Supplement of

Technical Note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences

Wei Hu and Bing Cheng Si

Correspondence to: Wei Hu (wei.hu@plantandfood.co.nz) and Bing Cheng Si (bing.si@usask.ca)

Introduction

S1 Calculation of smoothed auto- and cross-wavelet power spectra
S2 Matlab code for calculating multiple wavelet coherence
S3 Matlab code for significance test on multiple wavelet coherence
S4 User manual for S2 (mwc.m) and S3 (mwcsignif.m)
S5 Results of MEMD
S6 Results of simple wavelet coherency for E
S1 Calculation of smoothed auto- and cross-wavelet power spectra

Detailed information on the calculations of wavelet coefficients, cross-wavelet power spectra, and simple wavelet coherence can be found elsewhere (Kumar and Foufoula-Georgiou, 1997; Torrence and Compo, 1998; Torrence and Webster, 1999; Grinsted et al., 2004; Das and Mohanty, 2008; Si, 2008). Here, we will only introduce the basics related to the calculation of smoothed auto- and cross-wavelet power spectra. These power spectra require the calculation of wavelet coefficients at different scales and spatial (or temporal) locations for the response variable and all predictor variables. For convenience, only spatial variables will be referred to, as temporal variables can be similarly analyzed.

The continuous wavelet transform (CWT) of a spatial variable X_1 of length $N (X_{1,h}, h=1, 2, \ldots, N)$ with equal incremental distance δx can be calculated as the convolution of $X_{1,h}$ with the scaled and normalized wavelet (Torrence and Compo, 1998)

$$W^{X_1}(s, \tau) = \sqrt{\frac{\delta x}{s}} \sum_{\tau=1}^{N} X_{1,h} \psi \left[\left(h - \tau \right) \frac{\delta x}{s} \right], \quad (1)$$

where $W^{X_1}(s, \tau)$ is the wavelet coefficient of spatial variable X_1 at scale s and location τ, and $\psi \left[\right]$ is the mother wavelet function. The Morlet wavelet is used in the CWT because it allows us to identify both location-specific amplitude and phase information at different scales in a spatial series (Torrence and Compo, 1998). The Morlet wavelet can be expressed as (Grinsted et al., 2004)

$$\psi (\eta) = \pi^{-1/4} e^{i \omega \eta - 0.5 \eta^2}, \quad (2)$$

where ω and η are the dimensionless frequency and space ($\eta = s / x$), respectively.
The auto-wavelet power spectrum of spatial variable X_1 can be expressed as

$$W^{X_1,X_1}(s, \tau) = W^{X_1}(s, \tau) \overline{W^{X_1}(s, \tau)},$$

(3)

where $\overline{W^{X_1}(s, \tau)}$ is a complex conjugate of $W^{X_1}(s, \tau)$. Therefore, Eq. (3) can also be expressed as the squared amplitude of $W^{X_1}(s, \tau)$, which is

$$W^{X_1,X_1}(s, \tau) = \left|W^{X_1}(s, \tau)\right|^2.$$

(4)

The cross-wavelet spectrum between spatial variables of Y and X_1 can be defined as

$$W^{Y,X_1}(s, \tau) = W^Y(s, \tau) \overline{W^{X_1}(s, \tau)},$$

(5)

where $W^Y(s, \tau)$ is the wavelet coefficient of spatial variable Y.

Both the auto- and cross-wavelet spectra can be smoothed using the method suggested by Torrence and Compo (1998)

$$\overline{W}(s, \tau) = SM_{scale}\left[SM_{space}\left(W(s, \tau)\right)\right],$$

(6)

where $\overline{\left(\cdot\right)}$ is a smoothing operator. SM_{scale} and SM_{space} indicate the smoothing along the wavelet scale axis and spatial distance respectively (Si, 2008). The \overline{W} is the normalized real Morlet wavelet and has a similar footprint as the Morlet wavelet

$$\frac{1}{s\sqrt{2\pi}}e^{-\frac{-\tau^2}{2s^2}}.$$

(7)

Therefore, the smoothing along spatial distance can be calculated as

$$SM_{scale}\left(W(s, \tau)\right) = \sum_{k=1}^{N} W(s, \tau) \left|\frac{1}{s\sqrt{2\pi}}e^{-\frac{-\tau^2}{2s^2}}\right|_s,$$

