Response to first referee

We would like to thank the reviewer for the positive and constructive remarks. We provide here below a response to the main points discussed:

- **Experiment Setup:**
 - How conclusions could be impacted by the choice of the parameters for the experiment? e.g. protection cost or damage costs? This is a good point. We have mentioned a possible impact of these choices in the results section (P12L9-11). When designing the game, we have tried to balance initial money in purse, costs and number of rounds in a way that players could focus more on using the information provided than on money left in hand. However, we had expected that the willingness to pay (WTP) for a service would depend on how much money you have available. That is why we have examined the bids as a function of the money left in hand after round 1. The results are presented in Section 3.4 (page 12). They show that, in our configuration, the money left in hand did not influence significantly the WTP (P13L23-24). We believe that if the damage costs were higher, for instance, participants would probably want to protect all the time, which would make forecasts rather useless (i.e., whatever is forecast to happen, participants would pay for protection anyway). We did not want to have this situation, as we would not know how they were using (or willing to use) their forecasts. It would be interesting to test the influence of the many parameters of the setup, but then we would need to make constant some other parameters and play the game differently. For instance, without different qualities of the forecasts or no differences in flood events among rivers. This could be interesting for further developments and we will mention it in the conclusion section, where we have also mentioned some other limitations of the setup (P16L19-28).
 - How river levels and increments were sampled??? What about the uncertainty of forecast increments? How such choice could impact conclusions? River levels and increments were set in a way that the number of floods was kept equal for each river, and river level values (of initial river level and river level increment) were randomly generated. This is mentioned in the experiment setup section (P4L27-30). As for the forecast increments, it was not the uncertainty (here expressed as interquartile ranges of the boxplots representing the forecasts) that differed among the different forecast sets, but the position of the observations inside the forecast distribution (which made the forecast underpredict or overpredict the observation). This was explained in the round 1 setup section (P5L16-19), but we will make it more clear in the revised version of the paper. The impact on conclusions comes therefore from the different quality (or perceived quality) of the forecasts on the decisions made. This is an issue explored in the results presented in Section 3.1 (P10). We could expect that using forecasts with different levels of uncertainty would make participants spend more money on protection when forecast increments are too uncertain (large boxplots) and take more risks (by not protecting) when forecasts are sharper. This could be an option for another setup of the game (i.e., instead of using forecasts of different accuracy).
• Page 5. Line 10. Include a figure (or a new panel on fig. 1) showing a diagram with the sequences of rounds, auction, etc., to summarize section 2 (experiment setup). This is a good idea, we believe that it will make the game structure clearer to the readers. Therefore, a diagram summarising the setup of the experiment will be added as a panel on Figure 1.

• Page 10 Line 15. Figure 2. How this distribution compare to the distribution of people actually making the decisions? This is a difficult question to assess. We have not included a question in the worksheet about it and have not discussed this point after the game. It would be certainly interesting to know the percentage of each category that had actual decision-making duties in their work. This is an issue that we can add in the discussion and conclusions section for further improvements of the game.

• Page 11, Lines 5-22. Figure 3. It is really not clear from this figure 3 if participants changed strategy during the 5 cases. It would be easier to ask this question to the participants in the form. This is a good point, but one that raises several challenges. In fact, participants were not aware that there could have been a bias in their forecasts. It was important that they did not know that in advance. If we had a direct question on the worksheet (which they have in hand from the beginning of the game), they would have discovered this feature (or be suspicious) before starting to play. Also, if we had put a question asking if they had looked at the median, or the upper or the lower quantiles, we would already be suggesting in advance that they should be looking at one of these. We did not want to influence their strategy. It is a difficult issue when designing a game experiment: how much do we present before they start playing and how much do we leave for the participants to decide (i.e., to play freely)? We have opted to leave it free to participants and then analyse the responses under some hypotheses and in terms of “could the participants have discovered the bias in their forecasts?” This was motivated by the fact that several participants came to talk to us after the application of the game saying that they had seen that their forecasts were biased. Therefore, this was our main driver in the analysis of “possible influencing factors” in Section 3.1.

• Page 11, Lines 20-25. Figure 3. It seems that participants also used information on the other percentiles different from median. For example, in case 4 for type 2, 5th and 95th percentiles indicate flood, so all participants chose the same and correct action. On the other hand, in cases where 5th and 95th percentiles fall above and below the flood threshold, more people did not follow the median (case 1 type 1, case 2 type 3, case 3 type 2, case 5 type 3). This is a very good point and it will be added to the results (Section 3.1).

• Page 12, Line 5, Figure 6b. This is very interesting. Participants attribute good decision making performance with good forecast quality, but they forget that their personal strategy adopted for decision making plays a major role, as there are several ways to interpret and use the probabilistic forecasts. What is the implication in the real world? Decision makers will tend to blame (thank) forecast providers for their wrong (good) decisions? This is a very good point which will be raised in the Discussion Section of the paper. It was mentioned in a HEPEx post “On the economic value of hydrological ensemble forecasts” (http://hepex.irstea.fr/economic-value-of-hydrological-ensemble-forecasts/). “We once asked a decision-maker responsible for deciding on whether or not to open a control gate of a dam, and of how many meters it should be opened in case the decision was to open it, how he knew afterwards that his decision was the ‘best decision’. The answer we got was...
(not ipsis verbis): ‘It is the best decision: we take the best decision given the forecasts we receive and other complementary information we have on the situation. If the result is not good, the problem is not in the decision, but in the forecasts, which were not good’.

• How the flood frequency observed in Round 1 impacted the WTP? Why participants from Green river are more WTP? The effect of the flood frequency of round 1 on participants WTP for another forecast set was briefly mentioned on P14L18-19 and in the conclusions (P17L31-33). However, nothing was said about the higher percentage of green river participants buying a second forecast set. We believe that it is a combination of the flood frequency (not as low as for the yellow river, which made it more relevant for green river participants to buy a second forecast set) and of money left in purse (on average, not as low as the blue river’s participants). This will be added to the analysis section of the paper.

• Section 3.5: The analyses show that participants using forecasts had better performance in Round 2, however, participants with more money and better performance in Round 1 were willing to pay more for the forecasts. Consequently, participants with better performance in Round 1 ended buying forecasts and having better performance in Round 2. How the skill of the participants could impact the conclusion that “Decisions are better when they are made with the help of unbiased forecasts, comparatively to having no forecasts at all”. We understand that the general question can be unfolded into the following questions: does the conclusions pertain only to the “good performing” participants? Is it true also for the “bad performing” participants? Do you need already to be a good decision maker to benefit from having forecasts in hand? Or do bad decision makers also improve their decisions when having forecasts? In order to investigate this issue, we first looked at the number of participants with a bad performance in round 1 and who had a forecast in round 2: all of these participants had a good performance in round 2. This is an indication that even when participants had a bad performance in round 1, when they had a forecast set in round 2, they all had a good performance in the second round. We then looked at the number of participants with a good performance in round 1 and who had no forecast in round 2. 57 out of 59 had a bad performance in round 2. This is also an indication that even if participants had a good performance in round 1, if they had no forecast set in round 2, they mostly had a bad performance. These observations will be added to the analysis in Section 3.5 in the revised version of the paper.

• Section 3.6: Show % values, table or figure for these results. It may help the reader. We will add a table to back up the text about the winning and losing strategies.

• Is a biased forecast better than no forecast? Can you access that from this experiment? This is an interesting question: are forecasts, even if biased, useful for decision-making, comparatively to having no forecasts at all? Our experiment suggests that some participants adjusted their biased forecasts to make their decision. This can be an indication that they were useful somehow. However, our experiment setup does not allow drawing general conclusions. We cannot directly compare the performance of participants with biased forecasts in round 1 with the performance of participants without any forecasts in round 2, since the situations were not the same in both rounds (i.e., initial river levels, river level increments, money in purse, etc). In order to fully investigate this particular issue we would need to have an experiment where we play the same cases with two groups: one having no forecasts and another having biased forecasts. It is, in fact, interesting to note that when we
setup a game experiment and analyse the results, several other possibilities open up for new variants of the experiment and further investigations. For us, this shows that there are still several open opportunities to enhance our understanding on how forecasts can be better used to inform decision-making.
We would like to thank the reviewer for the positive and constructive remarks. We provide here below our answers to the points discussed:

It might be more reader friendly to combine these sections and take the question-answer pairs one after another. We have thought about it when writing the paper but some feedback from the first readers found that it would be better to separate methodology from results.

Specific comments:

- P4L16-19: Did the participants know from the beginning that there are two rounds? \(\rightarrow\) According to P6L7 they didn’t. And P6L7: So, at the beginning, the participants didn’t know that there were two rounds to play? P6L7 indeed suggests that the participants were not aware that 2 rounds would be played in total. However, participants were given a worksheet at the beginning of the game which contained a table for both round 1 and round 2. Moreover, they were told that 2 rounds of 5 cases each would be played during the game introduction. This will be clarified in the revised version of the paper.

- P4L27: Total number of flood events is kept equal in order to give equal chances to all participants to win. This statement doesn’t hold. Participants surely did not have equal chances to win the game. This depended on the forecast set type and the river they were given. For the aim of the study it is not required that every participant has the same chance to win, but this statement is wrong. \(\rightarrow\) 2.1.1. P5L3. This is a good comment and the reviewer is right for pointing it out. An equal total number of floods is not a needed criteria for this specific experiment and does not give equal chances to participants to win the game, given the other influencing factors. This sentence will be removed from the revised paper.

- P4L29-30: the number of flood events was different for every river, but not for every round \(\rightarrow\) the Green River has the same number of events in round 1 and 2, whereas it changes for Yellow River and Blue River (which again influences their chances to win). These flood frequencies were chosen in order to: 1) explore the influence of different flood frequencies in round 1 on the participants WTP for a second forecast set, 2) investigate the change (yellow and green rivers) or no change (blue river) in flood frequency between round 1 and round 2 on the participants’ strategies throughout the game. This was presented in Section 3.5 (P15L6-13). We will clarify those motivations in the revised version of the paper.

- P6L26-27: How did the participants that purchased a forecast perceive the quality of the forecasts compared to round 1? Did participants that had biased forecast sets in round 1 notice the better performance of the forecasts in round 2? This is an interesting point. It was explored during the analysis of the game results but only partially stated in the paper (see Section 3.5, P15L14-15). Among the 44 participants who bought a forecast in round 2 and perceived it of “good quality”, 18 had played round 1 with a biased forecast set, and 19 with an unbiased forecast set. The 3 remaining participants stated that their forecasts for the second round were ‘neither good nor bad’ or ‘quite bad’. These 3 participants all had biased forecasts in the first round and their behaviour during round 2 suggested that they might have been influenced by the bias in their forecasts during round 1. These additional results will be added to the paper (Section 3.5).

