Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

Z. Zeng¹, J. Liu¹,², P. H. Koeneman³, E. Zarate⁴, and A. Y. Hoekstra³,⁴

¹School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
²Ecosystems Services and Management, International Institute for Applied Systems Analysis, Schlossplatz 1, 2361, Laxenburg, Austria
³Department of Water Engineering and Management, University of Twente, Enschede, The Netherlands
⁴Water Footprint Network, Enschede, The Netherlands

Received: 30 March 2012 – Accepted: 3 April 2012 – Published: 3 May 2012

Correspondence to: J. Liu (water21water@yahoo.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB), a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m³ yr⁻¹ in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96 % of the WF (92 % for crop production and 4 % for livestock production). The remaining 4 % was for the industrial and domestic sectors. The “blue” component of WF was 811 million m³ yr⁻¹. This indicates a blue water proportion of 46 %, which is much higher than the world average and China’s average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

1 Introduction

As one of the most essential natural resources, water is greatly threatened by human activities (Oki and Kanae, 2006; Postel et al., 1996; Vörösmarty et al., 2000, 2010). There are still more than 800 million lacking a safe supply of freshwater (Ban Ki-moon, 2012) and 2 billion people lacking basic water sanitation (Falconer et al., 2012). Water scarcity has been increasing in more and more countries all over the world (Yang...
et al., 2003). Especially in arid and semi-arid regions, nearly all river basins have serious water problems, such as rivers drying up, pollution or groundwater table decline (José et al., 2010; Vörösmarty et al., 2010). It is necessary to find new approaches and tools of integrated water resources management (Adeel, 2004) to help maintain a balance between human resource use and ecosystem protection (Dudgeon et al., 2006; Vörösmarty et al., 2010). New paradigms and approaches, e.g. water footprint (WF) and green and blue water, have been emerging in scientific communities to promote efficient, equitable and sustainable water uses, and these paradigms are believed to break new ground for water resources planning and management (Falkenmark, 2003; Falkenmark and Rockström, 2006; Hoekstra and Chapagain, 2007; Liu and Savenije, 2008).

WF is an indicator of water use introduced by Hoekstra (2003). It shows water consumption by source and polluted volumes by type of pollution. Water footprint assessment is an analytical tool that can describe the relationship between human activities and water scarcity, and give an innovative way for integrated water resources management (Hoekstra et al., 2011). Earlier water footprint studies generally focus on five levels: process, product, sector, administrative unit, and global. At the process level, Chapagain et al. (2006) calculated the WF of cotton production for different processes. At the product level, Mekonnen and Hoekstra (2011) estimated the green, blue and grey WF of 126 crops all over the world for the period 1996–2005 with a high spatial resolution. The WF of pasta and pizza (Aldaya and Hoekstra, 2009), coffee and tea (Chapagain and Hoekstra, 2007) have been analyzed. At the sector level, Aldaya et al. (2010) calculated the WF of domestic, industrial and agricultural sectors in Spain and found that the inefficient allocation of water resources and mismanagement in the agricultural sector lead to water scarcity in Spain. At the national level, the WF of China (Liu and Savenije, 2008; Ma et al., 2006), India (Kampman et al., 2008), Indonesia (Bulsink et al., 2010), Netherlands (Van Oel et al., 2009), UK (Chapagain and Orr, 2008) and France (Ercin et al., 2012) have been assessed. At the global level, the
water footprint of goods and services consumed by humans on the earth has been quantified by Hoekstra and Chapagain (2007) and Hoekstra and Mekonnen (2012).

