Table 1. The geographical locations and associated annual climatic parameters

<table>
<thead>
<tr>
<th>Station</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Altitude (m)</th>
<th>Temperature (°C)</th>
<th>Precipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB</td>
<td>126°46'E</td>
<td>45°45'N</td>
<td>142.3</td>
<td>4.17</td>
<td>524.3</td>
</tr>
<tr>
<td>ALT</td>
<td>108°05'E</td>
<td>47°44'N</td>
<td>735.3</td>
<td>4.54</td>
<td>191.3</td>
</tr>
<tr>
<td>MQ</td>
<td>103°05'E</td>
<td>38°38'N</td>
<td>1367</td>
<td>8.33</td>
<td>113</td>
</tr>
<tr>
<td>BJ</td>
<td>116°28'E</td>
<td>39°48'N</td>
<td>31.3</td>
<td>12.20</td>
<td>571.9</td>
</tr>
<tr>
<td>LSA</td>
<td>91°08'E</td>
<td>29°40'N</td>
<td>3648.7</td>
<td>7.82</td>
<td>426.4</td>
</tr>
<tr>
<td>CQ</td>
<td>106°28'E</td>
<td>29°35'N</td>
<td>259.1</td>
<td>18.04</td>
<td>1104.5</td>
</tr>
<tr>
<td>HZ</td>
<td>120°10'E</td>
<td>30°14'N</td>
<td>41.7</td>
<td>16.45</td>
<td>1454.6</td>
</tr>
<tr>
<td>HK</td>
<td>110°21'E</td>
<td>20°02'N</td>
<td>13.9</td>
<td>24.08</td>
<td>1651.9</td>
</tr>
</tbody>
</table>
Table 2. Monthly statistical parameters of each data set for each station

<table>
<thead>
<tr>
<th>Station</th>
<th>Dataset</th>
<th>x_{mean}</th>
<th>S_x</th>
<th>C_v</th>
<th>C_x</th>
<th>x_{min}</th>
<th>x_{max}</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB</td>
<td>Rg</td>
<td>12.98</td>
<td>5.35</td>
<td>0.41</td>
<td>0.00</td>
<td>3.68</td>
<td>28.71</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>4.17</td>
<td>14.52</td>
<td>3.48</td>
<td>-0.25</td>
<td>-24.71</td>
<td>25.25</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>7.02</td>
<td>1.59</td>
<td>0.23</td>
<td>-0.25</td>
<td>2.82</td>
<td>10.89</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>65.44</td>
<td>11.01</td>
<td>0.17</td>
<td>-0.44</td>
<td>36.23</td>
<td>85.06</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>3.69</td>
<td>0.97</td>
<td>0.26</td>
<td>0.61</td>
<td>1.88</td>
<td>6.69</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>4.35</td>
<td>3.27</td>
<td>0.75</td>
<td>0.44</td>
<td>0.16</td>
<td>12.96</td>
<td>1</td>
</tr>
<tr>
<td>ALT</td>
<td>Rg</td>
<td>15.13</td>
<td>7.21</td>
<td>0.48</td>
<td>-0.06</td>
<td>2.34</td>
<td>27.69</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>4.54</td>
<td>13.95</td>
<td>3.07</td>
<td>-0.25</td>
<td>-25.08</td>
<td>24.87</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>8.2</td>
<td>2.52</td>
<td>0.31</td>
<td>-0.25</td>
<td>1.92</td>
<td>12.66</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>57.99</td>
<td>13.41</td>
<td>0.23</td>
<td>0</td>
<td>30.1</td>
<td>86.77</td>
<td>-0.89</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>2.40</td>
<td>0.99</td>
<td>0.41</td>
<td>0.05</td>
<td>0.31</td>
<td>5.46</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>4.72</td>
<td>3.84</td>
<td>0.81</td>
<td>0.33</td>
<td>0.15</td>
<td>13.79</td>
<td>1</td>
</tr>
<tr>
<td>MQ</td>
<td>Rg</td>
<td>16.41</td>
<td>4.98</td>
<td>0.30</td>
<td>0.07</td>
<td>7.21</td>
<td>26.9</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>8.33</td>
<td>11.32</td>
<td>1.36</td>
<td>-0.19</td>
<td>-15.46</td>