- Figure 3: - Yellow and Green River \(\rightarrow\) the ticks do not match the x-axis labels! - It would be nice if the plot was arranged according to table 3 - Change “forecasted final purse” to “final purse if following median forecast” - Labels of the “columns” could be changed to “pos. biased”, “unbiased”, “neg. biased” (same could be done for fig. 4). We thank the referee for the suggestions and will change the figures accordingly.
QA 1 (2.2.1/3.1):
- Fig 4: please change order of the bars such that forecast type 1 is first in line. This will indeed make the figure easier to read. We will change as suggested.
- Equal chances...: - the disadvantage for participants with positive bias is smaller if the observed value is above/equals the flood threshold. Thus for the blue river, which experiences three floods in five cases (1st round), the participants with forecast set type 1 are expected to perform better than those with forecast set type 3. This is a good point, and it will therefore be added to the paper. We indeed expected an influence of the game setup on the participants’ behaviours and on their performances. The costs chosen for this experiment is an example of those factors. It was mentioned on P12L7-11 that, as the damage cost was set to twice the protection cost, this might have influenced the participants’ tolerance to misses and false alarms.

QA2 (2.2.2/3.2): You state that the percentage of negative perceptions of the quality of the forecasts increases with increasing or decreasing forecast bias. This seems to be quite consistent for positively biased forecasts, but how do you explain that the distribution of the ratings from the participants with the most negative bias (0) looks almost the same as from the participants with unbiased forecasts? → Fig.5. Participants with a bias of 0 belonged to the yellow river and had negatively biased forecasts in round 1. There was only one flood for river yellow, which occurred at the end of round 1. The negatively biased forecasts for river yellow thus missed this flood. During the analysis of the results, it was observed that only about 25% of the yellow river participants given the negatively biased forecasts did not protect for this flood. This could be because the participants had time to learn about their forecasts’ quality until the occurrence of the flood, during case 5 of round 1. This low number of participants who actually suffered from their negative bias and the presence of only 1 miss out of the 5 cases of round 1 could explain the good rating of their forecasts by those participants. This will be made clearer in the text of the revised version.

QA3 (2.2.3/3.3): At a first glance Figure 6 looks completely fine. However, there were five levels of perceived performances (very bad to very good) the participants could choose from. So the graph should not show perceived performances higher than five or lower than one. You could change the graph to a simple scatterplot and choose the point size proportional to the number of participants that fall onto a specific perceived actual-performance combination. (Same for Figure 6 b). This is true and a good suggestion. The figure will be modified accordingly.

QA4 (2.2.4/3.4):
- P13L3-4: It would be more straightforward if you just stated the average percentage the participants were willing to spend from the tokens left in their purse. We think that both, the average percentage and the actual amount, are needed for the sake of clarity.
- P14L4-5: ... 48+32+21=101 ... round to 20 % for blue river. Yes, good point! However, it would be more informative what percentage of river group members purchased a forecast for the second round → 36% of the yellow river group, 41% of green rivers, 23% of blue rivers purchased forecasts for the second round. And also for the forecast set type groups → pos. biased 30%, unbiased 42% and neg. biased 31%. The percentages within each group will be added to follow the suggestions of the reviewer. We also think it will be clearer for the reader.

QA6 (2.2.6/3.6):
- P15L18-19: Could you give the average final purse for the two groups “with and without forecast in the second round” separately. On average, the participants without a second forecast set ended the game with 3341 tokens, compared to 2778 tokens on average for participants with a second forecast set. These final average
purses are however not only a reflection of the participants’ overall performances, but also of the setup of the game. If the number of cases had been larger in round 2 (not feasible due to the restricted amount of time in our case), we would possibly have seen a larger benefit of having a forecast set in round 2 and as a result, a larger final purse for participants with a second forecast set. This is why the analysis of the winning and losing strategies (presented in Section 3.6) is largely qualitative. The final purses will be mentioned in Section 3.6.

- Table 5: you could do that additionally by forecast set type. It is a possibility, but we think this would make the results more difficult to interpret since the table refers to round 2 and the forecast set types played a stronger role in round 1. Also, the average avoided cost makes sense for the same river as it will only depend on the possession of a second forecast set or not (as the flood frequency is the same within a river). If we consider also the different forecast quality groups, the average avoided cost will depend on the possession of a second forecast set but also on the number of floods for the second round and on the distribution of the participants among the different rivers. This would stratify too much our sample and results would lose robustness.

- Discussion/Conclusion:
 - P18L9: gambling was considered a reason for not buying a forecast set by other few participants. → According to P14L22 this was just one participant. Thank you for pointing this out. It will be corrected in the revised version of the paper.
 - P18L12-15: “This further demonstrates that more work is needed not solely to provide guidance on the use of probabilistic information for decision-making,...” Comment: It is questionable if the setup of the game is not to some extent counterproductive and doesn’t help to improve this. The winners of the games had mostly biased forecasts in the first round and no forecast in the second round ... If the game should have an educational merit, shouldn’t the game then be set up in a way so that people who have no bias in the forecasts of the first round and who purchase a forecast in the second round have better chances to win? By designing this experiment, we did not intend to create an educational game as such, but rather a role-play situation where some important topics in hydrological forecasting could be reflected upon and discussed within a group. The main purpose of the game was to answer the questions explored and presented in this paper, within the limits of its feasibility and results’ interpretation. The game contributes to the discussion about how forecasts are used and how much one is ready to pay to have them in their decision-making situation. Much of what one can learn from the game relies on the discussions the group may have after playing it. We believe that issues on the importance of forecasts for decision-making can be raised by participants once they have been introduced to the topic with this game experiment and are more at ease to share their own perceptions and knowledge.

Minor Comments: The required corrections will be made for the following comments.

- P2L3: remove dashes
- P3L15: remove “one”
- P7L8: his purse
- P11L17: ... the lowest percentage of participants not following the median forecast are for the unbiased forecast set type 2.
- P13L16: ... (the river that experienced most floods in round 1 and for which players thus ended the first round with on average the lowest amount of tokens left in their purse)
• P16L5-6: ... than the “avoided cost” of each river. On average participants paid 1000 tokens more ...
• P18L3: ... necessary. Seifert ...
• General: it would be easier for the reader if you used the terms "neg. biased forecast", "unbiased forecast" and "pos. biased forecast" instead of the terms "forecast set type 1-3" in the text, tables and graphs.
2. Set up of the decision-making game

- The sentence saying that the total number of flood events was kept equal in order to give participants equal opportunities to win the game was removed from Section 2.1. This was not a required parameter for the aim of the game, as pointed out by referee 2.
- The different numbers of floods between the two rounds of the game was mentioned, as well as the opportunity that this offered for the analysis of the game. This was included in Section 2.1 (page 4, lines 26-30), following a comment from referee 2.
- We have clarified the different types of probabilistic forecasts distributed for the first round of the game by adding the following sentence to Section 2.1.1 (page 5, lines 16-17): “The three different forecast types were obtained by varying the position of the observation inside the forecast distribution”. This was added following a comment from referee 1.
- We have removed the sentence suggesting that participants did not know that there would be two rounds to play, as it was not true, previously found in Section 2.1.3. This is following a comment from referee 2.

3. Results

- An additional paragraph was included in Section 3.1 (pages 11-12, lines 33-2) to mention the possible use of other percentiles of the forecasts by participants during round 1. This was suggested by referee 1. It was also mentioned briefly in the “Discussion” and “Conclusions” sections.
- A paragraph was added to Section 3.2 (page 12, lines 12-19) in order to explain the very similar ratings for participants with the most negative bias (0) and participants with unbiased forecasts (Figure 5). This was an issue raised by referee 2.
- We wrote a few lines on the high WTP for participants with the green river, which were added in Section 3.4 (page 14, lines 20-23). This was done as a result of a comment from referee 1.
- The percentages of participants who bought a second forecast set among the different rivers were corrected to add up to 100% (Section 3.4, page 14, lines 18-20). Additionally, the percentage of participants with a second forecast set within each river and each forecast set type was also mentioned (Section 3.4, page 14, lines 16-20). These two points were raised by referee 2.
- We have added a paragraph in Section 3.5 (page 15, lines 21-27) arguing that you do not need to be a good decision-maker to benefit from the forecasts in hand, in the context of this experiment. This was mentioned following comments from referee 1.
- A few lines were added to Section 3.5 (page 16, lines 5-8) in order to explain further the participants’ perception of their forecast set quality in round 2, compared to round 1. This was done to answer a few questions from referee 2.
- While we previously agreed to support the text about winning and losing strategies (Section 3.6) with a table (suggestion from referee 1), we have finally decided instead to include the performance values in the text, in order to make this part of the analysis slightly less qualitative and also more consistent with the rest of the paper. We felt that the table did not provide enough added value for the space required.
• The average final purses of participants without a second forecast set and with a second forecast set were added to Section 3.6 (page 16, lines 11-12; suggestion from referee 2).

4. Discussion
• The former “Discussion and conclusions” section was reformatted into a “Discussion” section, written into two distinct parts: “Experiment results and implications” and “Game limitations and further developments”. In the first part, the results of the game and the larger questions they raise are discussed. In the second part, the limitations of the game are mentioned, and possible further developments of the experiment are suggested. This was done to improve the clarity of the discussion.

4.1. Experiment results and implications
 • Even though we could not answer the question whether a biased forecast is better than no forecast at all from the game, we have raised this point in the “Discussion” section of the paper (page 17, lines 17-18): “This could suggest that forecasts, even biased, can still be useful for decision-making, comparatively to no forecasts at all, if users are aware of the bias and know how to consider it before taking a decision.”
 • The fact that biased forecasts were problematic for the users, which hints that there is an important need for probabilistic forecasts to be bias-corrected, was added (page 17, lines 21-23).
 • A paragraph was added here to mention an interesting point raised by referee 1 (page 18, lines 1-7). This is the fact that participants attribute good decision-making performance with good forecast quality, but might tend to forget that their personal strategy plays a major role.
 • The sentence leading to believe that multiple participants mentioned gambling as a reason for not buying a second forecast set was rephrased, as suggested by referee 2 (page 18, lines 24-25).

4.2. Game limitations and further developments
 • We have added a paragraph in this section mentioning the impact of the choice of the parameters on the experiment’s results (page 19, lines 22-26). This was suggested by referee 1.
 • A few lines were added on the small sample size of this experiment, encouraging others to replicate the experiment (page 19, lines 27-29).