Although the body of literature on WF has been increasing fast, there are still very few studies focusing on specific river basins (UNEP, 2011), especially for those located in arid and semi-arid regions. We chose the Heihe River Basin (HRB) in inland northwest of China as a case area, and conducted a WF assessment by considering the agricultural (i.e. crop production and livestock production), industrial and domestic sectors. We assess the annual green and blue WF and compare the blue WF (WF_{blue}) with blue water availability (WA_{blue}) at a monthly level to pinpoint the most serious water scarce months. Located in northwest China, the Heihe River originates in the Qilian Mountains in Qinghai Province, flows through several counties in Gansu Province and Inner Mongolia, and terminates in oases in Mongolia (Fig. 1). The precipitation ranges from 480 mm in the upstream part of the basin to even less than 20 mm downstream. The extensive use of water in the upper and middle parts of the basin has led to a decrease in water resources downstream, causing salinization and desertification (Chen et al., 2005). Previous research often pays attention to irrigation in this river basin (Zhao et al., 2005; Ji et al., 2006; Chen et al., 2005), but a comprehensive WF assessment considering multiple sectors and multiple types of water (e.g. green and blue water) has never been done before. Such an assessment is a key to better understanding the entire picture of water consumption at the river basin level, and identifying ways to improve water management.

2 Method

2.1 Scope of WF accounting

In order to assess WF within the HRB, we need to know the WF of crop production (WF_c), WF of livestock production (WF_l), WF of the industrial sector (WF_i), and WF of the domestic sector (WF_d). There are two types of resources: blue water (surface
water and groundwater), and green water (soil water) (Liu and Savenije, 2008). Both the green and blue components of WF are assessed. The blue and green WF (WF_{blue} and WF_{green}) accounting and sustainability assessment are mainly based on the standard methods proposed in the Water Footprint Assessment Manual (Hoekstra et al., 2011). We do not include the volume of water that is used to assimilate water pollution, or grey WF. In this article, we only estimate WF within China’s territory due to the lack of data in Mongolia. In addition, the area of the HRB located in Mongolia is mainly desert, while crop and livestock production and other human activities are marginal. Neglecting this area will not lead to large errors for the WF of the entire river basin. We assess WF in the HRB over 2004–2006 and use the annual and monthly results for the presentation of results.

2.2 Crop production and livestock production in the HRB

Since many data are not available at a river basin level, we combine statistical data for administrative boundaries (e.g. a county or a city) with spatially explicit datasets to obtain the information at the river basin level. The steps to calculate the WF within the HRB are depicted in Fig. 2.

There are 15 Chinese cities or counties within or across the HRB. The statistics provide accurate information of harvested area and production of crops in these cities or counties during 2004–2006, but statistical information at river basin is not available. For these administrative regions, we need to calculate how much area is located within the HRB. With the 5 arc-minute crop distribution maps from the MIRCA2000 database from the University of Frankfurt (Portmann et al., 2010), we can calculate the shares of crop area (both rainfed and irrigated) of one specific crop in one city or county within and outside the HRB. Combining these shares with statistical harvested area of a city or county, the crop area of all administrative regions within the HRB can be estimated. Hence, the area of each crop can be obtained at the river basin level. A similar approach is used to estimate crop production within the HRB. The results of harvested area and production are shown in Table 1.
A total of 12 types of crops or crop groups were selected. Each type has its own representative crop (Table 1). These include cereal crops (wheat, maize and other cereal crops), soybean, oil crops (rapeseed), sugar crops (sugar beet), cotton, fruits (apple and other fruits), vegetables (tomato) and other crops. According to our estimate, the first 11 types of crops account for 86% of the total crop production, while the other crops account for 14% within the HRB.

The meat production is calculated by multiplying the number of an animal type by its average meat production of the animal types. Beef, sheep/goat, pork and poultry are four main animal categories in the HRB and we only consider these livestock in our calculation. The density of animals per animal category (number km\(^{-2}\)) is obtained from the Animal Production and Health division of FAO (2011). This dataset provides spatially explicit information on animal densities in 2005 with a spatial resolution of 3 arc-minutes. The total number of an animal in the HRB can be estimated by summing up the animal number of all grid cells within the basin.