(8)
where $|_s$ means at a fixed s value. The Fourier transform of Eq. (7) is $e^{(-2s^2\omega^2)}$. Therefore,

Eq. (8) can be implemented using Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) based on the convolution theorem and is written as

$$\text{SM}_{\text{scale}}(W(s, x)) = \text{IFFT} \left(\text{FFT}(W(s, x)) \left(e^{(-2s^2\omega^2)} \right) \right).$$ \hspace{1cm} (9)

The smoothing along scales is then written as [Torrence and Compo, 1998]

$$\text{SM}_{\text{scale}}(W(s_k, x)) = \frac{1}{2m+1} \sum_{l=k-m}^{k+m} \left(\text{SM}_{\text{space}}(W(s_l, x)) \Pi(0.6s_l) \right) |_s,$$ \hspace{1cm} (10)

where Π is the rectangle function, $|_s$ indicates at a fixed x value and l is the index for the scales. The coefficient of 0.6 is the empirically determined scale decorrelation length for the Morlet wavelet (Torrence and Compo, 1998).
% This is a Matlab code (mwc.m) for calculating multiple wavelet coherence.
% Please copy the following content into a txt file and rename it to “mwc.m” prior to running.

function varargout=mwc(X,varargin)
% Multiple Wavelet coherence
% Creates a figure of multiple wavelet coherence
% USAGE: [Rsq,period,scale,coi,sig95]=mwc(X,[],settings)
%
% Input: X: a matrix of multiple variables equally distributed in space
% or time. The first column corresponds to the dependent variable,
% and the second and consequent columns are independent variables.
%
% Settings: Pad: pad the time series with zeros?
% Dj: Octaves per scale (default: ’1/12’)
% S0: Minimum scale
% J1: Total number of scales
% Mother: Mother wavelet (default ’morlet’)
% MaxScale: An easier way of specifying J1
% MakeFigure: Make a figure or simply return the output.
% BlackandWhite: Create black and white figures
% AR1: the ar1 coefficients of the series
% (default=’auto’ using a naive ar1 estimator. See ar1nv.m)
% MonteCarloCount: Number of surrogate data sets in the significance calculation. (default=1000)
%
% Settings can also be specified using abbreviations. e.g. ms=MaxScale.
% For detailed help on some parameters type help wavelet.
% Example:
% t=1:200;
% mwc([sin(t),sin(t.*cos(t.*0.01)),cos(t.*sin(t.*0.01))])
%
% Please acknowledge the use of this software package in any publications,
% by including text such as:
% "The software for the multiple wavelet coherence was provided by W. Hu
% and B. Si, and is available in the Supplement of Hu and Si (2016)
% (http://???)."
% and cite the paper:
% "Hu, W., and B. Si (2016), Technical Note: Multiple wavelet coherence for untangling scale-specific and localized
% multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., ??? (under review)"
parse function arguments---

[row,col]=size(X)
[y,dt]=formatts(X(:,1))

mm=y(1,1)
nn=y(end,1)

for i=2:col
 [x,dtx]=formatts(X(:,i))

 if (dt~=dtx)
 error('timestep must be equal between time series')
 end

 mm1=x(1,1)
nn1=x(end,1)

 if mm1>mm
 mm=mm1
 end
if nn1<nn
nn=nn1
end

x1(:,(i-1))=x(:,1)
x2(:,(i-1))=x(:,2)
end

t=(mm:dt:nn)'

%common time period
if length(t)<4
 error('The three time series must overlap.')
end

n=length(t);

%----------default arguments for the wavelet transform----------
Args=struct('Pad',1,... % pad the time series with zeroes (recommended)
 'Dj',1/12, ... % this will do 12 sub-octaves per octave
 'S0',2*dt,... % this says start at a scale of 2 years
 'J1',[],...
 'Mother','Morlet', ... %a more simple way to specify J1
 'MakeFigure',(nargout==0),...
 'MonteCarloCount',1000,...
 'BlackandWhite',0,...
 'AR1','auto',...
 'ArrowDensity',[30 30],...
 'ArrowSize',1,...
 'ArrowHeadSize',1);