5. Conclusions
• A “Conclusions” section was included to highlight the key results of the paper.

Tables and figures
• A panel was added on Figure 1, showing a diagram of the experimental set up. This was added to Figure 1 after a comment from referee 1 suggested that it would make the experimental set up clearer to the readers, which we agreed to. We have also replaced the five probabilistic forecasts (as an example of the probabilistic forecast sets given to the participants for the first round) previously displayed on this figure, for a schematic of one single probabilistic forecast (displayed as a boxplot and where the boxplots’ percentiles - mentioned in the paper - are apparent). This was done as there was no added value of the
five forecasts being shown and we believe that the modified image makes the figure clearer. The figure’s caption was modified accordingly.

- The legend of the lowest graph of Figure 2 was changed from “positive bias”, “unbiased” and “negative bias” to “pos. biased”, “unbiased” and “neg. biased” respectively. This was done to keep the paper consistent.
- Figure 3 was modified slightly in order to make the changes highlighted by referee 2 (i.e. putting the rivers as columns and the forecast quality as rows to keep the consistency with the tables; naming the forecast qualities “pos. biased”, “unbiased” and “neg. biased” rather than forecast set type 1, 2 and 3; and rephrasing the legend). The caption was adjusted accordingly.
- Figure 4 was modified slightly in order to make it more reader-friendly, as suggested by referee 2. This was done by changing the legend to “neg. biased”, “unbiased” and “pos. biased”. The caption and the corresponding text were also adjusted.
- The legend of Figure 5 was changed from rating 1 to 5, to ‘very bad’ to ‘very good’. The caption was modified accordingly.
- Figure 6 was corrected by changing the previous contour plots to scatter plots, suggested by referee 2. The x- and y-axis of the perceived forecast set quality and perceived decision-maker performance were changed from rating 1 to 5, to ‘very bad’ to ‘very good’. The caption was also modified.
- The x-axis of Figure 7 was changed to range between 6,000 and 18,000 tokens only. It previously showed 20,000 tokens as well, for which there is no data. The caption was also made clearer.
- The x-axis of Figure 8 was changed from rating 1 to 5, to ‘very bad’ to ‘very good’. The caption was also made clearer.

General comments

- One of the co-authors’ name (Erin Coughlan de Perez) and their affiliations were rectified.
- While we previously agreed to the comment of referee 2 on the blue river participants with a positively biased forecast set expected to perform better than those with negatively biased forecast sets, due to the protection and damage costs, we have decided to not mention it as it is not true. Indeed, Figure 3 shows the final purse that participants would have, had they followed the median of their forecasts for all the cases of round 1. From this figure, it is evident that blue river participants with positively biased forecasts are expected to end the first round with less tokens in their purse than blue river participants with negatively biased forecasts. This is because of the number of misses and false alarms for both sets of participants, presented in Table 2.
- The terms “negatively biased forecasts”, “unbiased forecasts” and “positively biased forecasts” were used instead of the terms “forecast set type 1-3” in the text, tables and figures. This makes the paper clearer for the reader and was also mentioned by referee 2.
- The participants’ ratings of their forecast set quality and decision-maker performance were mentioned using the terms ‘very bad’ to ‘very good’, instead of rating 1 to 5 in the text, tables and figures. This makes the paper clearer for the reader.
- The language and grammar has been thoroughly revised and small changes made to improve the flow of the paper (including section titles, such as the title of sections 2, 2.1 and 3.6).
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game

Louise Arnal1,2, Maria-Helena Ramos3, Erin Coughlan de Perez4,5,6, Hannah Louise Cloke1,7, Elisabeth Stephens1, Fredrik Wetterhall2, Schalk-Jan van Andel8, and Florian Pappenberger2,9

1Department of Geography and Environmental Science, University of Reading, Reading, UK
2ECMWF, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK
3IRSTEA, Catchment Hydrology Research Group, UR HBAN, Antony, France
4Institute for Environmental Studies, VU University Amsterdam, The Netherlands
5Red Cross/Red Crescent Climate Centre, The Hague, The Netherlands
6International Research Institute for Climate and Society, Palisades, New York, USA
7Department of Meteorology, University of Reading, Reading, UK
8UNESCO-IHE Institute for Water Education, Delft, The Netherlands
9School of Geographical Sciences, University of Bristol, Bristol, UK

Correspondence to: Louise Arnal (l.l.s.arnal@pgr.reading.ac.uk)

Abstract. Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecast uncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydro-meteorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.

1 Introduction

In a world where hydrological extreme events, such as droughts and floods, are likely to be increasing in intensity and frequency, vulnerabilities are also likely to increase [WMO 2011, Wetherald and Manabe 2002, Changnon et al. 2000]. In this context, building resilience is a vital activity. One component of building resilience is establishing early warning systems, of which hydrological forecasts are key elements.
Hydrological forecasts suffer from inherent uncertainties, which can be from diverse sources, including: the model structure, the observation errors, the initial conditions (e.g. snow cover, soil moisture, reservoir storages, etc) and the meteorological forecasts of precipitation and temperature (Verkade and Werner, 2011; He et al., 2009). The latter variables are fundamental drivers of hydrological forecasts and are therefore major sources of uncertainty. In order to capture some of this uncertainty, there has been a gradual adoption of probabilistic forecasting approaches, with the aim to provide forecasters and forecast users with additional information not contained in the deterministic forecasting approach. Whereas “a deterministic forecast specifies a point estimate of the predictand (the variate being forecasted), “a probabilistic forecast specifies a probability distribution function of the predictand.” (Krzysztofowicz, 2001). For operational forecasting, this is usually achieved by using different scenarios of meteorological forecasts following the ensemble prediction approach (Buizza, 2008; Cloke and Pappenberger, 2009).

Many authors have shown that probabilistic forecasts provide an added (economic) value compared to deterministic forecasts (Buizza, 2008; Verkade and Werner, 2011; Pappenberger et al., 2015). This is due, for example, to the quantification of uncertainty by probabilistic forecasting systems, their ability to better predict the probability of occurrence of an extreme event and the fact that they issue more consistent successive forecasts (Dale et al., 2012; Cloke and Pappenberger, 2009). This probability of occurrence makes the probabilistic forecasts useful in the sense that they provide information applicable to different decision thresholds, essential since not all forecast users have the same risk tolerance (Michaels, 2015; Buizza, 2008; Cloke and Pappenberger, 2009). Probabilistic forecasts therefore enable the quantification of the potential risk of impacts (New et al., 2007) and, as a result, they can lead to more optimal decisions for many hydrological operational applications, with the potential to realise benefits from better predictions (Verkade and Werner, 2011; Ramos et al., 2013). These applications are, for example, flood protection (Stephens and Cloke, 2014; Verkade and Werner, 2011), hydroelectric power management (García-Morales and Dubus, 2007; Boucher et al., 2012) and navigation (Meissner and Klein, 2013). Moreover, the continuous increase in probabilistic forecast skill is very encouraging for the end-users of the probabilistic forecasts (Bauer et al., 2015; Magnusson and Källén, 2013; Simmons and Hollingsworth, 2002; Ferrell, 2009).

However, the communication of uncertainty through probabilistic forecasts and the use of uncertain forecasts in decision-making are also challenges for their operational use (Cloke and Pappenberger, 2009; Ramos et al., 2010; Michaels, 2015; Crochemore et al., 2015). One of the reasons why the transition from deterministic to probabilistic forecasts is not straightforward is the difficulty in transforming a probabilistic value into a binary decision (Dale et al., 2012; Demeritt et al., 2007; Pappenberger et al., 2015). Moreover, decision-makers do not always understand probabilistic forecasts the way forecasters intend them to (Handmer and Proudley, 2007). This is why it is essential to bridge the gap between forecast production and hazard mitigation, and to foster communication between the forecasters and the end-users of the forecasts (Cloke and Pappenberger, 2009; Michaels, 2015).

As Michaels (2015) notes, “the extent to which forecasts shape decision making under uncertainty is the true measure of the worth of a forecast”. The potential added value of the forecast can furthermore only be entirely realised with full buy-in from the decision-makers. However, how much are users aware of this added value? How much are they ready to pay for a forecast? These are questions that motivated the work presented in this paper. In order to understand how users perceive the
value of probabilistic forecasts in decision-making, we designed a risk-based decision-making game - called “How much are you prepared to pay for a forecast?” - focusing on the use of forecasts for flood protection. The game was played during the European Geophysical Union (EGU) General Assembly meeting 2015 (Vienna, Austria), at the Global Flood Partnership (GFP) workshop 2015 (Boulder, Colorado), as well as at Bristol University (BU) in 2015. Games are increasingly promoted and used to convey information of scientific relevance. They foster learning, dialogue and action through real-world decisions, which allow the study of the complexities hidden behind real-world decision-making in an entertaining and interactive set up (de Suarez et al., 2012).

This paper presents the details of the game and the results obtained from its different applications. The participants’ perceived forecast value is analysed by investigating the way participants use the forecasts in their decisions and their willingness-to-pay (WTP) for a probabilistic forecast. The WTP is the amount an individual is inclined to disburse to acquire a good or a service, or to avoid something undesirable (Breidert et al., 2006; Leviäkangas, 2009). It is a widely and very commonly adopted method to make perceived value assessments and its use has been demonstrated in a meteorological context (Leviäkangas, 2009; Anaman et al., 1998; Rollins and Shaykewich, 2003; Breidert et al., 2006; Breidert et al., 2006) present a complete overview of the methods available, organised by data collection types. According to their classification, there exists two main WTP measuring approaches: the “revealed preference” and the “stated preference”. The former describes price-responses methods (such as market data analysis, laboratory-experiments and auctions, amongst others) while the latter refers to surveys in general. This experiment combines both “revealed preference” and “stated preference” methods. The design of the game is described in Section 2 and justified in terms of the purpose and contribution of the different components of the game to its main aim. The results and the discussion promoted by the latter are subsequently presented in Sections 3 and 5 respectively.

2 Set up of the decision-making game

2.1 Experimental design

This game was inspired by the table game “Paying for Predictions”, designed by the Red Cross/Red Crescent Climate Centre. Its focus is however different. Here, our aim is to investigate the use of forecasts for flood protection and mitigation. Also, we strongly adapted the game to be played during conferences and with large audiences.