2.3 WF of crop production (WF\(_c\))

WF\(_c\) is calculated by multiplying virtual water content (VWC) of each crop with its production and then summing up all crops. VWC is defined as the amount of water (m\(^3\)) that is needed to produce a product per unit of crop (ton) during the crop growing period. The green and blue components of VWC are calculated as the ratio of effective rainfall (ER, m\(^3\) ha\(^{-1}\)) or irrigation (I, m\(^3\) ha\(^{-1}\)) to the crop yield (Y, t ha\(^{-1}\)). The VWC of crops is the sum of green VWC (VWC\(_{\text{green}}\)) and blue VWC (VWC\(_{\text{blue}}\)).

\[
\begin{align*}
\text{VWC}_{\text{green}} &= \frac{\text{ER}}{Y} \\
\text{VWC}_{\text{blue}} &= \frac{I}{Y} \\
\text{VWC} &= \text{VWC}_{\text{green}} + \text{VWC}_{\text{blue}}
\end{align*}
\]

\(5784\)
The CROPWAT model (FAO, 2010a; Allen et al., 1998) is used to estimate ER and I of crops. Both the rainfed and irrigated conditions are taken into account. “Irrigation schedule option” is used to calculate ER and I by simulating soil water balance with a daily time step (Hoekstra et al., 2011). We do not estimate the green and blue water incorporated into the crops because in general they account for very small (e.g. 0.1% of the evaporated water, up to 1% at most) (Hoekstra et al., 2011).

The CROPWAT model needs climate, crop and soil parameters to model evapotranspiration and crop irrigation requirement. Climate data include temperature, precipitation, humidity, sunshine, radiation and wind speed. The climate data are obtained from the New LocClim database (FAO, 2005), which provides monthly climate data on 30-yr average (1961–1990). We select three climate stations located in the HRB (see Fig. 1). Crop parameters such as crop coefficients, rooting depths, lengths of each crop development stage, the planting and harvest dates are based on Allen et al. (1998) and Chapagain and Hoekstra (2004). Soil parameters include values of available soil water content, maximum infiltration rate, maximum rooting depth, and initial soil moisture depletion. Available soil water content for the HRB are retrieved from global maps from Food and Agriculture Organization of the United Nations (FAO) (FAO, 2010b). The maximum infiltration rate depends on the soil types, which are predominantly sandy and loamy in the HRB (Qi and Cai, 2007). Because no information was available for maximum rooting depth and initial soil moisture content at the start of the growing season, default values in CROPWAT were taken (FAO, 2010a).

2.4 WF of livestock production (WF$_l$)

WF$_l$ is calculated by multiplying VWC of a type of livestock meat with its production and then summing up all types of livestock types. VWC of meat is defined as the amount of water (m3) that is needed to produce per unit of meat (ton).

The VWC of meat is made up of three components: the water used to produce feed crops that the animals eat, and the drinking and processing water requirements by livestock (Mekonnen and Hoekstra, 2012). The feed of the livestock is composed of
grass, rough forage and maize. In the HRB, maize needs both precipitation and irrigation, while the other crops mainly use precipitation (Zhang, 2003). The percentage of blue and green water in maize is estimated with the CROPWAT model. Drinking and processing water is dominantly “blue”. We assume that feed crops are all produced within the HRB based on common practice in the HRB. The feed water requirement (FWR, m3 kg$^{-1}$) for an animal can be calculated by multiplying feed conversion efficiency (FCE) for a specific crop (FCE$_f$, kg dry mass of feed kg$^{-1}$ of output) by the VWC of the feed crops (VWC$_f$, m3 kg$^{-1}$):

$$\text{FWR} = \sum_{f=1}^{N_f} \text{FCE}_f \times \text{VWC}_f$$

Together with the drinking water requirement (DWR, m3 t$^{-1}$) and processing water requirement (PWR, m3 t$^{-1}$) this leads to the VWC of animal meat (VWC, m3 t$^{-1}$):

$$\text{VWC} = \text{FWR} + \text{DWR} + \text{PWR}$$

Feed requirement of animals, FCE, DWR and PWR are retrieved from Zhang (2003). In order to calculate the monthly WF of livestock production, we assume DWR and PWR are equally distributed in each month throughout the year. The monthly FWR and its green/blue components are estimated based on monthly water requirements of crops, which are calculated by the CROPWAT model.