Args=parseArgs(varargin,Args,{'BlackandWhite'});

if isempty(Args.J1)
 if isempty(Args.MaxScale)
 Args.MaxScale=(n*.17)*2*dt; %auto maxscale
 end
 Args.J1=round(log2(Args.MaxScale/Args.S0)/Args.Dj);
end

end
ad = mean(Args.ArrowDensity);

Args.ArrowSize = Args.ArrowSize * 30 * 0.03/ad;

%Args.ArrowHeadSize = Args.ArrowHeadSize * Args.ArrowSize * 220;

Args.ArrowHeadSize = Args.ArrowHeadSize * 120/ad;

if ~strcmpi(Args.Mother, 'morlet')
 warning('MWC: Inappropriate Smoothing Operator', 'Smoothing operator is designed for morlet wavelet.')
end

if strcmpi(Args.AR1, 'auto')
 for i = 1:col
 arc(i) = ar1nv(X(:, i))
 end

 Args.AR1 = arc

 if any(isnan(Args.AR1))
 error('Automatic AR1 estimation failed. Specify it manually (use arcov or arburg).')
 end
end

%----------------- :::::::::::::::--------- ANALYZE ----------::::::::::::------------

% Calculate and smooth wavelet spectrum Y and X

[Y, period, scale, coi] = wavelet(y(:, 2), dt, Args.Pad, Args.Dj, Args.S0, Args.J1, Args.Mother);
sinv = 1 ./ (scale');
smY = smoothwavelet(sinv(:, ones(1, n)) .* (abs(Y).^2), dt, period, Args.Dj, scale);

dte = dt * 0.01;
idx = find((y(:, 1) >= (t(1) - dte)) & (y(:, 1) <= (t(end) + dte)));
Y = Y(:, idx);
smY = smY(:, idx)
coi = coi(idx);

coi = coi

for i = 2:col
 [XS, period, scale, coi] = wavelet(x2(:, (i - 1)), dt, Args.Pad, Args.Dj, Args.S0, Args.J1, Args.Mother);
 idx = find((x1(:, (i - 1)) >= (t(1) - dte)) & (x1(:, (i - 1)) <= (t(end) + dte)));

xs=xs(:,idx);
coix=coix(idx);

xs1(:,:,i-1)=xs
coi=min(coi,coix)
end

% -------- Calculate Cross Wavelet Spectra-----------------------------
% ---- between dependent variable and independent variables-----
for i=1:(col-1)
 wyx=y.*conj(xs1(:,:,i))
sWyx=smoothwavelet(sinv(:,ones(1,n)).*Wyx,dt,period,Args.Dj,scale)
sWyx1(:,:,i)=sWyx
end

% ----between independent variables and independent variables-----
for i=1:(col-1);
 for j=1:(col-1);
 wxx=xs1(:,:,i).*conj(xs1(:,:,j))
sWxx=smoothwavelet(sinv(:,ones(1,n)).*Wxx,dt,period,Args.Dj,scale)
sWxx1(:,:,i,j)=sWxx
 end
end

% -------------- Multiple wavelet coherence -------------------------
% calculate the multiple wavelet coherence
for i=1:length(scale)
 parfor j=1:n
 a=transpose(squeeze(sWyx1(i,j,:)))
b=inv(squeeze(sWxx1(i,j,:,:)))
c=conj(squeeze(sWyx1(i,j,:)))
d=smY(i,j)
Rsq(i,j)=real(a*b*c/d)
 end
end

% -------------- make figure--
if (nargout>0)||(Args.MakeFigure)

mwcsig=(mwcsig(:,2))*(ones(1,n));
mwcsig=Rsq./mwcsig;
end

if Args.MakeFigure

Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period))));

if Args.BlackandWhite

levels = [0 0.5 0.7 0.8 0.9 1];
[cout,H]=safecontourf(t,log2(period),Rsq,levels);

colorbarf(cout,H)
cmap=[0 1; .5 .9; .8 .8; .9 .6; 1 .5];
cmap=interp1(cmap(:,1),cmap(:,2),(0:.1:1)');
cmap=cmap(:,[1 1 1]);
colormap(cmap)
set(gca,'YLim',log2([min(period),max(period)]], ...
'YDir','reverse', 'layer','top', ...
'YTick',log2(Yticks(:)), ...
'YTickLabel',num2str(Yticks'), ...
'layer','top')
ylabel('Period')
hold on

if ~all(isnan(mwcsig))
[c,h] = contour(t,log2(period),mwcsig,[1 1],'k');%#ok
set(h,'linewidth',2)
end