The set up of the game (illustrated in Fig. 1) was the following: participants were told that they were competing for the position of head of the flood protection team of a company. Their goal was to protect inhabitants of a fictitious town bordering a fictitious river against flood events, while spending as little money as possible during the game. The participant with the highest amount of money at the end of the game was chosen as head of the flood protection team. Each participant was randomly assigned a river (river yellow, river blue or river green) for the entire duration of the game. Each river had distinct initial river levels and rates of flood occurrences (see Table 1). Participants worked independently and had a worksheet to take notes (see Appendix). An initial purse of 20,000 tokens was given to each player to be used throughout the game.

Based on this storyline, the participants were presented the following sequence of events (illustrated in Fig. 1(b)): after being given their river’s initial level (ranging between 10 to 60 included), each participant was asked to make use of a probabilistic forecast (see Fig. 1(b)) of their river level increment after rainfall (ranging between 10 to 80 included) to decide if they wanted to pay for flood protection or not. The cost of flood protection was 2,000 tokens. They were informed, prior to the start of the game, that a flood occurred if the sum of the initial river level and the river level increment after rainfall (i.e. the actual river level after rainfall) reached a given threshold of 90. The probabilistic forecasts were visualised using boxplot distributions. They had a spread of about 10 to 20, and indicated the 5^{th} and 95^{th} percentiles as well as the median (i.e. 50^{th} percentile) and the lower and upper quartiles (i.e. 25^{th} and 75^{th} percentiles respectively) of the predicted river level increment after rainfall. Forecasts were given to participants case by case (i.e. when playing the first case, they could only see the boxplot distribution of forecast river increment for case 1). Once the participants had made their decisions using both pieces of information (i.e. river level before rainfall and forecast of river level increment), they were given the observed (actual) river level increment after rainfall for their rivers. If a flood occurred and the participant had not bought flood protection, a damage cost (i.e. price paid when no protection was bought against a flood that actually happened) of 4,000 tokens had to be paid.

The monetary values (initial purse, price of flood protection and damage cost) were deliberately chosen. The price of a protection was set to 2,000 tokens such that if a participant decided to buy flood protection every time during the game (i.e. two rounds of five cases each, thus ten times) they would have no tokens left in their purse at the end of the game. This was done in order to discourage such a behaviour. The damage cost was set to twice the flood protection cost as this was estimated to be a realistic relation between the two prices based on Pappenberger et al. (2015). The latter states that the avoided damages due to early flood warning amounts to a total of about forty percent. Here, for simplicity, we used a percentage of fifty percent.

Once the context was explained, the participants were then told that they would first play one round of five independent cases, which would each be played exactly according to the sequence of events presented, and for which they would have to record their decisions on the worksheet they were provided (see Appendix). The game had a total of two rounds of five cases each. This specific number of cases and rounds was chosen because of the time-constraint to play the game during conferences (the game should last around 20 to 30 minutes only). Table I presents the total number of flood events for each round and each river. The number of flood events was different for every river for each round as river level values were randomly generated for the purpose of the game. This allowed the exploration of the influence of different flood frequencies in round 1 on the participants’ WTP for a second forecast set. The number of flood events were however sampled to some extent in order to obtain decreasing (increasing) numbers of flood events between the two rounds for the blue (yellow) river, or constant throughout the two rounds for the green river. This was done to investigate the effect of the change (or not) in flood frequency between round 1 and 2 on the participants’ strategies throughout the game.

During the first round of the game, the participants had forecasts of river level increments to help their decisions. These forecasts were however not available for all participants in the second round, but were sold between the two rounds through an auction. The purpose and set up of each round and the auction are explained in the following paragraphs.
2.1.1 Round 1

The objective of the first round was to familiarise the participants with the probabilistic forecasts they were given to help them in their decisions, and to create a diversity amongst the decision-makers in terms of:

- their river behaviour: which is why different rivers, each with different flood frequencies and different initial levels, were assigned to the participants;
- the money they would spend during this round and have in hand for the ensuing auction (before round 2);
- the quality of their forecasts in the first round: to this end, different forecast sets were distributed to the players for round 1.

This diversity was triggered in round 1 in order to analyse whether or not the WTP for a second forecast set, measured in the auction performed before round 2, was dependent on any of the factors inherent to the first round (i.e. river-specific flood frequency, money left in purse, or quality of the forecasts).

Before the start of the first round each participant was given a forecast set containing probabilistic forecasts of their river level increment after rainfall for the five cases of round 1. Participants were however not aware that three different forecast sets were produced for each of the rivers. One set had only forecasts with a positive bias (forecast sets 1), the second set had only unbiased forecasts (forecast sets 2) and the third set only forecasts with a negative bias (forecast sets 3). There were therefore nine different sets of forecasts which were distributed randomly amongst the audience prior to the start of the game. The three different forecast types were obtained by varying the position of the observation inside the forecast distribution. The unbiased forecasts had the observations fall between the lower and the upper quartiles of their distributions, while the biased forecasts had the observations fall outside of the lower and the upper quartiles of their distributions, leading to over- (positively biased forecast sets) or under- predictions (negatively biased forecast sets) of the observations.

The quality of each forecast set can be represented in terms of the number of correct forecast flood events (given a forecast percentile threshold) with respect to the number of observed flood events. For each forecast set type and each river, the number of forecast flood events during the first round was calculated by adding the median of the forecast river level increment to the initial river level for each case. A forecast is referred to as a false alarm if this sum forecasts a flood (i.e. it exceeds the flood threshold) but the flood is subsequently not observed. It is referred to as a hit if this sum forecasts the flood and the flood is subsequently observed. A miss is an observed flood that was not forecast. The numbers of hits, misses and false alarms are usually gathered in a contingency table as a matrix (e.g. Table 2): hits are placed on top, left; misses on bottom, left, and false alarms on top, right. The place on bottom, right is usually not considered in the evaluation of forecasts as it represents situations with low interest to a forecaster (i.e. when floods are not forecast, nor observed). Table 2 displays the nine contingency tables we obtain considering each forecast set type and each river. Each participant would find themselves in one of the contingency tables represented. We can see the higher number of total misses (false alarms) considering all rivers together in negatively (positively) biased forecast sets, and the absence of these in the unbiased forecast sets.
After all the five cases of round 1 were played, participants were asked to rate their performance as a decision-maker and the quality of their forecast set for round 1 on a scale from ‘very bad’ to ‘very good’ (the option ‘I don’t know’ was also available) (see Appendix).

2.1.2 Auction

The auction was carried out after round 1 in order to measure the participants’ WTP for a second forecast set and to evaluate its dependencies on any of the elements of the game in round 1. The auction was implemented as follows.

At the end of the first round participants were asked to transfer the remaining tokens from round 1 to the second round. They were then told that the forecasting centre distributing the probabilistic forecasts now wanted the decision-makers to pay for the forecast sets if they wanted to have access to them for the second round. Furthermore, they were informed that only thirty percent of them could get a second forecast set for this round. This percentage was chosen in order to restrict the amount of participants that could buy a forecast set (and create a competitive auction), while keeping a high enough number of participants playing with a forecast set in round 2 for the analysis of the results.

Participants were then asked to make a sealed bid, writing down on their worksheets the amount of tokens they were willing to disburse from their final purse of round 1 to obtain a set of probabilistic forecasts for all the five cases of round 2. After the bids were made, a forecast set was distributed to the participants within the highest thirty percent of the bids. This was done through an auction. It was carried out by asking the participants if any of them wrote down a bid superior or equal to 10,000 tokens. If any participants did, they raised their hands, after which a forecast set - for the same river as the river assigned to them at the beginning of the game - was given to them. The auction continued by lowering the amount of tokens stated to the participants until all forecast sets for round 2 were distributed. Each participant having bought a forecast set for round 2 was then asked to disburse the amount of tokens they paid for this forecast set from their remaining purse from round 1.

We note that participants were not told that the forecasts for the second round were all unbiased forecasts. Once again, the quality of the forecasts was kept secret in order for the participants to assign a value to the second forecast set that would strictly be related to the conditions under which they played the first round.

2.1.3 Round 2

The second round was played in order to measure the added value of an unbiased forecast set, compared to no forecast set at all, to the decisions of the participants on protecting or not against floods. Moreover, as the winner of the game was determined by the amount of tokens left in their purse at the end of the game, this round would give a chance to participants who bought a second forecast set to make up for the money spent with the auction, during round 2.

The second round developed similarly to the first round, with five independent cases of decision-making, with the exception that only participants who bought a second forecast set could use it to make their decisions. Participants who did not buy a second forecast set did not have any forecasts on which to base their decisions.

After the five cases were played, the participants were asked to once again answer a set of questions (see Appendix). They were asked to rate their performance as a decision-maker in the second round, on a scale from ‘very bad’ to ‘very good’ (the
option ‘I don’t know’ was also available). Participants without a second forecast set were invited to provide a justification for not purchasing a set of forecasts for this round. Participants who had bought a second forecast set were also asked to rate the quality of their forecast set for round 2 (on a scale from ‘very bad’ to ‘very good’, the option ‘I don’t know’ was also available) and if those were worth the price they had paid for them. If not, they were asked to provide a new price that they would have rather paid.

The winner was finally determined by finding the player with the largest amount of tokens in their purse at the end of the game.

2.2 Objectives and evaluation strategy

The main aim of this paper is to investigate the participants’ WTP for a probabilistic forecast set in the context of flood protection, following the game-experiment designed as presented in the previous paragraphs. It unfolds into two objectives that were pursued in the analysis of the results:

1. to analyse how participants used the information they were provided (probabilistic forecast sets) in this risk-based decision-making context, and

2. to characterise the participants’ WTP for a probabilistic forecast set for flood protection.

We assess these objectives through six questions, which are presented below, together with the evaluation strategy implemented.

2.2.1 Did the participants use their forecasts and, in this case, follow the 50th percentile of their forecast during the decision-making process?

This first question was investigated using the results of the first round. We first wanted to know if the players were actually using their forecasts to make their decisions. Moreover, we searched for clues indicating that the participants were following the 50th percentile (i.e. the median) of the probabilistic forecasts. This was done in order to see if the 50th percentile was considered by the players as the optimal value to use for the decision-making process under this specific flood risk experiment. Additionally, this question relates to an intrinsic characteristic of the use of probabilistic forecasts for decision-making, which is the difficulty to transform the probabilistic values into a binary decision (Dale et al., 2012; Demeritt et al., 2007; Pappenberger et al., 2015).

The way in which probabilistic flood forecasts are used depends on attitudes of decision-makers towards risk, the uncertainty and the error in the information provided to them (Demeritt et al., 2007; Ramos et al., 2013), and decisions can vary from a participant to the next provided the same information (Crochemore et al., 2015).