2.5 WF of industrial and domestic sectors (WF$_i$ and WF$_d$)

The WF of industrial and domestic sectors is estimated by multiplying water withdrawal with a water consumption ratio (WCR) for each sector. According to the Ministry of Water Resources of China, the water withdrawal for domestic purposes was 44.2 million m3 and 95.2 million m3 for industry within the HRB (Chen et al., 2005). WCR is 36 % for industrial sector and 67 % for domestic sector in the HRB (GSMWR, 2006).
2.6 WF sustainability assessment

The WF sustainability is assessed by comparing WF_{blue} with blue water availability (WA_{blue}) at a river basin level. When WF_{blue} exceeds WA_{blue}, there is reason for sustainability concern (Hoekstra et al., 2012).

According to Hoekstra et al. (2011), WA_{blue} is estimated as below:

$$WA_{\text{blue}} = BWR - EFR$$

(6)

where BWR means blue water resources or the total amount of surface and groundwater flows, and EFR is environmental flow requirements.

The annual and monthly blue water resources in the HRB is obtained from Zang et al. (2012), who simulate surface and groundwater flows under the natural conditions with a Soil and Water Assessment Tool (SWAT) (Arnold et al., 1994). It is often assumed that EFR accounts for a certain share of the blue water resources. We use a share of 80% as suggested by Hoekstra et al. (2011, 2012).

3 Results

3.1 VWC of crops

Among all crops studied, cotton has the largest VWC of $3384 \, m^3 \, t^{-1}$ (Fig. 3). Soybean also has high VWC of $2216 \, m^3 \, t^{-1}$. Cereal crops in general have VWC values ranging from 763 to $1045 \, m^3 \, t^{-1}$. The blue water proportion (BWP) is defined as the ratio of VWC_{blue} to VWC (Liu et al., 2009). Soybean has the highest BWP value of 70%, followed by wheat and maize with BWP values between 62% and 64% (Table 2). Sugar crops and oil crops have the lowest BWP because these crops are mainly rainfed. BWP of a crop is influenced by two factors: the share of irrigated area, and the crop characteristics, which are keys for irrigation water requirement.
3.2 WF of crop production (WF_c)

The average annual WF_c was 1638 million m3 yr$^{-1}$ in the HRB during 2004–2006. About 45% (742 million m3) of WF_c was due to the use of blue water, while the remaining 55% (896 million m3) was from the use of green water (Fig. 4). Cereal crops accounted for almost half of the WF_c. In particular, wheat and maize combined accounted for 27% of WF_c. Wheat and maize comprised a large share (30%) of cropland area. Cereal crops accounted for about 51% of blue WF_c and 49% of green WF_c. In particular, wheat and maize comprised 38% and 19% of blue and green WF_c, respectively. Not only in the HRB, but also for the whole China, wheat and maize are the major grain crops and account for a larger share of consumptive water use in cropland (Liu et al., 2007; Yang, 1999).

3.3 VWC of animal products

Beef has the largest VWC of almost 20 000 m3 t$^{-1}$, followed by sheep and goat (Table 2). As expected, animal meats have much higher VWC than crops. The high VWC of meat is largely due to the large feed consumption that requires a high amount of water.