<td>25.72</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>8.37</td>
<td>1.12</td>
<td>0.13</td>
<td>0.30</td>
<td>5.47</td>
<td>11.38</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>44.82</td>
<td>9.06</td>
<td>0.2</td>
<td>0.12</td>
<td>24.3</td>
<td>74.58</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>2.68</td>
<td>0.55</td>
<td>0.20</td>
<td>0.08</td>
<td>1.23</td>
<td>4.32</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>7.26</td>
<td>4.45</td>
<td>0.61</td>
<td>0.10</td>
<td>0.42</td>
<td>15.89</td>
<td>1</td>
</tr>
<tr>
<td>BJ</td>
<td>Rg</td>
<td>14.61</td>
<td>4.94</td>
<td>0.34</td>
<td>0.05</td>
<td>5.14</td>
<td>25.59</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>12.20</td>
<td>10.74</td>
<td>0.88</td>
<td>-0.17</td>
<td>-7.6</td>
<td>29.56</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>7.41</td>
<td>1.42</td>
<td>0.19</td>
<td>0.06</td>
<td>3.79</td>
<td>11.21</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>57.29</td>
<td>13.70</td>
<td>0.24</td>
<td>0.02</td>
<td>21.86</td>
<td>85.52</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>2.50</td>
<td>0.67</td>
<td>0.27</td>
<td>0.49</td>
<td>1.07</td>
<td>4.65</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>5.09</td>
<td>2.83</td>
<td>0.56</td>
<td>0.70</td>
<td>0.85</td>
<td>15.63</td>
<td>1</td>
</tr>
<tr>
<td>LSA</td>
<td>Rg</td>
<td>20.41</td>
<td>4.20</td>
<td>0.21</td>
<td>0.11</td>
<td>10.39</td>
<td>30.69</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>7.82</td>
<td>6.37</td>
<td>0.81</td>
<td>-0.21</td>
<td>-5.16</td>
<td>18.19</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>8.19</td>
<td>0.96</td>
<td>0.12</td>
<td>-0.59</td>
<td>4.66</td>
<td>10.55</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>44.39</td>
<td>15.10</td>
<td>0.34</td>
<td>0.30</td>
<td>15.36</td>
<td>76.61</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>1.90</td>
<td>0.46</td>
<td>0.24</td>
<td>0.30</td>
<td>0.92</td>
<td>3.41</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>6.35</td>
<td>2.23</td>
<td>0.35</td>
<td>0.36</td>
<td>2.15</td>
<td>13.28</td>
<td>1</td>
</tr>
<tr>
<td>CQ</td>
<td>Rg</td>
<td>8.80</td>
<td>4.69</td>
<td>0.53</td>
<td>0.43</td>
<td>0</td>
<td>21.32</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>17.93</td>
<td>7.46</td>
<td>0.42</td>
<td>-0.10</td>
<td>0.64</td>
<td>30.90</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>2.83</td>
<td>2.02</td>
<td>0.71</td>
<td>0.91</td>
<td>0</td>
<td>9.19</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>79.15</td>
<td>8.55</td>
<td>0.11</td>
<td>-4.66</td>
<td>6.97</td>
<td>90.30</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>1.36</td>
<td>0.34</td>
<td>0.25</td>
<td>-0.12</td>
<td>0.64</td>
<td>2.13</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>2.86</td>
<td>1.94</td>
<td>0.68</td>
<td>0.87</td>
<td>0.54</td>
<td>9.32</td>
<td>1</td>
</tr>
<tr>
<td>HZ</td>
<td>Rg</td>
<td>11.63</td>
<td>4.20</td>
<td>0.36</td>
<td>0.54</td>
<td>3.93</td>
<td>24.83</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>16.45</td>
<td>8.46</td>
<td>0.51</td>
<td>-0.06</td>
<td>-0.01</td>
<td>31.03</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>4.99</td>