Question one was explored by looking at the worksheets collected in order to infer from the decisions taken by the participants whether or not they most probably used the median of their forecasts to consider if the river level would be above, at or under the flood threshold. In cases where the decisions did not coincide with what the median forecast indicated, other factors that could also influence the decisions were considered, such as: a) the flood frequency of each river and their initial river...
levels, b) the forecast set type each participant had (i.e. biased - positively or negatively - or unbiased) and c) the familiarity of the participants with probabilistic forecasts and decision-making (given their occupation and years of experience).

2.2.2 Was there a correspondence between the way participants perceived the quality of their forecasts in round 1 and their ‘true’ quality?

A well-known effect, called the “cry wolf”, was studied for weather-related decision-making by LeClerc and Joslyn (2015). It describes the reluctance of users to comply with future alarms when confronted in the past with false alarms. This leads to the second question which was explored in this paper: was there a correspondence between the way participants perceived the quality of their forecasts in round 1 and their ‘true’ quality? Our aim here is to investigate whether the participants were more sensitive to false alarms or misses. The participants’ answers to the question on their forecast set quality for the first round (see Appendix) were analysed against their ‘true’ quality. The latter was measured in terms of forecast bias, calculated from the hits, false alarms and misses presented in Table 2. A bias value was computed for each forecast set type of each river (i.e. each contingency table; there were therefore nine different bias values in total) with the following equation:

\[
\text{Bias} = \frac{\text{hits} + \text{false alarms}}{\text{hits} + \text{misses}}
\]

A bias value equal to one is a perfect value (which corresponds to unbiased forecasts), and a value less than (superior to) one indicates under- (over-) prediction.

2.2.3 Did the participants’ perceptions of their own performance coincide with their ‘true’ performance?

We also looked at the perception the participants had of their own performance. The answers to the question “How was your performance as a decision-maker” (see Appendix) was assessed against the participants’ ‘true’ performances (in rounds 1 and 2), which were calculated in terms of the money participants spent as a consequence of their decisions. The following general formula (\(n\) being the round number) was used:

\[
\text{Performance} = \frac{\text{Money spent round } n}{\text{Optimal}}
\]

The performance is expressed relatively to an optimal performance, which is the minimum amount a participant could have spent, given the river they were assigned, defined as:

\[
\text{Optimal} = \text{Protection cost} \times \text{Number of floods in round } n
\]

A performance value of one indicates an optimal performance. Performance values greater than one indicate that participants spent more money than the minimum amount necessary to protect the city from the observed floods. The greater the value, the higher the amount of money unnecessarily spent.
2.2.4 What was the participants’ willingness-to-pay for a probabilistic forecast set?

The auction was incorporated into the experiment in order to explore the WTP of participants for a probabilistic forecast set, considering the risk-based decision-making problem proposed by the game. To characterise this WTP, the bids were analysed and their relationship with several other aspects of the game were explored to explain the differences (if any) in the bids. These aspects were:

– the way participants used the forecasts. Here we try to learn about the effectiveness of the information on the user, which is an attribute of the value of information. It is assumed that a participant is not expected to be willing to disburse any money for an information they are not using. The answers to question one (i.e. “Did the participants use their forecasts and, in this case, follow the 50th percentile of their forecast during the decision-making process?”) are used here.

– the money available to participants after round 1 to make their bids. As participants were informed at the beginning of the game that the winner would be the player with the highest amount of tokens in purse at the end of the game, the tokens they had in hand for the auction (after round 1) may have restricted them in their bids. The bids are thus also explored relative to the amount of tokens in hand at the time of the auction.

– the forecast set type. The bias of the forecasts during round 1 could also have been a potential determinant of participants’s WTP for a forecast set in round 2.

– the river flood frequency. This was different for all the rivers in the first round and could be an element of the relevance of the information, another attribute of the value of information. Indeed, one could ask: “If my river never floods, why should I pay for forecasts?”.

– the years of experience and occupation. This might influence the familiarity participants may have with the use of probabilistic forecasts for decision-making.

2.2.5 Did participants with a forecast set perform better than those without?

Round 2 was led by a central question: did participants with a forecast set perform better than those without? It was investigated by looking at the performance of participants in round 2, calculated from Eq. (2). While we expect players with more (unbiased) information to make better decisions, other factors could have influenced the trust participants had in the information during round 2, such as, for instance, the quality of the forecasts experienced by participants in round 1 or the flood events observed in the river in round 2, compared to the experience participants had previously had in round 1.

2.2.6 What were the winning and the losing strategies (if any)?

Finally, from the final results of the game, a question arose: what were the winning and the losing strategies (if any)? This question was explored by looking at the characteristics (e.g. river assigned, forecast set type in round 1, performances in both
rounds, purchase of a second forecast set) and decisions of the participants during the game, in order to distinguish common attributes for the winning and the losing strategies.

Furthermore, an ‘avoided cost’ was calculated for each river based on the difference between the tokens spent by participants without a second forecast set and the tokens spent by participants with a second forecast set, during round 2. It represents the average amount of tokens participants without a second forecast set lost by protecting when a flood did not occur or by not protecting when a flood did occur, compared to participants with a second forecast set. This ‘avoided cost’ was measured and compared to the average bid of participants for each river in order to evaluate participants’ estimation of the value of the forecasts compared to their ‘true’ value in terms of the money they enabled the participants with a second forecast set to save in the second round. An average ‘new bid’ was also calculated by replacing the bids of participants who had said that their forecast set in the second round was not worth the price they had paid initially, by the new bids they would have rather paid (see Appendix). This average ‘new bid’ was compared to the ‘avoided cost’ and the actual average bid obtained from the auction.

3 Results

The results are based on the analysis of 129 worksheets, from the 145 worksheets collected. The remaining 16 worksheets were either incomplete or incorrectly completed and were thus not used. Table 3 shows the distribution of the 129 worksheets, among the three forecast set types and the three rivers.

The game was played at the different events mentioned in the introduction. The participants present at those events displayed a diversity in terms of their occupation and years of experience. This was surveyed at the beginning of the game and is presented in Fig. 2 for all the participants as well as for each river and forecast set type separately. Participants were mainly academics (postdoctoral researchers, PhDs, research scientists, lecturers, professors and students), followed by professionals (forecasters, operational hydrologists, scientists, engineers and consultants). The majority had less than five years of experience.

3.1 Participants were using the forecasts, but consistent patterns of use are difficult to detect

Figure 3 presents, on the one hand, the final purses of all the participants at the end of round 1, according to their river and forecast set type (columns and rows respectively), and, on the other hand, the final purses that participants would have had if they had made their decisions according to the median of their forecasts. Participants in charge of the yellow river (first column) ended the first round with, on average, more tokens than the others. Participants playing with the blue river (last column) are those who ended round 1 with less money in purse, on average. This is due to the higher number of flood events for the blue river in round 1 (see Table 1). There are also differences in terms of final purses for the participants assigned the same river but given a different forecast set type. Overall, participants who had unbiased forecasts (middle row) ended the first round with on average more money than the other players. These results are an indication that the participants were using their forecasts to make their decisions.

In order to see if the participants were using the median values of the forecasts, a forecast final purse was computed considering the case where the participants followed the median of their forecasts for all the cases of the first round (red vertical lines...
shown on Fig. [3]. If the participants had followed the median values of the forecasts during the entire first round, their final purses would have been equal to this value. Although this is almost the case for participants with unbiased forecast sets (for all rivers), for participants with the yellow river and positively biased forecast sets and the green river and negatively biased forecast sets, it is not an overall general observed behaviour.

Could some participants have discovered the bias in their forecasts and adjusted them for their decisions? Although it is hard to answer this question from the worksheets only, some of the decisions taken seem to support this idea. Figure [4] presents in more detail the results for the blue river in the first round. The forecast final levels are shown as boxplots for each forecast set type and for each of the five cases of round 1. These are the levels the river would reach if the initial level is added to the percentiles of the forecasts for each case. The bars at the bottom of the figure show the percentages of participants whose decisions differed from what the median of their forecast final level indicated [i.e. participants who bought (or did not buy) protection while no flood (or a flood) was predicted by the median of their forecast].

When comparing cases 1 and 4, for which the initial river levels and the observed and forecast final river levels were the same, we would not expect any changes in the way participants were using their forecasts. This is however not true. Figure [4] shows that the percentages of participants not following their forecast median differs between the two cases. For instance, about eighty percent of the participants with negatively biased forecast sets (under-predicting the increment of the river level) did not follow the median forecast in case 1, and did not protect against the predicted flood by their median forecast, while this percentage drops to about twenty percent in case 4. The fact that they were not consistently acting the same way may be an indication that they found out the bias in the forecasts and tried to compensate for it throughout round 1. We can also see that, in general, the lowest percentages of participants not following the median forecast are for the unbiased forecast set. This is especially observed in the cases where the forecast final levels given by the median forecast are well above or below the flood threshold (cases 1, 2, 4 and 5). The fact that from case 1 to case 4, for unbiased forecast sets, we moved from about ten percent of participants not following the median forecast to zero percent, may also indicate that they built confidence in their forecasts (at least in the median value) along round 1, by perceiving that the median forecast could be a good indication of possible flooding or not in their river.

Figure [4] also shows that some participants with unbiased forecasts did not always follow the median of their forecasts (for instance, cases 1, 3 and 5). Additional factors may therefore have influenced the way participants used their forecasts. A number of worksheets indicated that the distance of the initial river level to the flood threshold could have been influential. In a few cases where the median forecast clearly indicated a flood, while the initial river level was low, some players did not purchase any flood protection. This can be observed on Fig. [4] for case 1, for example, for participants with positively biased or unbiased forecast sets. The inverse situation (i.e. the initial river level was high, but the river level forecast by the median was low, below the flood threshold) was also observed and is illustrated on Fig. [4] for case 2 and negatively biased forecast sets. Hence, in some cases, the initial river level seemed to also play a role in the decisions taken.

There are indications that the participants could also have used other percentiles of the forecast to make their decisions, especially in cases where the median of the forecast was marginally above or below the flood threshold. For example in case 4, the entire unbiased forecast lies above the flood threshold and all the participants chose the same and correct action. In
cases where the 5th or the 95th percentiles of the forecast fell above or below the flood threshold, the participants showed less consistent decisions (e.g. case 3 for unbiased forecast sets).

Other possible influencing factors, such as occupation and years of experience, were also investigated (not shown). No strong indication that these factors could have played a role in the participants’ decision-making were however found.