Compared to crops, meat has a relatively low BWP, which is ranged from less than 1% to 40% (Table 2). All the four types of livestock have much higher VWC$_{green}$ than VWC$_{blue}$ compared to crops. Among the four types of meat, sheep/goat meats have the lowest BWP of 0.3%. Sheep and goat are dominantly raised in pasture land and they eat grasses in rainfed grassland without much addition to feeds such as maize. In contrast, poultry has a relative high BWP of 40%. Chicken are raised in farmers’ backyards or in chicken factories, and they rely much on feed stuff. Hence, the BWP of chicken is significantly influenced by these feeds. The VWC of meats and its green and blue components are closely related to the type of feeds and animal management systems.
3.4 WF of livestock production (WF_i)

The average annual WF_i was 65.82 million m³ yr⁻¹ in the HRB during 2004–2006. About 92% of WF_i (60.71 million m³) was green, and only 8% (5.1 million m³) was blue (Fig. 5). Sheep and goat accounted for over 70% of green WF_i. This is due to the large amount of meat production of sheep and goat. When checking at blue WF_i, pork and poultry combined accounted for about 92%, while sheep and goat only accounted for about 4%. The low BWP of sheep and goat meats largely explains the low share of blue WF_i of sheep and goat.

3.5 WF in the HRB

The average annual WF was 1768 million m³ yr⁻¹ in the HRB during 2004–2006 (Fig. 6). Almost 92% was from crop production. Livestock production accounted for 4%. The annual WF of industrial and domestic sectors in the HRB was 34 million m³ yr⁻¹ and 30 million m³ yr⁻¹, respectively. WF_i and WF_d combined were equivalent to WF_i. Agricultural production (crop and livestock production) was the main human activity within the HRB, and it accounted for 96% of WF in the HRB. For WF_c, cereal crops were the largest water user; while for WF_i, sheep and goat were the biggest water user.

In the HRB, 54% (956 million m³ yr⁻¹) of WF was green, while 46% (811 million m³ yr⁻¹) was blue (Fig. 7). About 94% of WF_{green} within the HRB was related to crop production, while cereal crops contributed the largest share. WF_i only represented 6% of WF_{green}. Among WF_{blue}, crop production accounted for 91%, domestic and industrial sectors each contributed about 4%, while livestock production only accounted for less than 1%. Livestock production only accounted for a marginal share of WF_{blue} because livestock in the HRB is mainly raised in pasture under rainfed conditions. Crop production, especially cereal crop production, was the main green and blue water consumer within the HRB.
4 Discussion

4.1 Comparison with other studies

According to our estimate, the per capita WF (green and blue) of the HRB is estimated to be 870 m3 cap$^{-1}$ yr$^{-1}$. According to Cai et al. (2012), in the Gansu province (the majority part of the HRB), the net virtual blue water export through food trade accounted for 10% of the total blue water resources in the basin and 25% of the total blue water use. From the water resources point of view, it is not a good solution to use precious water in arid and semi-arid regions to support a large amount of food trade. Crop pattern adjustment is a key to better water management.

In general, the BWP of crop production in the HRB is 45%. It is much higher than the global average of 19% reported in Liu et al. (2009) and also higher than China’s average of 32% (Liu et al., 2009). The HRB is an inland river basin located in arid and semi-arid northwest China. Many types of crops largely rely on irrigation during their growth period. High temperature leads to high crop water requirements while low precipitation leads to a high dependency on irrigation in the HRB. The BWP of livestock production estimated in this study is very close to that reported in Zhang (2003).

4.2 Sustainability analysis

In this study, we compare WF$_{\text{blue}}$ with blue water availability (WA$_{\text{blue}}$) to indicate blue water scarcity (BWS) on both yearly and monthly basis (Fig. 8). Blue water resources availability is high from April to September due to high precipitation in these months. WF$_{\text{blue}}$ is also much higher from April to September than other months because crops mainly grow during these periods. The period from October to March is too cold for crops to grow. Additionally, these months have too little precipitation to support any rainfed crops.