<td>1.74</td>
<td>0.35</td>
<td>0.63</td>
<td>1.19</td>
<td>11.25</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>RH</td>
<td>78.04</td>
<td>5.63</td>
<td>0.07</td>
<td>-0.80</td>
<td>53.74</td>
<td>90.42</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>Ws</td>
<td>2.24</td>
<td>0.43</td>
<td>0.19</td>
<td>0.05</td>
<td>1.01</td>
<td>3.58</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>E_p</td>
<td>3.65</td>
<td>1.94</td>
<td>0.53</td>
<td>0.84</td>
<td>0.74</td>
<td>11.33</td>
<td>1</td>
</tr>
<tr>
<td>HK</td>
<td>Rg</td>
<td>13.86</td>
<td>4.33</td>
<td>0.31</td>
<td>-0.05</td>
<td>4.06</td>
<td>24.34</td>
<td>0.90</td>
</tr>
<tr>
<td>Models</td>
<td>Input combinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP</td>
<td>Rg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP1</td>
<td>FG1</td>
<td>GRNN1</td>
<td>LSSVM1</td>
<td>MARS1</td>
<td>MLP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>FG2</td>
<td>GRNN2</td>
<td>LSSVM2</td>
<td>MARS2</td>
<td>MLP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>FG3</td>
<td>GRNN3</td>
<td>LSSVM3</td>
<td>MARS3</td>
<td>MLP3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>FG4</td>
<td>GRNN4</td>
<td>LSSVM4</td>
<td>MARS4</td>
<td>MLP4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>FG5</td>
<td>GRNN5</td>
<td>LSSVM5</td>
<td>MARS5</td>
<td>MLP5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>FG6</td>
<td>GRNN6</td>
<td>LSSVM6</td>
<td>MARS6</td>
<td>MLP6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>FG7</td>
<td>GRNN7</td>
<td>LSSVM7</td>
<td>MARS7</td>
<td>MLP7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>FG8</td>
<td>GRNN8</td>
<td>LSSVM8</td>
<td>MARS8</td>
<td>MLP8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>FG9</td>
<td>GRNN9</td>
<td>LSSVM9</td>
<td>MARS9</td>
<td>MLP9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The unit of R_g, T_a, P_a, W_s and E_p are MJ m^{-2}, °C, hPa, ms^{-1} and mm/day, respectively; x_{mean}, S_x, C_x, C_x, x_{min} and x_{max} denote the mean, standard deviation, variation coefficient, skewness, minimum and maximum values, respectively.

Table 3. The input combinations for different artificial intelligence techniques.
<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP1</td>
<td>1.062</td>
<td>1.411</td>
<td>0.815</td>
<td>1.044</td>
<td>1.431</td>
<td>0.819</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>1.226</td>
<td>1.68</td>
<td>0.737</td>
<td>1.082</td>
<td>1.471</td>
<td>0.797</td>
<td>0.794</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>1.589</td>
<td>2.05</td>
<td>0.609</td>
<td>1.496</td>
<td>1.834</td>
<td>0.726</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>2.681</td>
<td>2.972</td>
<td>0.178</td>
<td>2.862</td>
<td>3.171</td>
<td>0.071</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>2.754</td>
<td>3.137</td>
<td>0.085</td>
<td>2.809</td>
<td>3.340</td>
<td>0.089</td>
<td>-0.061</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.865</td>
<td>1.225</td>
<td>0.86</td>
<td>0.781</td>
<td>1.089</td>
<td>0.894</td>
<td>0.887</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.785</td>
<td>1.167</td>
<td>0.873</td>