3.2 Participants were overall less tolerant to misses than to false alarms in round 1

Figure 5 displays the cumulative percentages of participants having answered that the quality of their forecast set in round 1 (see Appendix) was ‘very bad’ to ‘very good’, as a function of the ‘true’ quality of the corresponding forecasts, measured by the forecast set bias (Eq. (1)). While participants with forecast sets for which the bias equalled one (perfect value) mostly rated their forecasts ‘quite good’ or ‘very good’, the percentage of negative perceptions of the quality of the forecasts increases with increasing or decreasing forecast bias.

It is interesting to note that participants with forecasts biased towards over-prediction, never rated their forecasts as ‘very bad’. Also noteworthy is the very good rating given by participants with the most negatively biased forecasts (bias of 0). These participants belonged to the yellow river and had negatively biased forecasts in round 1. There was only one flood event for river yellow in the first round, which occurred at the end of the round and which was missed by the negatively biased forecasts. During the analysis of the results, it was observed that only about twenty-five percent of the yellow river participants given the negatively biased forecasts did not protect for this flood. An explanation for this low percentage could be that participants had time to learn about their forecasts’ quality until the occurrence of the flood at the end of the first round. This low number of participants who actually suffered from their negative bias and the presence of only one miss out of the five cases of round 1 could therefore justify the good rating of their forecasts by those participants.

Overall, forecasts exhibiting under-prediction seem to be less appreciated by the participants. This could be an indication that participants were less tolerant to misses, while they accepted better forecasts leading to false alarms (over-predictions). This is contrary to the “cry wolf” effect, and could be explained by the particular game set up, for which the damage cost (4,000 tokens) was twice the protection cost (2,000 tokens).

3.3 Participants had a good perception of their good (or bad) performance during the game and related it to the quality of their forecasts

Figure 6(a) illustrates the answers to the question “How was your performance as a decision-maker in round 1?” as a function of the participants’ ‘true’ performance (calculated from Eq. (2); i.e. the ratio to an optimal performance). The figure shows the distribution of participants across all perceived-actual performance combinations, for all rivers and forecast set types combined. The perceived decision-maker performance is presented on a scale from ‘very bad’ to ‘very good’. An overall positive relationship between the participants’ perceived performance and their ‘true’ performance is observed: the best performances (i.e. performance values of one or close to one) are indeed associated with a very good perception of the performance by the decision-makers, and vice-versa. The same analysis carried out for the answers concerning round 2 (not displayed) showed similar results: the ratings participants gave to their performance were similarly close to their ‘true’ performance.
Figure 6(b) looks at the relationship between the perceived decision-maker performance and the rating the decision-makers gave to their forecast set quality in round 1. A positive relationship can also be seen: the majority rated their performance and the quality of their forecast set as ‘quite good’ and ‘very good’, while those who rated their performance ‘very bad’, also considered their forecast set ‘very bad’. The rating participants gave to their performance was therefore closely connected to the rating they gave to their forecast set quality. This also contributes to the evidence that participants were using their probabilistic forecast sets to make their decisions. It is furthermore an indication that participants linked good forecast quality to good performance in their decision-making, and vice-versa.

3.4 Several factors may influence the WTP for a forecast, including forecast quality and economic situation

Given the evidence that most participants were using their forecasts to make their decisions in round 1 (see Section 3.1), we now investigate their willingness-to-pay (WTP) for a new forecast set to be used in round 2.

Figure 7 shows the bids participants wrote on their worksheets prior to the auction, for a second forecast set, as a function of the amount of tokens they had in their purses at the end of round 1. All bids are plotted and those from participants who succeeded in buying a second forecast set are displayed as red triangles on the figure. On average, participants were willing to pay 4,566 tokens, which corresponds to thirty-two percent of the average amount of tokens left in their purses. The minimum bid was zero tokens (i.e. no interest in buying forecasts for round 2), which was made by ten percent of the players. Half of these players were participants who were assigned the blue river (the river for which players ended the first round with on average the lowest amount of tokens in purse). The only three participants who never bought flood protection in the first round (i.e. who could be seen as ‘risk-seeking’ players) made bids of zero, 3,000 and 4,000 tokens. The highest bid made was 14,000 tokens, corresponding to a hundred percent of the tokens left in that participant’s purse. However, this participant did not raise their hand during the auction to purchase a second forecast set. Nine participants (less than ten percent of the total number of players) made a bid of 10,000 tokens or above, corresponding to, on average, seventy-seven percent of the tokens they had left in their purses. The total cost of protecting all the time for round 2 being 10,000 tokens, as indicated on Fig. 7 by the dashed black line, bidding 10,000 tokens or more for a second forecast set was clearly pointless. Half of these participants were players to which the yellow river was assigned (the river that experienced the least number of floods in round 1 and for which participants thus ended the first round with on average the highest amount of tokens left in their purse) and eight out of these nine participants had a forecast set with a bias during the first round. These nine participants, who paid 10,000 tokens or more for the second forecast set, were removed from the subsequent analyses of the auction results, as their bids suggest that they have not understood the stakes of the game.

From Fig. 7 there is a clear positive relationship between the maximum bids within each value of tokens left in purse and the tokens left in purse, as the participants did not disburse more tokens than they had left in their purse during the auction. When we look at the evolution of the median of the bids with the amount of tokens in purse, in general, the more tokens one had left in purse, the higher their WTP for a forecast set. Nonetheless, the WTP seems to have a limit. It can be seen that from a certain amount of tokens left in purse on, the median value of the bids remains almost constant (in our game case, at about a
bid of 6,000 tokens for participants with 12,000 tokens or more in their purse). The amount of tokens that the participants had in hand therefore only influenced to a certain extent their WTP for a second probabilistic forecast set.

We also investigated if the way participants perceived the quality of their forecast set in the first round was a plausible determinant of their WTP for another forecast set to be used in round 2. Figure X shows the % bids (i.e. bids expressed as a percentage of the tokens participants had left in purse at the time of the auction) as a function of the rating participants gave to their forecast set quality in round 1 (from ‘very bad’ to ‘very good’; see Appendix). Firstly, it is interesting to observe that three participants judged their first forecast set to have been of ‘very bad’ quality but were nonetheless willing to disburse on average fifty percent of the tokens they had left in purse. Those bids were however quite low, 4,000 tokens on average. Moreover, players who rated their first forecast set from ‘quite good’ to ‘very good’ were on average willing to disburse a larger percentage of their tokens than candidates who rated their previous forecast set from ‘quite bad’ to ‘neither good nor bad’. Therefore, the way participants rated the quality of their first forecast set was to a certain degree influential on their WTP for a second forecast set.

During the auction following the closed bids, forty-four forecast sets were distributed to the participants who made the highest bids, in order to be used in round 2. Table 4 shows that participants who purchased these second forecast sets were quite well distributed among the different forecast set types of round 1, with a slightly higher frequency of buyers among participants who had played round 1 with unbiased forecasts. Forty-two percent of all participants with unbiased forecasts purchased a second forecast set, while thirty percent (thirty-one percent) of participants with positively biased (negatively biased) forecasts bought a second forecast set. Buyers also pertained more often to the group assigned the river green (forty-eight percent, or forty-one percent of all green river participants), followed by river yellow (thirty-two percent, or thirty-six percent of all yellow river participants) and blue (twenty percent, or twenty-three percent of all blue river participants). The higher percentage of green river participants buying a second forecast set could have been due to a combination of the river green flood frequency in round 1 (not as low as for the yellow river, making it more relevant for green river participants to buy a second forecast set) and of money left in purse (on average, not as low as for the blue river participants). The buyers of the second forecast sets are displayed as red triangles on Fig. 7. We note that these red triangles are not necessarily the highest bid values on the figure, since we plot results from several applications of the game (in one unique application, they would coincide with the highest bids, unless a participant had a high bid but had not raised their hand during the auction to buy a second forecast set). Differences in the highest bids among the applications of the game could be an indication that the size (or type) of the audience might have had an impact on the bids (i.e. the WTP for a probabilistic forecast). Our samples were however not large enough to analyse this aspect.

Participants who did not purchase a second probabilistic forecast set (eighty-five players in total) stated their reason for doing so. The majority of them (sixty-six percent, or fifty-six players) said that the price was too high (which means, in other words, that the bids made by the other participants were too high, preventing them from purchasing a second forecast set during the auction). Ten participants (twelve percent) argued that the model did not seem reliable. Most of these participants were among those who had indeed received a forecast set with a bias in the first round. The rest of the candidates who did not purchase a second forecast set (twenty-two percent, or nineteen players) wrote down on their worksheet the following reasons:
– Low flood frequency in the first round - a participant assigned the yellow river wrote: “Climatology seemed probability of flood = 0.2”.

– Assessment of the value of the forecasts difficult - a participant wrote: “No information for the initial bidding line” and another wrote: “Wrong estimation of the costs versus benefits”.

– Preference for taking risks - “Gambling” was a reason given by a player.

– Enough money left in purse to protect all the time during round 2 - which can be an indication of risk-averse behaviour coupled with economic wealth and no worries of false alarms.

– Not enough money left in purse to bid successfully - a participant wrote: “The purse is empty due to a lot of floods”.

3.5 Decisions are better when they are made with the help of unbiased forecasts, comparatively to having no forecasts at all

The analysis of the results of round 2 allowed us to compare the performance of participants with and without a forecast set. Overall, participants without a second forecast set had an average ‘true’ performance value of 3.1, computed as shown in Eq. (2) and over the five cases of round 2. The best performance was equal to the optimal performance (‘true’ performance value equal to 1) and the worst performance reached a value of 6. Comparatively, participants with a second forecast set had an average ‘true’ performance of 1.2, thus much closer to the optimal performance than the average performance of participants without a second forecast set. The best performance in this group also equalled the optimal performance, while the worst performance value was 2.5, much lower (i.e. thus much closer to the optimal value) than the worst performance value of participants making their decisions without any forecasts. These numbers clearly indicate that the possession of a forecast set in the second round led to higher performances and to a lower spread in performances within the group of players with a second probabilistic forecast set (comparatively to players without forecasts in round 2).

Does this conclusion however depend on the participants’ performances in round 1? Do you need to be a good decision-maker to benefit from the forecasts in hand? Our results suggest otherwise. All the participants with a bad performance in the first round and a forecast set in round 2 had a good performance in the second round. This hints that even if those participants had a bad performance in round 1, they took advantage of the forecasts and had a good performance in round 2. Additionally, 57 out of 59 participants with a good performance in round 1 and no forecasts in round 2 had a bad performance in the second round. This therefore indicates that no matter how well the participants performed in round 1, the possession of a forecast set let to better decisions in round 2.

