring months were predicted to increase under high climate change scenario (Fig. 8b), however the peak spring flow was predicted to decrease 13% and to occur one month earlier, and flows during June–October were predicted to decrease 29–59%. The increases in April–May flows occurred as a result of increased winter PPT (13%), with a larger proportion falling as rain rather than falling and accumulating as snow as a result of the increased temperature. The peak flow decreased partly as a result of a temperature driven decrease in maximum spring snowpack (8%), but also as a result of increased PET in early spring. Summer flows decreased under the A2 scenario as a result of a 20% decrease in June-July-August PPT, but also due to a 31% increase in PET.

4 Discussion

The uncalibrated WaSSI model reproduced observed spatial and temporal variability in river flows within relatively unregulated headwater watersheds, except in watersheds in arid regions and to a lesser extent in watersheds with extensive crop irrigation. Other continental scale water balance models, even those that were highly calibrated, have similar biases in these regions (e.g., Hay and McCabe, 2002; Martinez and Gupta, 2010; McCabe and Wolock, 2010). Clearly, future continental scale modelling research should focus on these regions through improving the representation of surface water-groundwater interaction and ET processes for large basins. Despite some region-specific issues, WaSSI appeared to be appropriately sensitive to both land cover and climate variability, and thus was well suited to investigate the relative impact of multiple elements of global change on river flows.

This study suggests that impervious cover at 2010 levels has increased river flows in watersheds draining major urban areas, and the influence of impervious cover may
Impacts of impervious cover, water withdrawals

P. V. Caldwell et al.

By 2060, climate change impacts will dominate impervious cover and withdrawal impacts on river flow regardless of the global change scenario (e.g., low or high). Under the CM2.0 climate projections for the low and high scenarios, much of the Atlantic coast was projected to have minor increases in mean annual flow by 2060, while most of the rest of the nation was projected to have decreases in mean annual flow, particularly
across the midwest and Great Plains regions. As a result, more watersheds were predicted to have water demand greater than available supply by 2060 than under the baseline 2010 condition. In areas where mean annual flow was not predicted to change as a result of climate change, the seasonal timing of flows changed considerably in some watersheds.

This study has many implications for management of water resources and the ecosystem services they provide. The large predicted decreases in river flows in the Western US, coupled with declining groundwater supplies (see Dugan et al., 1994) may necessitate either the construction of new or expansion of existing interbasin transfer infrastructure, reduction of water demand through conservation, or both. As the seasonal timing of river flows was predicted to change, management and/or design of existing storage reservoirs may need to be modified to account for these changes. For example, greater storage capacity within the Upper Chattahoochee Basin (HUC watershed 03130001) may allow a portion of the predicted increase in winter flows as a result of climate change, to be made available in the summer when flows were predicted to decrease. The climate change impacts on river flows as well as the changes to infrastructure required to support human water needs will have an impact on existing human communities and downstream aquatic life, requiring a balanced approach to water resource management. In this study, we evaluated climate change using climate projections from a single global circulation model to illustrate the potential relative impact of climate, impervious cover, and withdrawal change by 2060, and the impact of different emission scenarios. Our results suggest that climate change impacts will have a larger impact on river flows than either impervious cover or withdrawals at the national scale. Unfortunately, climate change is also the most uncertain of the global change drivers. Management of water resources in light of climate change should consider a range in projected futures to encapsulate the uncertainty in possible outcomes (Pierce et al., 2009; Mote et al., 2011). Facing the large uncertainty of climate change, efforts to continue to reduce uncertainties, re-evaluate past decisions in light of the
changing climate, and identify the most effective policies based on the current scient-
ific understanding will contribute to prudent water management.

Future work should include improvement in model representation of water with-
drawals and storage in reservoirs at the national scale as well as the socioeconomic
drivers that impact water supply, demand, and use, and improvement in representa-
tion of the connectivity between surface and groundwater. In this study, we assumed
vegetative land cover distribution and leaf area index were constant over time, how-
ever vegetation structure and function are influenced by climatic drivers. Future work
should also focus on simulating regional vegetative response to climate change. Our
results suggest that withdrawals may result in increases in river flows depending on the
groundwater contribution to total withdrawals and return flow rates. Many studies sug-
gest that groundwater withdrawals have decreased river flows across the Great Plains
region (WRR 11 and 12) (see Kustu et al., 2010). Whether groundwater withdrawals
increase or decrease river flows will depend on the extent to which the groundwa-
ter aquifer source is connected to surface water. Groundwater withdrawn from deep
aquifers that are disconnected from surface water (i.e., groundwater mining) may in-
crease river flows if return flows are discharged to surface water, while groundwater
withdrawn by shallower unconfined aquifers that are connected to surface water may
decrease river flows due to consumptive use. In this study we made several assump-
tions to account for groundwater withdrawals including (1) all withdrawals return to
surface water, (2) there is no connection between groundwater withdrawals and the
groundwater near the surface that impacts runoff and baseflow generation, and (3),
there is no connection between shallow and deep groundwater sources. Modelling the
connectivity of ground and surface water and the impact of groundwater withdrawals at
the continental scale remains a challenge and further refinement of modelling methods
are needed to better represent their impact.