<td>0.645</td>
<td>0.907</td>
<td>0.923</td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.429</td>
<td>0.601</td>
<td>0.966</td>
<td>0.517</td>
<td>0.751</td>
<td>0.956</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.378</td>
<td>0.521</td>
<td>0.975</td>
<td>0.431</td>
<td>0.600</td>
<td>0.967</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>FG1</td>
<td>1.031</td>
<td>1.371</td>
<td>0.825</td>
<td>1.031</td>
<td>1.507</td>
<td>0.816</td>
<td>0.765</td>
<td></td>
</tr>
<tr>
<td>FG2</td>
<td>1.151</td>
<td>1.632</td>
<td>0.752</td>
<td>1.077</td>
<td>1.502</td>
<td>0.786</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>FG3</td>
<td>1.528</td>
<td>2.008</td>
<td>0.625</td>
<td>1.354</td>
<td>1.798</td>
<td>0.74</td>
<td>0.696</td>
<td></td>
</tr>
<tr>
<td>FG4</td>
<td>2.487</td>
<td>2.877</td>
<td>0.23</td>
<td>2.677</td>
<td>3.083</td>
<td>0.118</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>FG5</td>
<td>2.708</td>
<td>3.103</td>
<td>0.104</td>
<td>2.806</td>
<td>3.304</td>
<td>0.091</td>
<td>-0.039</td>
<td></td>
</tr>
<tr>
<td>FG6</td>
<td>0.719</td>
<td>1.071</td>
<td>0.893</td>
<td>0.688</td>
<td>1.178</td>
<td>0.891</td>
<td>0.870</td>
<td></td>
</tr>
<tr>
<td>FG7</td>
<td>0.670</td>
<td>1.002</td>
<td>0.907</td>
<td>0.673</td>
<td>1.059</td>
<td>0.897</td>
<td>0.824</td>
<td></td>
</tr>
<tr>
<td>FG8</td>
<td>0.390</td>
<td>0.563</td>
<td>0.971</td>
<td>0.97</td>
<td>0.638</td>
<td>0.969</td>
<td>0.961</td>
<td></td>
</tr>
<tr>
<td>FG9</td>
<td>0.325</td>
<td>0.451</td>
<td>0.981</td>
<td>0.042</td>
<td>0.554</td>
<td>0.971</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>GRNN1</td>
<td>1.026</td>
<td>1.364</td>
<td>0.827</td>
<td>0.827</td>
<td>1.031</td>
<td>1.479</td>
<td>0.814</td>
<td>0.792</td>
</tr>
<tr>
<td>GRNN2</td>
<td>1.138</td>
<td>1.617</td>
<td>0.757</td>
<td>1.054</td>
<td>1.472</td>
<td>0.796</td>
<td>0.794</td>
<td></td>
</tr>
<tr>
<td>GRNN3</td>
<td>1.519</td>
<td>2</td>
<td>0.628</td>
<td>1.379</td>
<td>1.816</td>
<td>0.738</td>
<td>0.686</td>
<td></td>
</tr>
<tr>
<td>GRNN4</td>
<td>2.451</td>
<td>2.835</td>
<td>0.253</td>
<td>0.252</td>
<td>2.685</td>
<td>0.113</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>GRNN5</td>
<td>2.720</td>
<td>3.097</td>
<td>0.122</td>
<td>0.108</td>
<td>2.795</td>
<td>0.085</td>
<td>-0.018</td>
<td></td>
</tr>
<tr>
<td>GRNN6</td>
<td>0.549</td>
<td>0.897</td>
<td>0.926</td>
<td>0.925</td>
<td>0.734</td>
<td>1.218</td>
<td>0.878</td>
<td>0.859</td>
</tr>
<tr>
<td>GRNN7</td>
<td>0.453</td>
<td>0.71</td>
<td>0.954</td>
<td>0.953</td>
<td>0.696</td>
<td>1.124</td>
<td>0.887</td>
<td>0.88</td>
</tr>
<tr>
<td>GRNN8</td>
<td>0.155</td>
<td>0.246</td>
<td>0.994</td>
<td>0.994</td>
<td>0.543</td>
<td>0.962</td>
<td>0.922</td>
<td>0.912</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.047</td>
<td>0.09</td>
<td>0.999</td>
<td>0.059</td>
<td>0.856</td>
<td>0.932</td>
<td>0.930</td>
<td></td>
</tr>
<tr>
<td>LSSVM1</td>
<td>1.027</td>
<td>1.371</td>
<td>0.825</td>
<td>1.02</td>
<td>1.461</td>
<td>0.819</td>
<td>0.797</td>
<td></td>
</tr>
<tr>
<td>LSSVM2</td>
<td>1.131</td>
<td>1.619</td>
<td>0.756</td>
<td>1.059</td>
<td>1.487</td>