Hoekstra et al. (2012) provide an approach to quantify BWS. At a river basin level, the BWS is defined as the ratio of the WF$_{\text{blue}}$ to the WA$_{\text{blue}}$ during a certain period. It
is classified into four levels: low BWS (<100 %), moderate BWS (100–150 %), significant BWS (150–200 %) and severe BWS (>200 %). In the HRB, the annual WF\textsubscript{blue} was 811 million m3 yr−1 during 2004–2006, and it was greater than the WA\textsubscript{blue} of 528 million m3 yr−1. The average annual BWS value was 154 %; hence, according to the above definitions, significant BWS occurred on an annual basis in the HRB. WF\textsubscript{blue} was 31 % of the total blue water resources; hence, runoff in the HRB was significantly modified by human activities. This indicates that water consumption for human activities has exceeded the sustainable level of water availability, and human WF was partly met at a cost of violating environment water flows.

When comparing the monthly WF\textsubscript{blue} with the monthly WA\textsubscript{blue}, one can identify which months are confronted with what level of water scarcity. According to our estimate, WF\textsubscript{blue} exceeded WA\textsubscript{blue} in eight months of the year (Fig. 8). The HRB faced severe BWS in four months (April, May, June and December), significant BWS in two months (March and November), and moderate BWS in two months (February and July). Although high blue water resources availability occurred from April to July, WA\textsubscript{blue} cannot meet human water demand, in particular for crop irrigation. From November to January, the HRB undergoes its dry season with a small amount of water available for the industrial and domestic sectors. It is clear that the environmental flow requirements are not met during two-thirds of the year. Blue water resources cannot meet human water demand and environmental flows at the same time. This leads to unsustainable water use, causing several ecological degradation in the HRB, such as the river running dry and death of riparian vegetation (Kang et al., 2007).

4.3 WF and water withdrawal

Statistics on water use often report water withdrawal. However, we argue that WF is more suitable for measuring water consumption by human beings. A large part of water withdrawal will return to local water bodies and may be used again. For example, on a global scale, about 40 % of agricultural water withdrawals are not consumed, but go
back to downstream water bodies as return flows (Perry, 2007; Shiklomanov, 2000). Hence, water withdrawal cannot completely demonstrate human appropriation of water resources. Moreover, WF includes consumption of green water, in addition to blue water, while the traditional statistics on water withdrawal only account for blue water. In contrast, WF can quantify what type and how much water is consumed by human activities. Statistics on WF and its “color” components (green and blue) are suggested to be reported in statistics.

Taking the HRB as an example, according to our estimate, WF was 1768 million m3 yr$^{-1}$ in 2004–2006, among which 956 million m3 yr$^{-1}$ was green, and 811 million m3 yr$^{-1}$ was blue. At the river basin level, there is very little statistical information on water use, even for water withdrawal. The often used water withdrawal data of 2625 million m3 yr$^{-1}$ in many studies (Chen et al., 2005; Zhang, 2003) are for the year of 1999. Apparently, this number includes a large amount of return flow that could further be used within the HRB. The WF addresses consumptive water use and its green and blue components, and shows the “real” water consumption.

Including green water in water accounting is important. Traditional water resources assessment and management mainly pay attention to blue water. In the past decades, several studies conclude that green water management should be emphasized in addition to blue water (Savenije, 2000; Liu et al., 2009). Even in arid and semi-arid regions such as the HRB, WF$_{green}$ is still higher than the WF$_{blue}$, as estimated in this article. Green water plays an important role in food production. Improving green water management and green water use efficiency is key to enhancing river basin water management and to guaranteeing food security. Unfortunately, this is still an area that needs to be significantly strengthened.