In addition to improvement in modelling approaches, improvement in water with-
drawal databases are also warranted. The USGS water withdrawal estimates were not
intended to be used to evaluate the impacts of withdrawals on river flow, however this
dataset is the only source of water withdrawal information at the Conterminous US scale. There is a clear need for quantitative, spatially explicit water withdrawal, use, and transfer information that a national water census could provide. The WaSSI model framework established in this study will be easily adapted to these data when they become available, providing improved estimation of withdrawal impacts on river flows.

5 Conclusions

The WaSSI water balance model developed in this study is a powerful tool for examining the potential hydrologic response to future global change across the United States. Our results show that global change impacts on water resources are watershed-specific. While climate change impacts overwhelmed the impacts of impervious cover or withdrawals on mean annual flows, impervious cover impacts may offset the impact of climate change during the growing season in some watersheds. In the Western US, large water withdrawals will aggravate the impact of climate change on river flows. We conclude that it is important to evaluate the individual and combined impacts of impervious cover, water withdrawals, and climate change on historic river flows to develop future mitigation and adaptation management options.

Acknowledgement. This work was supported by the USDA Forest Service Eastern Forest Environmental Threat Assessment Center, and National Science Foundation grant Decadal and Regional Climate Prediction using Earth System Models (EaSM), program solicitation NSF 10-554 (Award no. 1049200). We also wish to thank Victor Koren of the NOAA National Weather Service for providing SAC-SMA soil parameter input data.

References

Impacts of impervious cover, water withdrawals

P. V. Caldwell et al.

PRISM Climate Group: http://www.prism.oregonstate.edu/, last access: July 2010.

Table 1. Model databases.

<table>
<thead>
<tr>
<th>Database</th>
<th>Source</th>
<th>Native resolution</th>
<th>Time period(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil properties</td>
<td>STATSGO-based Sacramento Soil Moisture Accounting</td>
<td>1 × 1 km</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Model Soil Parameters and NOAA-NWS Hydrology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory, Office of Hydrologic Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land cover distribution</td>
<td>2006 National Land Cover Database for the Conterminous United States (http://www.mrlc.gov/nlcd06_data.php)</td>
<td>30 m × 30 m</td>
<td>2006</td>
</tr>
<tr>
<td>Leaf area index by land cover</td>
<td>Moderate Resolution Imaging Spectroradiometer (MODIS) (http://modis.gsfc.nasa.gov/)</td>
<td>1 × 1 km</td>
<td>2000–2006</td>
</tr>
<tr>
<td>Mean watershed elevation</td>
<td>USGS National Elevation Dataset (http://eros.usgs.gov/)</td>
<td>30 m × 30 m</td>
<td>N/A</td>
</tr>
<tr>
<td>Total withdrawals</td>
<td>USGS Estimated Use of Water in the United States in 2005 (http://pubs.usgs.gov/circ/1344/)</td>
<td>County</td>
<td>2005*</td>
</tr>
<tr>
<td>validation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate (model validation)</td>
<td>PRISM Climate Group (http://prism.oregonstate.edu/)</td>
<td>4 × 4 km</td>
<td>1961–2007</td>
</tr>
<tr>
<td>Climate (A2, B1 scenarios)</td>
<td>Downscaled GFDL CM2.0, A2 and B1 scenarios, World Climate Research Programme CMIP3 dataset (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php)</td>
<td>12 × 12 km</td>
<td>1981–2060</td>
</tr>
<tr>
<td>Impervious cover (A2, B1 scenarios)</td>
<td>US EPA ICLUS Project (http://www.epa.gov/ncea/global/index.htm)</td>
<td>1 × 1 km</td>
<td>2010, 2060</td>
</tr>
</tbody>
</table>

Domestic sector water use for future scenarios adjusted for population to represent 2060 domestic water use.
Table 2. Model validation results for 10 representative watersheds 1961–2007.