<td>0.791</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>LSSVM3</td>
<td>1.684</td>
<td>2.133</td>
<td>0.604</td>
<td>1.556</td>
<td>1.949</td>
<td>0.712</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td>LSSVM4</td>
<td>2.493</td>
<td>2.876</td>
<td>0.231</td>
<td>0.231</td>
<td>2.685</td>
<td>0.113</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>LSSVM5</td>
<td>2.736</td>
<td>3.117</td>
<td>0.097</td>
<td>0.096</td>
<td>2.806</td>
<td>3.320</td>
<td>0.091</td>
<td>-0.048</td>
</tr>
<tr>
<td>LSSVM6</td>
<td>0.838</td>
<td>1.205</td>
<td>0.866</td>
<td>0.865</td>
<td>0.79</td>
<td>1.169</td>
<td>0.879</td>
<td>0.87</td>
</tr>
<tr>
<td>LSSVM7</td>
<td>0.901</td>
<td>1.267</td>
<td>0.853</td>
<td>0.851</td>
<td>0.761</td>
<td>1.031</td>
<td>0.9</td>
<td>0.899</td>
</tr>
<tr>
<td>LSSVM8</td>
<td>0.813</td>
<td>1.128</td>
<td>0.893</td>
<td>0.882</td>
<td>0.826</td>
<td>1.090</td>
<td>0.893</td>
<td>0.887</td>
</tr>
<tr>
<td>LSSVM9</td>
<td>0.483</td>
<td>0.667</td>
<td>0.960</td>
<td>0.959</td>
<td>0.589</td>
<td>0.766</td>
<td>0.959</td>
<td>0.944</td>
</tr>
<tr>
<td>MARS1</td>
<td>1.038</td>
<td>1.371</td>
<td>0.825</td>
<td>0.825</td>
<td>1.064</td>
<td>1.581</td>
<td>0.805</td>
<td>0.762</td>
</tr>
<tr>
<td>MARS2</td>
<td>1.088</td>
<td>1.543</td>
<td>0.779</td>
<td>0.779</td>
<td>1.093</td>
<td>1.563</td>
<td>0.771</td>
<td>0.768</td>
</tr>
<tr>
<td>MARS3</td>
<td>1.537</td>
<td>2.01</td>
<td>0.624</td>
<td>0.624</td>
<td>1.369</td>
<td>1.795</td>
<td>0.744</td>
<td>0.694</td>
</tr>
<tr>
<td>MARS4</td>
<td>2.457</td>
<td>2.852</td>
<td>0.243</td>
<td>0.243</td>
<td>2.731</td>
<td>3.133</td>
<td>0.103</td>
<td>0.066</td>
</tr>
<tr>
<td>MARS5</td>
<td>2.695</td>
<td>3.079</td>
<td>0.118</td>
<td>0.118</td>
<td>2.795</td>
<td>3.303</td>
<td>0.097</td>
<td>-0.037</td>
</tr>
<tr>
<td>MARS6</td>
<td>0.659</td>
<td>0.972</td>
<td>0.912</td>
<td>0.912</td>
<td>0.806</td>
<td>1.390</td>
<td>0.861</td>
<td>0.816</td>
</tr>
<tr>
<td>MARS7</td>
<td>0.659</td>
<td>0.972</td>
<td>0.912</td>
<td>0.912</td>
<td>0.806</td>
<td>1.390</td>
<td>0.861</td>
<td>0.816</td>
</tr>
<tr>
<td>MARS8</td>
<td>0.543</td>
<td>0.708</td>
<td>0.953</td>
<td>0.953</td>
<td>0.597</td>
<td>0.933</td>
<td>0.935</td>
<td>0.917</td>
</tr>
</tbody>
</table>

Table 4. Comparisons of different models for predicting E_P at HEB station.
<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS</td>
<td>0.50</td>
<td>0.635</td>
<td>0.962</td>
<td>0.623</td>
<td>0.570</td>
<td>0.749</td>
<td>0.950</td>
<td>0.947</td>
</tr>
<tr>
<td>MLP1</td>
<td>1.044</td>
<td>1.374</td>
<td>0.824</td>
<td>0.824</td>
<td>1.03</td>
<td>1.483</td>
<td>0.818</td>
<td>0.794</td>
</tr>
<tr>
<td>MLP2</td>
<td>1.082</td>
<td>1.567</td>
<td>0.771</td>
<td>0.771</td>
<td>1.03</td>
<td>1.490</td>
<td>0.792</td>
<td>0.791</td>
</tr>
<tr>
<td>MLP3</td>
<td>1.135</td>
<td>1.618</td>
<td>0.757</td>
<td>0.757</td>
<td>1.04</td>
<td>1.460</td>
<td>0.798</td>
<td>0.797</td>
</tr>
<tr>
<td>MLP4</td>
<td>2.539</td>
<td>2.893</td>
<td>0.221</td>
<td>0.221</td>
<td>2.729</td>
<td>3.107</td>
<td>0.108</td>
<td>0.082</td>
</tr>
<tr>
<td>MLP5</td>
<td>2.711</td>
<td>3.107</td>
<td>0.102</td>
<td>0.102</td>
<td>2.807</td>
<td>3.304</td>