All the participants without a second forecast set who were assigned the yellow river missed the two first floods in the second round. Part of these participants protected for all or some of the subsequent cases, while the other part never bought any protection. It could have been due to the low flood frequency of their river in the first round (see Table 1). This behaviour was not observed for the green river participants without a second forecast set, for which a very diverse sequence of decisions was seen in the second round. As for the blue river participants without any second forecast set, most of them missed the
first flood event that occurred in round 2 and, subsequently, protected for a few cases where no flood actually occurred. These decision patterns were not observed for participants with a second forecast set within each river, who took more consistently right decisions.

The large majority of participants with a second forecast set in round two (forty-one out of forty-four) rated their forecasts either ‘quite good’ or ‘very good’, which was expected since all the forecasts were unbiased in round two. The three remaining participants said that their second forecast set was ‘neither good nor bad’ or ‘quite bad’. These participants all had biased forecasts in the first round and their behaviour during round 2 suggested that they might have been influenced by the bias in their forecasts for round 1.

3.6 Overall winning strategies would combine good performance with an accurate assessment of the value of the forecasts

The average final purse at the end of round 2 was 3,149 tokens (3,341 tokens for participants without a second forecast set and 2,778 tokens for participants with a second forecast set), remaining from the 20,000 tokens initially given to each participant. The minimum final purses observed were zero token or less. Twenty-five participants, out of the total 129 players, finished the game with such amounts of tokens. Out of these twenty-five participants, twenty-two had received a biased forecast set in the first round. From the analysis of the game worksheets, we could detect three main losing strategies followed by these twenty-five participants who finished with zero token or less in purse:

1. Eighteen participants, most of them blue river players, had an ‘acceptable to bad’ performance in round 1 (performances ranging between 1.3 and 3), did not purchase a second forecast set, and performed badly in round 2 (performances ranging between 2.3 and 6).

2. Four players, mostly in charge of the yellow river, had a ‘good to bad’ performance in round 1 (performances ranging between 1 and 3), purchased a second forecast set for 10,000 tokens or higher, and performed very well in round 2 (performances of 1).

3. Three participants, all green river players, had a ‘good to acceptable’ performance in round 1 (performances ranging between 1 and 1.5), bought a second forecast set for 6,000 to 8,000 tokens, but performed badly in round 2 (performances ranging between 2 and 2.5).

The winners of the game, six players in total, finished round 2 with 8,000 or 12,000 tokens in their purse. Half of these participants were assigned the green river and the other half the blue river. Apart from one participant, all had received a biased forecast set in the first round. Most participants had a ‘good to acceptable’ performance in the first round (performances ranging between 1 and 1.7), did not purchase any forecast set and had a ‘good to bad’ performance in the second round (performances ranging between 1 and 3). Their performance in round 2 did not lead to large money losses, as it did for yellow river participants, which can be explained by the fact that they did not have so many flood events in this round (see Table 1).

The average ‘avoided cost’, the average bid for a second forecast set and the average ‘new bid’ are presented in Table 5 for each river. By comparing the ‘avoided cost’ with the average bid for each river, it is noticeable that the average bid was
larger than the ‘avoided cost’ of each river. **On average participants paid** 1,000 tokens more for their second forecast set than the benefit, in terms of tokens spared in the second round, that they made from having this forecast set. This could explain why none of the winners of the game had a forecast set in the second round. From the average ‘new bid’, it is evident that participants would have liked to pay less on average than what they originally paid for their second forecast set. For all the rivers, the average ‘new bid’ is closer to the ‘avoided cost’ than the average bid of participants during the auction.

4 Discussion

4.1 Experiment results and implications

It was clear during the game that most participants had used the probabilistic forecasts they were given at the beginning of the game to help them in their decisions. This was an important issue in our game since it was an essential condition to then be able to evaluate how the participants were using their forecasts and to understand the links between the way they perceived the quality of their forecasts and the way they rated their performance at the end of a round. There was evidence that participants were mostly using the 50th percentile of the forecast distributions; but, interestingly, the median alone could not explain all the decisions made. Other aspects of the game might have also shaped the participants’ use of the information, such as the discovery, during the first round, of the forecast set bias (i.e. two out of three forecast sets were purposely biased for round 1).

This was also mentioned by some participants at the end of some applications of the game, who said that the fact of noticing the presence of a bias (or suspecting it, since they were not told beforehand that the forecasts were biased) led them to adjust the way they were using the information. **This could suggest that forecasts, even biased, can still be useful for decision-making, comparatively to no forecasts at all, if users are aware of the bias and know how to consider it before taking a decision.**

Interestingly, in the analysis of the worksheets, there was an indication that the players had, however, different tolerances to the different biases. Indeed, a lower tolerance for under-predictive forecasts than for over-predictive forecasts was identified. Biased forecasts were hence problematic for the users and influential of the manner in which the information was used. This strongly indicates that there is an important need for probabilistic forecasts to be bias-corrected previously to decision-making, a crucial aspect for applications such as flood forecasting, for instance (Hashino et al., 2007; Pitt, 2007).

There was additionally evidence that, in a few cases, some participants with unbiased forecasts did not use their forecasts (when considering the 50th percentile as key forecast information). The analysis suggested that the players’ risk perception, triggered by the initial river level or the proximity of the forecast median to the flood threshold, might have been a reason for this. This led to less consistent actions, where participants based their decisions on extremes of the forecast distribution (other percentiles of the forecast) or on no apparent information contained in the forecast distribution. A similar finding was reported by Kirchhoff et al. (2013) through a case study in America, where it was found out that the perception of a risk was a motivational driver of water manager’s use of climate information. There is a constant effort from forecasters to produce and provide state-of-the-art probabilistic forecasts to their users. However, it was seen here that even participants with unbiased forecasts did not always use them. This is an indication that further work needs to be done on fostering communication between forecasters and users, to promote an enhanced use of the information contained in probabilistic forecasts.
From the results, it also appeared that the participants had an accurate perception of their decision-maker performance and related it to the quality of their forecasts. This implies that participants viewed their forecasts as key elements of their decision-making. This result is very encouraging for forecasters and also bears important implications for the real world. It could indeed suggest that decision-makers forget that their own interpretation of the forecasts is as important as the information held in the forecast itself; as there is a myriad of ways to interpret and use probabilistic forecasts for decision-making. The choice of the percentile on which the decisions are based is an example of such an interpretation. This could potentially mean that decision-makers will tend to blame (thank) the forecast providers for their own wrong (good) decisions.

Many papers have shown, through different approaches, the expected benefits of probabilistic forecasts versus deterministic forecasts for flood warning (e.g. Buizza (2008); Verkade and Werner (2011); Pappenberger et al. (2015); Ramos et al. (2013)). However, many challenges still exist in the operational use of probabilistic forecasting systems and the optimisation of decision-making. This paper is a contribution to improve our understanding of the way the benefits of probabilistic forecasts are perceived by the decision-makers. It proposes to investigate it under a different perspective, by allowing, through a game experiment, decision-makers to bid for a probabilistic forecast set during an auction. The auction was used in this paper as an attempt to characterise and understand the participants’ WTP for a probabilistic forecast in the specific flood protection risk-based experiment designed for this purpose. Our results indicate that the WTP displays dependencies on various aspects.

The bids were to a certain extent influenced by the participants’ economic situation. They were on average positively related to the money available to participants during the auction. Nonetheless, this was mainly a factor for participants who had little money left in their purses at the time of the auction. The participants’ perceived forecast quality was also a factor influencing their WTP for another forecast set. Players who had played the first round with biased forecasts were less prone to disburse money for another forecast set for the second round. There was moreover an indication that the flood frequency of the river might have influenced the WTP for a forecast set. Some players in charge of a river with only one flood event in the first round (i.e. low flood risk) did not consider beneficial the purchase of a forecast set for the second round. The participants’ risk perception was therefore an important element of their WTP for a probabilistic forecast. The more risk-averse participants did not buy a second forecast set as they had enough money to protect all the time; "gambling" was also stated as a reason for not buying a second forecast set. Seifert et al. (2013) have similarly shown that “the demand for flood insurance is strongly positively related to individual risk perceptions”.

These results show that the perceived benefit of probabilistic forecasts as a support of decision-making in a risk-based context is multifaceted, and varies not only with the quality of the information and its understanding, but also with the relevance and the risk-tolerance of the user. This further demonstrates that more work is needed not solely to provide guidance on the use of probabilistic information for decision-making, but also to develop efficient ways to communicate the actual relevance and evaluate the long-term economic benefits of probabilistic forecasts for improved decisions in various applications of probabilistic forecasting systems within the water sector. This could additionally provide insights into bridging the gap between the theoretical or expected benefit of probabilistic forecasts in a risk-based decision-making environment and the perceived benefits by key users.
4.2 Game limitations and further developments

This paper aimed to depict behaviours in the flood forecasting and protection decision-making context. Although game experiments offer a flexible assessment framework, comparatively to real operational configurations, it is however extremely complex to search for general explanatory behaviours in such a context. This is partially due to the uniqueness of individuals and the interrelated factors that might influence decisions, which are both aspects that are difficult to evaluate when playing a game with a large audience. A solution to overcome this, as proposed by Crochemore et al. (2015), could be to prolong the game by incorporating a discussion with the audience or with selected individuals, aiming at understanding the motivations hidden underneath their decisions during the game. Having more time available to apply the game would also allow playing more cases in each round, bringing additional information to the analysis and clarifying key aspects of the game, such as the effect of the bias on the participants’ use of the forecasts and on their WTP for more forecasts. Co-designing such an experiment with social anthropologists could bring to light many more insights into participants’ decision-making behaviours.

Being set up as a game, this study also presents some limitations. As mentioned by Breidert et al. (2006), a source of bias in such studies is their artificial set up. Indeed, under those circumstances, participants are not directly affected by their decisions as they neither use their own money, nor is the risk a real one. This might lead them to make decisions which they would normally not make in real life or in operational forecasting contexts.

Moreover, in our game, the costs given to both flood protection and flood damages were not chosen to represent the real costs that one encounters in real environments. First, real costs in integrated flood forecasting and protection systems are difficult to assess, given the complexity of flood protection and its consequences. Secondly, the external imposed conditions for playing our game (i.e. the fact that we wanted to play it during oral talks in conferences, workshops or teaching classes, with expected eclectic audiences of variable sizes, having a limited amount of time, and using paper worksheets to be collected at the end of the game for the analysis) were not ideal to handle any controversy on the realism (or absence of realism) of the game scenario.