<table>
<thead>
<tr>
<th>Site</th>
<th>USGS Gauge</th>
<th>Drainage area km²</th>
<th>Observed mm</th>
<th>Predicted mm</th>
<th>Model bias mm</th>
<th>Model bias %</th>
<th>Predicted vs. observed R^2</th>
<th>Annual</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Allagash River near Allagash, Maine</td>
<td>01011000</td>
<td>3828</td>
<td>463</td>
<td>468</td>
<td>5</td>
<td>1</td>
<td>0.81</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>2 Current River at Van Buren, Missouri</td>
<td>07067000</td>
<td>4318</td>
<td>421</td>
<td>353</td>
<td>−68</td>
<td>−16</td>
<td>0.76</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>3 Middle Fork Flathead River near West Glacier, Montana</td>
<td>12358500</td>
<td>2922</td>
<td>873</td>
<td>726</td>
<td>−148</td>
<td>−17</td>
<td>0.78</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>4 Gila River near Gila, New Mexico</td>
<td>09430500</td>
<td>4828</td>
<td>33</td>
<td>100</td>
<td>67</td>
<td>200</td>
<td>0.65</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>5 Little Fork River at Littlefork, Minnesota</td>
<td>05131500</td>
<td>4351</td>
<td>233</td>
<td>193</td>
<td>−39</td>
<td>−17</td>
<td>0.74</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>6 Manistique River near Manistique, Michigan</td>
<td>04056500</td>
<td>2849</td>
<td>449</td>
<td>341</td>
<td>−108</td>
<td>−24</td>
<td>0.74</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>7 New River near Galax, Virginia</td>
<td>03164000</td>
<td>2955</td>
<td>587</td>
<td>674</td>
<td>87</td>
<td>15</td>
<td>0.87</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>8 Suwannee River at White Springs, Florida</td>
<td>02315500</td>
<td>6294</td>
<td>255</td>
<td>317</td>
<td>62</td>
<td>24</td>
<td>0.87</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>9 Turkey River at Garber, Iowa</td>
<td>05412500</td>
<td>4002</td>
<td>256</td>
<td>320</td>
<td>64</td>
<td>25</td>
<td>0.83</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>10 Yellowstone River at Corwin Springs, Montana</td>
<td>06191500</td>
<td>6783</td>
<td>418</td>
<td>428</td>
<td>10</td>
<td>2</td>
<td>0.76</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Hydrologic processes in the WaSSI water balance model.
Fig. 2. Model validation watersheds, validation sites, Water Resource Regions, and HUC8 boundaries of the Conterminous US.
Fig. 3. Time series of observed (blue) and predicted (red) 1991–2000 monthly runoff for the 10 validation watersheds.
Fig. 4. 1981–2000 mean annual flow (M m3 yr$^{-1}$) assuming no net surface water withdrawals and no impervious cover (a), and change in mean annual flow due to 2010 impervious cover (b), 2010 withdrawals (c), and both 2010 impervious cover and withdrawals (d). Gross demand in black areas in (d) is greater than the sum of surface water supply and groundwater withdrawals, indicating likely transfer of water from other watersheds.
Fig. 5. Mean annual flow without impervious cover or withdrawals, and impacts of 2010 levels of impervious cover and withdrawals on 1981–2000 mean annual flow, averaged over all 8-digit HUC watersheds in each Water Resource Region.
Fig. 6. Impacts of 2010 impervious cover and withdrawals on 1981–2000 monthly mean flows for HUC watershed 03130001-Upper Chattahoochee (Atlanta, GA area) (a) and HUC watershed 14010001-Colorado Headwaters (Denver, CO area by interbasin transfer) (b). Error bars represent one standard deviation about the mean monthly flows when both impervious cover and withdrawal impacts were included.
Fig. 7. Impact of impervious, population, and climate change on mean annual flow in 2060 for the low (a) and high (b) growth and emission scenarios from the baseline case of 1981–2000 climate with 2010 water withdrawals and impervious cover. Gross demand in black areas is greater than the sum of surface water supply and groundwater withdrawals, indicating likely transfer of water from other watersheds.
Fig. 8. Impacts of changes in impervious cover, withdrawals, and climate on monthly mean flows from 2010 levels by 2060 under the high growth and emission scenario for HUC watershed 03130001-Upper Chattahoochee (Atlanta, GA area) (a) and HUC watershed 14010001-Colorado Headwaters (Denver, CO area by interbasin transfer) (b). Error bars represent one standard deviation about the mean monthly flows when climate, impervious cover, and withdrawal impacts were included.