<td>0.090</td>
<td>-0.038</td>
</tr>
<tr>
<td>MLP6</td>
<td>0.655</td>
<td>0.963</td>
<td>0.914</td>
<td>0.914</td>
<td>0.716</td>
<td>1.148</td>
<td>0.892</td>
<td>0.891</td>
</tr>
<tr>
<td>MLP7</td>
<td>0.608</td>
<td>0.908</td>
<td>0.923</td>
<td>0.923</td>
<td>0.584</td>
<td>0.879</td>
<td>0.928</td>
<td>0.923</td>
</tr>
<tr>
<td>MLP8</td>
<td>0.314</td>
<td>0.458</td>
<td>0.98</td>
<td>0.98</td>
<td>0.409</td>
<td>0.607</td>
<td>0.970</td>
<td>0.966</td>
</tr>
<tr>
<td>MLP9</td>
<td>0.279</td>
<td>0.398</td>
<td>0.985</td>
<td>0.985</td>
<td>0.314</td>
<td>0.405</td>
<td>0.988</td>
<td>0.984</td>
</tr>
<tr>
<td>SS</td>
<td>0.954</td>
<td>1.327</td>
<td>0.838</td>
<td>0.838</td>
<td>0.822</td>
<td>1.152</td>
<td>0.886</td>
<td>0.885</td>
</tr>
<tr>
<td>MLR</td>
<td>0.825</td>
<td>1.05</td>
<td>0.897</td>
<td>0.897</td>
<td>0.874</td>
<td>1.160</td>
<td>0.875</td>
<td>0.875</td>
</tr>
</tbody>
</table>

Table 5. Comparisons of different models for predicting E_p at ALT station.
<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>EMAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>EMAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP1</td>
<td>1.337</td>
<td>1.76</td>
<td>0.85</td>
<td>0.85</td>
<td>1.396</td>
<td>0.941</td>
<td>0.859</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>1.33</td>
<td>1.698</td>
<td>0.86</td>
<td>0.86</td>
<td>1.203</td>
<td>1.587</td>
<td>0.863</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>2.467</td>
<td>3.11</td>
<td>0.53</td>
<td>0.53</td>
<td>2.453</td>
<td>3.045</td>
<td>0.55</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>3.895</td>
<td>4.324</td>
<td>0.092</td>
<td>0.092</td>
<td>3.758</td>
<td>4.146</td>
<td>0.035</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>3.256</td>
<td>3.807</td>
<td>0.296</td>
<td>0.296</td>
<td>2.879</td>
<td>3.385</td>
<td>0.353</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.83</td>
<td>1.178</td>
<td>0.933</td>
<td>0.933</td>
<td>0.868</td>
<td>1.220</td>
<td>0.952</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.828</td>
<td>1.165</td>
<td>0.934</td>
<td>0.934</td>
<td>0.882</td>
<td>1.229</td>
<td>0.951</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.648</td>
<td>0.886</td>
<td>0.962</td>
<td>0.962</td>
<td>0.608</td>
<td>0.810</td>
<td>0.981</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.474</td>
<td>0.66</td>
<td>0.979</td>
<td>0.979</td>
<td>0.512</td>
<td>0.646</td>
<td>0.987</td>
</tr>
<tr>
<td>FG1</td>
<td>1.297</td>
<td>1.735</td>
<td>0.854</td>
<td>0.854</td>
<td>1.112</td>
<td>1.412</td>
<td>0.926</td>
</tr>
<tr>
<td>FG2</td>
<td>1.263</td>
<td>1.638</td>
<td>0.87</td>
<td>0.87</td>
<td>1.198</td>
<td>1.555</td>
<td>0.87</td>
</tr>
<tr>
<td>FG3</td>
<td>2.447</td>
<td>3.057</td>
<td>0.546</td>
<td>0.546</td>
<td>2.373</td>
<td>2.953</td>
<td>0.58</td>
</tr>
<tr>
<td>FG4</td>
<td>3.871</td>
<td>4.307</td>
<td>0.10</td>
<td>0.1</td>
<td>3.746</td>
<td>4.130</td>
<td>0.04</td>
</tr>
<tr>
<td>FG5</td>
<td>3.215</td>
<td>3.782</td>
<td>0.306</td>
<td>0.306</td>
<td>2.83</td>
<td>3.344</td>
<td>0.366</td>
</tr>
</tbody>
</table>

Table 6. Comparisons of different models for predicting E_p at MQ station.