%suptitle([sTitle ' coherence']);

%plot(t,log2(coi),k,'linewdith',2)

tt=[t([1 1])-dt*.5:t([end end])+dt*.5];
%hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]));
%hatching- modified by Ng and Kwok
hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]),'w');

hatch(hcoi,45,[0 0 0]);
hatch(hcoi,135,[0 0 0]);
set(hcoi,'alphadatamapping',direct,'facealpha',.5)

if Args.BlackandWhite

levels = [0 0.5 0.7 0.8 0.9 1];
[cout,H]=safecontourf(t,log2(period),Rsq,levels);

colorbarf(cout,H)
cmap=[0 1; .5 .9; .8 .8; .9 .6; 1 .5];
cmap=interp1(cmap(:,1),cmap(:,2),(0:.1:1)');
cmap=cmap(:,[1 1 1]);
colormap(cmap)
set(gca,'YLim',log2([min(period),max(period)]], ...
'YDir','reverse', 'layer','top', ...
'YTick',log2(Yticks(:)), ...
'YTickLabel',num2str(Yticks'), ...
'layer','top')
ylabel('Period')
hold on

if ~all(isnan(mwcsig))
[c,h] = contour(t,log2(period),mwcsig,[1 1],'k');%#ok
set(h,'linewidth',2)
end

%suptitle([sTitle ' coherence']);

%plot(t,log2(coi),k,'linewdith',2)

tt=[t([1 1])-dt*.5:t([end end])+dt*.5];
%hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]));
%hatching- modified by Ng and Kwok
hcoi=fill(tt,log2([period([end 1]) coi period([1 end])]),'w');

hatch(hcoi,45,[0 0 0]);
hatch(hcoi,135,[0 0 0]);
set(hcoi,'alphadatamapping',direct,'facealpha',.5)
plot(t,log2(coi),'color','black','linewidth',1.5)
hold off
else
H=imagesc(t,log2(period),Rsq);%#ok
%c,H]=safecontourf(t,log2(period),Rsq,[0:.05:1]);
%set(H,'linestyle','none')
set(gca,'clim',[0 1])
HCB=safecolorbar;%#ok
set(gca,'YLim',log2([min(period),max(period)]), ...)
'YDir','reverse', 'layer','top', ...
'YTick',log2(Yticks(:)), ...
'YTickLabel',num2str(Yticks'), ...
'layer','top')
ylabel('Period')
hold on
if ~all(isnan(mwcsig))
[c,h] = contour(t,log2(period),mwcsig,[1 1],'k');%#ok
set(h,'linewidth',2)
end
%suptitle([sTitle ' coherence']);
tt=[t([1 1])-dt*.5;t([end end])+dt*.5];
hcoi=fill(tt,log2([period([1 end]) coi period([1 end])]),'w');
set(hcoi,'alphadatamapping','direct','facealpha',.5)
hold off
end
end
%---%

varargout={Rsq,period,scale,coi,mwcsig};
varargout=varargout(1:nargout);

function [cout,H]=safecontourf(varargin)
vv=sscanf(version,'%i.');
if (version('-release')<14)|(vv(1)<7)
[cout,H]=contourf(varargin{:});
else
[cout,H]=contourf('v6',varargin{:});
end
function hcb=safecolorbar(varargin)
vv=sscanf(version,'%i.');

if (version('-release')<14)|(vv(1)<7)
hcb=colorbar(varargin{:});
else
 hcb=colorbar('v6',varargin{:});
end
S3 Matlab code for significance test on multiple wavelet coherence

% This is a Matlab file (mwcsignif.m) for calculating significance test on multiple wavelet coherence.
% Please copy the following content into a txt file and rename this file to “mwcsignif.m” prior to running.

function mwcsig=mwcsignif(mccount,ar1,dt,n,pad,dj,s0,j1,mother,cutoff)