It is however arguable whether the game results could be a reflection of the experiment set up, hence of the parameters of the game (i.e. the protection and damage costs, the number of flood events, etc). For instance, the higher damage costs might have influenced the participants’ tolerance to misses and false alarms. Further developments could include testing the influence of the parameters of this experiment on its results as a means of analysing the sensitivity of flood protection mitigation to a specific decision-making setting.

Additionally, the small sample size of this experiment limited the statistical significance of its results. Replicating it could ascertain some of the key points discussed, leading to more substantial conclusions, and improve our understanding of the effect of the professional background of the participants on their decisions.

Finally, the experiment’s complex structure was its strength as well as its weakness. When analysing the game results, the chicken and egg situation arose. Several factors of the participants’ use of the forecasts and of their WTP for a forecast set were identified, but it was not possible to measure causalities. It would therefore be interesting to carry out further work in this direction, together with behavioural psychologists, by, for instance, testing the established factors separately.
5 Conclusions

This paper presented the results of a risk-based decision-making game, called "How much are you prepared to pay for a forecast?”, played at several workshops and conferences in 2015. It was designed to contribute to the understanding of the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers for flood protection mitigation.

There were hints that participants’ decisions to protect (or not) against floods were made based on the probabilistic forecasts and that the forecast median alone did not account for all the decisions made. Where participants were presented with biased forecasts, they adjusted the manner in which they were using the information, with an overall lower tolerance for misses than for false alarms. Participants with unbiased forecasts also showed inconsistent decisions, which appeared to be shaped by their risk perception; the initial river level and the proximity of the forecast median to the flood threshold both led the participants to base their decisions on extremes of the forecast distribution or on no apparent information contained in the forecast.

The participants’ willingness-to-pay for a probabilistic forecast, in a second round of the game, was furthermore influenced by their economic situation, their perception of the forecasts’ quality and the river flood frequency.

Overall, participants had an accurate perception of their decision-making performance, which they related to the quality of their forecasts. However, there appeared to be difficulties in the estimation of the added value of the probabilistic forecasts for decision-making, thus leading the participants who bought a second forecast set to end the game with a lower amount of money in hand.

The use and perceived benefit of probabilistic forecasts as a support of decision-making in a risk-based context is a complex topic. The paper has shown the factors that need to be considered when providing guidance on the use of probabilistic information for decision-making and developing efficient ways to communicate their actual relevance for improved decisions for various applications. Games such as this one are useful tools for better understanding and discussing decision-making among forecasters and stakeholders, as well as highlighting potential factors that influence decision-makers and that deserve further research.

25 Resources

This version of the game is licensed under CC BY-SA 4.0 (Creative Commons public license). It is part of the activities of HEPEX (Hydrologic Ensemble Prediction Experiment) and is freely available at www.hepex.org. This game was inspired by the Red Cross/Red Crescent Climate Centre game “Paying for Predictions”.

Appendix A: Example of a worksheet distributed to the game participants (here for river blue and the set 1 of positively biased forecasts: BLUE-1)

BLUE-1

How much are you prepared to PAY for a forecast?

Occupation (student, PhD candidate, scientist, operational hydrologist, forecaster, professor, lecturer, other):

How many years of experience do you have? □ < 5 years □ 5 to 10 years □ > 10 years

Flood protection = -2,000 tokens; flood without protection = -4,000 tokens

Flood occurs at 90 or above

<table>
<thead>
<tr>
<th>Round</th>
<th>Case</th>
<th>River level before rainfall (10-60)</th>
<th>Flood protection?</th>
<th>River level increment (10-80)</th>
<th>River level after increment</th>
<th>Flood? (≥ 90)</th>
<th>Tokens spent</th>
<th>Purse (20,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td>Yes □ No □</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How was your forecast set in Round 1?
 □ very bad □ quite bad □ neither good nor bad □ quite good □ very good □ I don’t know

- How was your performance as a decision-maker in Round 1?
 □ very bad □ quite bad □ neither good nor bad □ quite good □ very good □ I don’t know
Do not forget to transfer your final Round 1 purse to Round 2 (in the brackets under ‘Purse’)

<table>
<thead>
<tr>
<th>Round</th>
<th>Case</th>
<th>River level before rainfall (10-60)</th>
<th>Flood protection?</th>
<th>River level increment (10-80)</th>
<th>River level after increment</th>
<th>Flood? (≥ 90)</th>
<th>Tokens spent</th>
<th>Purse (………..)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Bid: tokens. Did you buy a probabilistic forecast set? YES / NO
 * If yes, deduct the money you paid for it here:

<table>
<thead>
<tr>
<th>Round</th>
<th>Case</th>
<th>River level before rainfall (10-60)</th>
<th>Flood protection?</th>
<th>River level increment (10-80)</th>
<th>River level after increment</th>
<th>Flood? (≥ 90)</th>
<th>Tokens spent</th>
<th>Purse (………..)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
<td>Yes ☐ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• How was your performance as a decision-maker in Round 2?
 ☐ very bad ☐ quite bad ☐ neither good nor bad ☐ quite good ☐ very good ☐ I don’t know

• For the people who DID NOT buy a forecast set:
 – Why didn’t you buy a forecast set?
 ☐ The model did not seem reliable
 ☐ The price was too high
 ☐ Other reason (explain): ..

• For the people who DID buy a forecast set:
 – How was your forecast set in Round 2?
 ☐ very bad ☐ quite bad ☐ neither good nor bad ☐ quite good ☐ very good ☐ I don’t know
 – Were the forecasts worth what you paid for them? ☐ Yes ☐ No
 – If not, how many tokens would you now pay for them? tokens

Please return this worksheet into the envelope and give it to one of the assistants before you leave.

Thank you for your participation!

We hope you enjoyed it!
Acknowledgements. This work was partly supported by funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641811 (Project IMPREX: www.imprex.eu). The authors would like to thank the participants of the game who very enthusiastically took part in this experiment. Furthermore, we would like to acknowledge L. Crochemore, A. Ficchi, C. Poncelet and P. Brigode for their valuable help with the game preparation and worksheets distribution at EGU 2015. Finally, we would like to thank C. Bachofen and everyone who tested and gave suggestions to improve the game during its development.
References

Table 1. Number of flood events for each round of the game and each river.

<table>
<thead>
<tr>
<th>Round</th>
<th>River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 2. Contingency table for each river and forecast set type for the first round (considering the 50th percentile, i.e. the median forecast). The numbers for a specific river-forecast set type represent, clockwise from the top left: hits (italics), false alarms (bold), correct negatives (-) and misses (regular).

<table>
<thead>
<tr>
<th>Forecast set type</th>
<th>River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Positively biased</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Unbiased</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Negatively biased</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3. Distribution of the 129 worksheets collected for the analysis per river (yellow, green and blue) and forecast set type (positively biased, unbiased and negatively biased).

<table>
<thead>
<tr>
<th>Forecast set type</th>
<th>River</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow</td>
<td>Green</td>
</tr>
<tr>
<td>Positively biased</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Unbiased</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>Negatively biased</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 4. Distribution of the forty-four second forecast sets sold during the auction, per river (yellow, green and blue) and forecast set type (positively biased, unbiased and negatively biased).

<table>
<thead>
<tr>
<th>Forecast set type</th>
<th>River</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow</td>
<td>Green</td>
</tr>
<tr>
<td>Positively biased</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Unbiased</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Negatively biased</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 5. Average values of ‘avoided cost’ for round 2, average bid for a second forecast set and average ‘new bid’ if forecasts were considered not worth the price originally paid. Values are in tokens and for the three different rivers.

<table>
<thead>
<tr>
<th>River</th>
<th>Average ‘avoided cost’</th>
<th>Average bid</th>
<th>Average ‘new bid’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>7251</td>
<td>7929</td>
<td>7083</td>
</tr>
<tr>
<td>Green</td>
<td>5829</td>
<td>7083</td>
<td>6224</td>
</tr>
<tr>
<td>Blue</td>
<td>5711</td>
<td>6889</td>
<td>5875</td>
</tr>
</tbody>
</table>
Figure 1. (a) Experiment set up and (b) flow diagram of the game decision problem for one case.
Figure 2. Number of participants according to occupation and years of experience. The categories of occupations are: academics (postdoctoral researchers, PhDs, research scientists, lecturers, professors and students), professionals (forecasters, operational hydrologists, scientists, engineers and consultants) and others. Top: overall participants distribution; middle: distribution according to their river; bottom: distribution according to the forecast quality types (1: positively biased, 2: unbiased and 3: negatively biased).
Figure 3. Participants’ round 1 final purses for each river (from the leftmost to the rightmost column: the yellow, the green and the blue river) and for each forecast set type (from the top to the bottom row: positively biased, unbiased and negatively biased). The red lines show the final purses that the participants of a given river-forecast set type group would have gotten if they had followed the median of their forecasts for all the five cases of the first round.
Figure 4. Observed initial and final river levels for the blue river for each case of the first round. The boxplots show the forecast final river levels by each forecast set type (negatively biased, unbiased and positively biased). The bars display the percentages of participants whose decisions did not correspond to what their forecast median indicated.
Figure 5. Cumulative percentages of participants who rated their forecast quality from ‘very bad’ to ‘very good’, as a function of the forecast set bias (‘true’ forecast quality; Eq. (1)) in round 1. A bias equal to one indicates perfect forecasts, a bias less than (superior to) one indicates under- (over-) prediction.
Figure 6. Number of participants having rated their performance as a decision-maker from ‘very bad’ to ‘very good’ in round 1, as a function of: (a) their ‘true’ performance (calculated from Eq. (2)), and (b) their perceived forecast set quality. A performance value of one denotes a ‘true’ performance equal to the optimal performance (Eq. (3)). The larger the performance value, the more distant from the optimal the decisions were during round 1. The size and the colour of the point indicates the number of participants that fall onto a specific perceived-‘true’ performance combination or perceived performance-forecast set quality combination.
Figure 7. Bids declared by participants to purchase a forecast set for round 2, as a function of the amount of tokens they had left in their purse at the end of round 1. The colour of the points indicates the number of participants that fall onto a specific bid-tokens left in purse combination.
Figure 8. Participants’ % bids, bids expressed as a percentage of the tokens participants had left in purse at the time of the auction, as a function of the rating they gave to their forecast set quality in round 1 (from ‘very bad’ to ‘very good’). The colour of the points indicates the number of participants that fall onto a specific bid-perceived forecast set quality combination.