<p>| Model | FG6 | FG7 | FG8 | FG9 | GRNN1 | GRNN2 | GRNN3 | GRNN4 | GRNN5 | GRNN6 | GRNN7 | GRNN8 | GRNN9 | LSSVM1 | LSSVM2 | LSSVM3 | LSSVM4 | LSSVM5 | LSSVM6 | LSSVM7 | LSSVM8 | LSSVM9 | MARS1 | MARS2 | MARS3 | MARS4 | MARS5 | MARS6 | MARS7 | MARS8 | MARS9 | MLP1 | MLP2 | MLP3 | MLP4 | MLP5 | MLP6 | MLP7 | MLP8 | MLP9 | SS | MLR |
|-------|------|------|------|------|------|
| | 0.828| 0.795| 0.608| 0.456| 1.289 | 1.225 | 2.441 | 3.845 | 3.379 | 0.686 | 0.508 | 0.178 | 0.055 | 1.295 | 1.259 | 2.713 | 3.861 | 3.242 | 0.841 | 0.911 | 0.982 | 0.549 | 1.352 | 1.076 | 2.419 | 3.829 | 3.225 | 0.804 | 0.807 | 0.668 | 0.546 | 1.297 | 1.057 | 1.139 | 3.833 | 3.179 | 0.724 | 0.742 | 0.933 | 0.938 | 0.968 | 0.983 | 0.988 | 0.986 | 0.986 | 0.729 | 0.922 | 0.77 |</p>
<table>
<thead>
<tr>
<th>BJ</th>
<th>Training</th>
<th></th>
<th></th>
<th></th>
<th>Testing</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE</td>
<td>RMSE</td>
<td>R²</td>
<td>E</td>
<td>MAE</td>
<td>RMSE</td>
<td>R²</td>
<td>E</td>
</tr>
<tr>
<td>ANFIS-GP1</td>
<td>0.872</td>
<td>1.205</td>
<td>0.826</td>
<td>0.826</td>
<td>0.749</td>
<td>0.956</td>
<td>0.922</td>
<td>0.868</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>1.439</td>
<td>1.907</td>
<td>0.564</td>
<td>0.564</td>
<td>1.294</td>
<td>1.554</td>
<td>0.662</td>
<td>0.650</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>1.431</td>
<td>1.818</td>
<td>0.603</td>
<td>0.603</td>
<td>1.482</td>
<td>1.880</td>
<td>0.561</td>
<td>0.488</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>2.306</td>
<td>2.881</td>
<td>0.005</td>
<td>0.005</td>
<td>2.223</td>
<td>2.608</td>
<td>0.019</td>
<td>0.014</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>2.345</td>
<td>2.865</td>
<td>0.015</td>
<td>0.015</td>
<td>2.22</td>
<td>2.577</td>
<td>0.07</td>
<td>0.038</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.846</td>
<td>1.189</td>
<td>0.831</td>
<td>0.831</td>
<td>0.717</td>
<td>0.923</td>
<td>0.921</td>
<td>0.877</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.742</td>
<td>1.071</td>
<td>0.862</td>
<td>0.862</td>
<td>0.688</td>
<td>0.972</td>
<td>0.909</td>
<td>0.863</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.464</td>
<td>0.735</td>
<td>0.935</td>
<td>0.935</td>
<td>0.384</td>
<td>0.510</td>
<td>0.965</td>
<td>0.962</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.424</td>
<td>0.657</td>
<td>0.948</td>
<td>0.948</td>
<td>0.361</td>
<td>0.48</td>
<td>0.971</td>
<td>0.967</td>
</tr>
<tr>
<td>FG1</td>
<td>0.835</td>
<td>1.127</td>
<td>0.848</td>
<td>0.848</td>
<td>0.823</td>
<td>1.075</td>
<td>0.914</td>
<td>0.828</td>
</tr>
<tr>
<td>FG2</td>
<td>1.416</td>
<td>1.891</td>