% Multiple Wavelet Coherence Significance Calculation (Monte Carlo)
%
% mwcsig=mwcsignif(mccount,ar1,dt,n,pad,dj,s0,j1,mother,cutoff)
%
% mccount: number of time series generations in the monte carlo run
%(the greater the better)
% ar1: a vector containing two (in case of calculating wavelet
% coherence between two variables) or
% multiple (≥3) (in case of calculating multiple wavelet coherence
% with three or more variables)
% dt,pad,dj,s0,j1,mother: see wavelet help...
% n: length of each generated timeseries. (obsolete)
%
% cutoff: (obsolete)
%
% RETURNED
% mwcsig: the 95% significance level as a function of scale... (scale,sig95level)
% ---
% Please acknowledge the use of this software package in any publications,
% by including text such as:
% %
% "The software for the multiple wavelet coherence was provided by W. Hu
% and B. Si, and is available in the supplement of Hu and Si (2016)
% (% (http://???)."
%
% and cite the paper:
% % "Hu, W., and B. Si (2016), Technical Note: Multiple wavelet coherence for untangling scale-specific and localized
% multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., ?? (under review)"
%
% (C) W. Hu and B. C. Si 2016
%
% ---
%
% Copyright (C) 2016, W. Hu and B. C. Si 2016
% This software may be used, copied, or redistributed as long as it is not
% sold and this copyright notice is reproduced on each copy made. This
routine is provided as is without any express or implied warranties.

Wavelet software was provided by C. Torrence and G. Compo, and is available at URL: http://paos.colorado.edu/research/wavelets/.

Crosswavelet and wavelet coherence software were provided by A. Grinsted and is available at URL: http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence

We acknowledge Aslak Grinsted for his code (wtcsignif.m) on which this code builds.

persistent mypath
if isempty(mypath)
 mypath=strrep(which('mwcsignif'),'mwcsignif.m','');
end

% we don't need to do the monte carlo if we have a cached siglevel for ar1s that are almost the same. (see fig4 in Grinsted et al., 2004)
aa=round(atanh(ar1(:)')*4); %this function increases the sensitivity near 1 & -1
aa=abs(aa)+.5*(aa<0); %only positive numbers are allowed in the checkvalues (because of log)

% do a check that it is not the same as last time... (for optimization purposes)
checkvalues=[aa dj s0/dt j1 double(mother)]; %n & pad are not important.
%also the resolution is not important.
checkhash=['' mod(sum(log(checkvalues+1)*127),25)+'a' mod(sum(log(checkvalues+1)*54321),25)+'a'];

cachefilename=[mypath 'mwcsignif-cached-' checkhash '.bnm'];

%the hash is used to distinguish cache files.
try
 [lastmccount,lastcheckvalues,lastmwcsig]=loadbnm(cachefilename);
 if (lastmccount>=mccount)&(isequal(single(checkvalues),lastcheckvalues))
 %single is important because bnm is single precision.
 mwcsig=lastmwcsig;
 return
 end
catch
% choose a n so that largest scale have atleast some part outside the coi
ms = s0*(2^((j1*dj))/dt); % maxscale in units of samples
n = ceil(ms*6);

warned = 0;
% precalculate stuff that's constant outside the loop
%d1 = ar1noise(n, 1, ar1(1), 1);
d1 = rednoise(n, ar1(1), 1);
[W1, period, scale, coi] = wavelet(d1, dt, pad, dj, s0, j1, mother);
outsidecoi = zeros(size(W1));
for s = 1:length(scale)
 outsidecoi(s,:) = (period(s) <= coi);
end
sinv = 1./(scale');
sinv = sinv(:, ones(1, size(W1, 2)));

if mccount < 1
 mwcsig = scale';
 mwcsig(:, 2) = .71; % pretty good
 return
end

sig95 = zeros(size(scale));
maxscale = 1;
for s = 1:length(scale)
 if any(outsidecoi(s,:) > 0)
 maxscale = s;
 else
 sig95(s) = NaN;
 end
 if ~warned
 warning('Long wavelengths completely influenced by COI. (suggestion: set n higher, or j1 lower)');
 warned = 1;
 end
end