4.4 Shortcomings

There are several shortcomings in this study. First, there are no crop or livestock production data at the river basin level. We have to calculate them based on crop or livestock distribution maps with statistics for administrative units. Although the best
available maps have high spatial resolution, they may have errors at the river basin level. Second, grey WF is not included due to the lack of comprehensive data on pollutant discharge. Ignoring grey WF will result in a conservative estimate of WF. Third, we do not calculate WF for the HRB outside China’s boundary. However, as we have mentioned, this will not lead to large errors due to the marginal human activities for the HRB in Mongolia. Fourth, our study did not include green water sustainability assessment. Green water plays a key role in crop and livestock production, it is also very important to keep healthy natural ecosystems. Competition of green water between human activities and natural ecosystems will lead to different levels of green water scarcity. There are two reasons why we did not conduct a green water sustainability analysis: the lack of a standard method, and the lack of information on how much green water should be maintained for natural ecosystems. However, such analysis is an important topic and it should be further strengthened to gain in-depth insights into human’s intervention to green water resources. Fifth, we provide a first attempt to estimate WF for the entire the HRB, but such an assessment does not take into account the spatial difference of WF within the river basin. Spatial heterogeneity of climate conditions and land use/cover are very sharp in the HRB with high precipitation and glaciers upstream and low precipitation and desert downstream. There is a need to compare WF with water availability at the sub-basin levels. This is out of the scope of this paper, but it is what will be further investigated in the next step. Last but not least, there is also a need to further analyze the economic and social impacts (e.g. trade, income, employment etc.) of WF to enable the WF as a more comprehensive indicator for decision makers.

Acknowledgements. This study was supported by the New Century Excellent Talents in University (NCET-09-0222), the National Natural Science Foundation of China (91025009), Projects of International Cooperation and Exchanges NSFC (41161140353), and Fundamental Research Funds for the Central Universities (HJ2010-1). We also thank Guodong Cheng, Yinglan Zhang, Xiubin Li for their support to this study.
References

FAO: Animal Production and Health division, Food and Agriculture Organization of the

GSMWR: Gansu Water Resources Bulletin, Gansu Province Ministry of Water Resource,

on Virtual Water Trade”, Value of Water Research Report Series No. 12, UNESCO-IHE,

Hoekstra, A. Y. and Chapagain, A. K.: Water footprints of nations: water use by people as a

Hoekstra, A. Y. and Mekonnen, M. M.: The water footprint of humanity, P. Natl. Acad. Sci., 109,

WaterFootprintAssessmentManual (last access: 1 March 2012), 2011.

Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., and Richter, B. D.: Global
monthly water scarcity: blue water footprints versus blue water availability, Plos ONE, 7,

Ji, X., Kang, E., Chen, R., Zhao, W., Xiao, S., and Jin, B.: Analysis of water resources supply
and demand and security of water resources development in irrigation regions of the middle
reaches of the Heihe River Basin, Northwest China, Agricultural Sciences in China, 5, 130–
140, 2006.

José, A., Elena, C., and Javier, T.: Water quality and nonpoint pollution, in: Re-thinking Water

Kampman, D., Hoekstra, A. Y., and Krol, M.: The water footprint of India, Value of Water Re-

Kang, E., Lu, L., and Xu, Z.: Vegetation and carbon sequestration and their relation to water
resources in an inland river basin of Northwest China, J. Environ. Manage., 85, 702–710,
2007.

Liu, J., Zehnder, A. J. B., and Yang, H.: Historical trends in China’s virtual water trade, Water

Table 1. Annual harvested area and crop production within the HRB (2004–2006).

<table>
<thead>
<tr>
<th>Crop type</th>
<th>Representative crop</th>
<th>Harvested area (thousand ha)</th>
<th>Production (thousand ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>Wheat</td>
<td>53</td>
<td>322</td>
</tr>
<tr>
<td>Maize</td>
<td>Maize</td>
<td>30</td>
<td>239</td>
</tr>
<tr>
<td>Other cereals</td>
<td>Barley</td>
<td>50</td>
<td>352</td>
</tr>
<tr>
<td>Soybean</td>
<td>Soybean</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Starchy roots</td>
<td>Potato</td>
<td>11</td>
<td>87</td>
</tr>
<tr>
<td>Oil crops</td>
<td>Rapeseed</td>
<td>18</td>
<td>47</td>
</tr>
<tr>
<td>Sugar crops</td>
<td>Sugar beet</td>
<td>8</td>
<td>190</td>
</tr>
<tr>
<td>Cotton</td>
<td>Cotton</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>Apple</td>
<td>Apple</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>Other fruits</td>
<td>Pear</td>
<td>45</td>
<td>229</td>
</tr>
<tr>
<td>Vegetables</td>
<td>Tomato</td>
<td>27</td>
<td>740</td>
</tr>
<tr>
<td>Other crops</td>
<td>All above crops</td>
<td>*</td>
<td>366</td>
</tr>
</tbody>
</table>

* No data.
Table 2. Virtual water content (VWC), water footprint (WF) and blue water proportion (BWP) of crop and livestock production within the HRB (2004–2006).

<table>
<thead>
<tr>
<th>Crop type</th>
<th>VWC (m3 t$^{-1}$)</th>
<th>WF (million m3 yr$^{-1}$)</th>
<th>BWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>826</td>
<td>266</td>
<td>64%</td>
</tr>
<tr>
<td>Maize</td>
<td>763</td>
<td>182</td>
<td>62%</td>
</tr>
<tr>
<td>Other cereals</td>
<td>1045</td>
<td>368</td>
<td>27%</td>
</tr>
<tr>
<td>Soybean</td>
<td>2216</td>
<td>48</td>
<td>72%</td>
</tr>
<tr>
<td>Starchy roots</td>
<td>110</td>
<td>10</td>
<td>45%</td>
</tr>
<tr>
<td>Oil crops</td>
<td>466</td>
<td>22</td>
<td>0%</td>
</tr>
<tr>
<td>Sugar crops</td>
<td>94</td>
<td>18</td>
<td>0%</td>
</tr>
<tr>
<td>Cotton</td>
<td>3384</td>
<td>156</td>
<td>56%</td>
</tr>
<tr>
<td>Apple</td>
<td>855</td>
<td>23</td>
<td>34%</td>
</tr>
<tr>
<td>Other fruits</td>
<td>918</td>
<td>210</td>
<td>34%</td>
</tr>
<tr>
<td>Vegetables</td>
<td>150</td>
<td>111</td>
<td>48%</td>
</tr>
<tr>
<td>Other crops</td>
<td>614</td>
<td>225</td>
<td>45%</td>
</tr>
<tr>
<td>Pork</td>
<td>3910</td>
<td>10.32</td>
<td>26%</td>
</tr>
<tr>
<td>Beef</td>
<td>20360</td>
<td>7.62</td>
<td>3%</td>
</tr>
<tr>
<td>Sheep/ goat</td>
<td>14670</td>
<td>42.87</td>
<td>0.3%</td>
</tr>
<tr>
<td>Poultry</td>
<td>4029</td>
<td>5.01</td>
<td>39%</td>
</tr>
</tbody>
</table>

Fig. 1. Location of the Heihe River Basin (HRB) in China.
Fig. 2. The steps to calculate water footprint (WF) in the HRB.
Fig. 3. Blue and green virtual water content (VWC) of crops within the HRB.
Fig. 4. Green and blue water footprint (WF_{green} and WF_{blue}) of crop production within the HRB over 2004–2006.
Fig. 5. Green and blue water footprint (WF_{green} and WF_{blue}) of livestock production within the HRB over 2004–2006.
Fig. 6. Water footprint (WF) in the HRB over 2004–2006.
Fig. 7. Average annual green and blue water footprint (WF_{green} and WF_{blue}) within the HRB over 2004–2006.
Fig. 8. Comparison between average monthly blue water footprint and blue water availability in the HRB over 2004–2006.