PAR1 = 1./ar1spectrum(ar1(1), period');
%PAR1 = PAR1(:, ones(1, size(W1, 2)));
PAR2 = 1./ar1spectrum(ar1(2), period');
%PAR2=PAR2(:,ones(1,size(W1,2)));

nbins=1000;
wc=zeros(length(scale),nbins);

wbh = waitbar(0,['Running Monte Carlo (significance)... (H=' checkhash ')','Name','Monte Carlo (MWC)']);

for ii=1:mccount
 waitbar(ii/mccount,wbh);

 dy=rednoise(n,ar1(i),1)
 [Wdy,period,scale,coiy] = wavelet(dy,dt,pad,dj,s0,j1,mother);
 sinv=1./(scale');
 smdY=smoothwavelet(sinv(:,ones(1,n)).*(abs(Wdy).^2),dt,period,dj,scale);

 col=size(ar1,2)

 for i=2:col
 dx=rednoise(n,ar1(i),1)
 [Wdx,period,scale,coix] = wavelet(dx,dt,pad,dj,s0,j1,mother);
 Wdx1(:,:,i)=Wdx
 end

 % -------- Calculate Cross Wavelet Spectra-----------------------------
 % ----between dependent variable and independent variables------
 parfor i=1:(col-1)
 Wdyx=Wdy.*conj(Wdx1(:,:,i))
 sWdyx=smoothwavelet(sinv(:,ones(1,n)).*Wdyx,dt,period,dj,scale)
 sWdyx1(:,:,i)=sWdyx
 end

 % ----between independent variables and independent variables------
 for i=1:(col-1)
 parfor j=1:(col-1)
 Wdxx=Wdx1(:,:,i).*conj(Wdx1(:,j))
 sWdxx=smoothwavelet(sinv(:,ones(1,n)).*Wdxx,dt,period,dj,scale)
 sWdxx1(:,:,i,j)=sWdxx
 end
 end
% calculate the multiple wavelet coherence

for i=1:length(scale)
 parfor j=1:n
 a = transpose(squeeze(sWdyx1(i,j,:)))
 b = inv(squeeze(sWdxx1(i,j,:,:)))
 c = conj(squeeze(sWdyx1(i,j,:)))
 d = smdY(i,j)
 Rsq(i,j) = real(a*b*c/d)
 end
end

for s=1:maxscale
 cd = Rsq(s,find(outsidecoi(s,:)));
 cd = max(min(cd,1),0);
 cd = floor(cd*(nbins-1))+1;
 for jj=1:length(cd)
 wlc(s,cd(jj)) = wlc(s,cd(jj))+1;
 end
end

for s=1:maxscale
 rsqy = ((1:nbins)-.5)/nbins;
 ptile = wlc(s,:);
 idx = find(ptile~=0);
 ptile = ptile(idx);
 rsqy = rsqy(idx);
 ptile = cumsum(ptile);
 ptile = (ptile-.5)/ptile(end);
 sig95(s) = interp1(ptile,rsqy,.95);
end

mwcsig = [scale' sig95'];

if any(isnan(sig95))&(~warned)
 warning(sprintf('Sig95 calculation failed. (Some NaNs)'))
else
 savebnm(cachefilename,mccount,checkvalues,mwcsig); % save to a cache....
end
This software package is written for performing multiple wavelet coherence. This software package includes mwc.m and mwcsignif.m, which are written in the Matlab program based on wtc.m and wtcsignif.m provided by A. Grinsted (http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence). Users are, therefore, required to download his software package and combine these two packages into one to run the multiple wavelet coherence analysis.

Please acknowledge the use of this software package in any publications by including text such as:

The software for the multiple wavelet coherence was provided by W. Hu and B. C. Si, and is available in the supplement of Hu and Si (2016) (http://???).

and cite the paper:

Hu, W., and B.C. Si (2016), Technical Note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., ?? (under review)"
Acknowledgements:

Wavelet software was provided by C. Torrence and G. Compo, and is available at URL: http://paos.colorado.edu/research/wavelets/.

Crosswavelet and wavelet coherence software were provided by A. Grinsted and is available at URL:
http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence

Should there be any enquire, please feel free to contact:

Wei Hu
Email: wei.hu@plantandfood.co.nz

Bing Si
Email: bing.si@usask.ca
Six or seven intrinsic mode functions (IMFs) corresponding to different scales are obtained for multivariate data series (i.e., a combination of the response variable with two (y2 and y4, or z2 and z4) or three (y2, y3, and y4, or z2, z3, and z4) predictor variables) by MEMD. Because the IMFs with a number of 6 or greater contributed negligible variance to the total, only the first five IMFs are presented (Fig. S1). For each IMF, the scale is calculated as the total number of points (i.e., 256) divided by the number of cycles for each IMF. The obtained scales and percentage (%) of variance explained by each IMF are shown in Table S1. While the obtained scales for the response variable y are in agreement with the true scales for the stationary case, the obtained scales (i.e., 3, 6, 11, 21, and 43) for the response variable z deviate slightly from the average scales for the non-stationary case. For the response variable, the contribution of IMFs to the total variance generally decreases (20% to 13% for stationary and 27% to 11% for non-stationary) from IMF1 to IMF5, which disagrees with the fact that each scale contributes equally (i.e., 20%) to the total variance. The scale of the dominant variance from each predictor variable can be obtained (Table S1). However, the sum of variances over all IMFs for each variable is less than 100% (ranging from 84% to 93%), indicating that MEMD cannot capture all the variances, as was also previously observed (Hu et al., 2013; She et al., 2014).
Figure S1. The first five intrinsic mode functions (IMFs) of response variable y (or z) and predictor variables (y2 and y4; y2 y3, and y4; z2 and z4; or z2, z3, and z4) obtained by multivariate empirical mode decomposition.
Table S1. Scales and percentage (%) of variance explained by each intrinsic mode function (IMF) of response variable y (or z) and predictor variables (y2 and y4; y2, y3 and y4; z2 and z4; or z2, z3, and z4) using the multivariate empirical mode decomposition method.

<table>
<thead>
<tr>
<th>Scale (-)</th>
<th>y (%)</th>
<th>y2 (%)</th>
<th>y3 (%)</th>
<th>y4 (%)</th>
<th>y2 (%)</th>
<th>y3 (%)</th>
<th>y4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y2-y4 (Stationary)</td>
<td>IMF1</td>
<td>4</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF2</td>
<td>8</td>
<td>18</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF3</td>
<td>16</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF4</td>
<td>32</td>
<td>18</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF5</td>
<td>64</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y2-y3-y4 (Stationary)</td>
<td>IMF1</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF2</td>
<td>8</td>
<td>17</td>
<td>85</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF3</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>82</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF4</td>
<td>32</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF5</td>
<td>64</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z2-z4 (Non-stationary)</td>
<td>IMF1</td>
<td>3</td>
<td>27</td>
<td>22</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF2</td>
<td>6</td>
<td>17</td>
<td>68</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF3</td>
<td>11</td>
<td>17</td>
<td>0</td>
<td>75</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF4</td>
<td>21</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF5</td>
<td>43</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z2-z3-z4 (Non-stationary)</td>
<td>IMF1</td>
<td>3</td>
<td>27</td>
<td>22</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IMF2</td>
<td>6</td>
<td>18</td>
<td>69</td>
<td>17</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF3</td>
<td>11</td>
<td>17</td>
<td>0</td>
<td>61</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF4</td>
<td>21</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IMF5</td>
<td>43</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The evaporation from free water surface was significantly correlated to each meteorological factor at scales of around 1 year, at all times, with exception of a certain period for relative humidity and sun hours (Fig. S2). Each of mean temperature, sun hours, and wind speed was positively correlated to \(E \) at different scales. For relative humidity, however, its influences on \(E \) changed with scale. For example, at scales of around 1 year, relative humidity was positively correlated to \(E \) during the period of 1979 to 1997. This is because high relative humidity is usually associated with high temperature in summer, when high evaporation occurs. At other scales (e.g., 2–6 months or 5–10 years), the relative humidity was negatively correlated to the \(E \), which was expected. The dominant factors explaining variation in \(E \) differed with scale. For example, the relative humidity was the dominating factor at small (2–8 months) and large (>32 months) scales, while temperature was the dominating factor at the medium (8–32 months) scales (Fig. S2). The relative humidity corresponded to the greatest mean MWC (0.62) and PASC value (40%) at multiple scale-location domains.
Figure S2. Simple wavelet coherency between evaporation (E) from water surfaces and each of meteorological factors (relative humidity, mean temperature, sun hours, and wind speed) at Changwu site in Shaanxi, China. Arrows show the correlation type with right hand being positive and left hand being negative. Thin solid lines demarcate the cones of influence and thick solid lines show the 95% confidence levels.
References