<td>0.571</td>
<td>0.571</td>
<td>1.256</td>
<td>1.544</td>
<td>0.665</td>
<td>0.653</td>
</tr>
<tr>
<td>FG3</td>
<td>1.387</td>
<td>1.733</td>
<td>0.64</td>
<td>0.64</td>
<td>1.483</td>
<td>1.846</td>
<td>0.561</td>
<td>0.504</td>
</tr>
<tr>
<td>FG4</td>
<td>2.244</td>
<td>2.839</td>
<td>0.033</td>
<td>0.033</td>
<td>2.23</td>
<td>2.653</td>
<td>0.001</td>
<td>-0.051</td>
</tr>
<tr>
<td>FG5</td>
<td>2.288</td>
<td>2.822</td>
<td>0.045</td>
<td>0.045</td>
<td>2.234</td>
<td>2.608</td>
<td>0.02</td>
<td>0.015</td>
</tr>
<tr>
<td>FG6</td>
<td>0.742</td>
<td>1.063</td>
<td>0.864</td>
<td>0.864</td>
<td>0.688</td>
<td>0.997</td>
<td>0.922</td>
<td>0.855</td>
</tr>
<tr>
<td>FG7</td>
<td>0.721</td>
<td>1.052</td>
<td>0.867</td>
<td>0.867</td>
<td>0.679</td>
<td>0.959</td>
<td>0.926</td>
<td>0.869</td>
</tr>
<tr>
<td>FG8</td>
<td>0.451</td>
<td>0.721</td>
<td>0.938</td>
<td>0.938</td>
<td>0.394</td>
<td>0.484</td>
<td>0.971</td>
<td>0.965</td>
</tr>
<tr>
<td>FG9</td>
<td>0.438</td>
<td>0.662</td>
<td>0.947</td>
<td>0.947</td>
<td>0.355</td>
<td>0.443</td>
<td>0.977</td>
<td>0.972</td>
</tr>
<tr>
<td>GRNN1</td>
<td>0.819</td>
<td>1.114</td>
<td>0.852</td>
<td>0.851</td>
<td>0.811</td>
<td>1.062</td>
<td>0.916</td>
<td>0.837</td>
</tr>
<tr>
<td>GRNN2</td>
<td>1.379</td>
<td>1.852</td>
<td>0.589</td>
<td>0.588</td>
<td>1.23</td>
<td>1.520</td>
<td>0.678</td>
<td>0.665</td>
</tr>
<tr>
<td>GRNN3</td>
<td>1.347</td>
<td>1.702</td>
<td>0.654</td>
<td>0.653</td>
<td>1.487</td>
<td>1.850</td>
<td>0.559</td>
<td>0.504</td>
</tr>
<tr>
<td>GRNN4</td>
<td>2.262</td>
<td>2.827</td>
<td>0.044</td>
<td>0.041</td>
<td>2.253</td>
<td>2.667</td>
<td>0.001</td>
<td>-0.03</td>
</tr>
<tr>
<td>GRNN5</td>
<td>2.32</td>
<td>2.856</td>
<td>0.023</td>
<td>0.021</td>
<td>2.224</td>
<td>2.591</td>
<td>0.101</td>
<td>0.027</td>
</tr>
<tr>
<td>GRNN6</td>
<td>0.626</td>
<td>0.924</td>
<td>0.898</td>
<td>0.898</td>
<td>0.657</td>
<td>0.939</td>
<td>0.904</td>
<td>0.872</td>
</tr>
<tr>
<td>GRNN7</td>
<td>0.473</td>
<td>0.754</td>
<td>0.932</td>
<td>0.932</td>
<td>0.68</td>
<td>0.967</td>
<td>0.885</td>
<td>0.865</td>
</tr>
<tr>
<td>GRNN8</td>
<td>0.185</td>
<td>0.348</td>
<td>0.986</td>
<td>0.985</td>
<td>0.403</td>
<td>0.541</td>
<td>0.958</td>
<td>0.958</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.166</td>
<td>0.301</td>
<td>0.989</td>
<td>0.989</td>
<td>0.356</td>
<td>0.473</td>
<td>0.968</td>
<td>0.967</td>
</tr>
<tr>
<td>LSSVM1</td>
<td>0.831</td>
<td>1.121</td>
<td>0.849</td>
<td>0.849</td>
<td>0.823</td>
<td>1.068</td>
<td>0.916</td>
<td>0.835</td>
</tr>
<tr>
<td>LSSVM2</td>
<td>1.409</td>
<td>1.883</td>
<td>0.575</td>
<td>0.575</td>
<td>1.238</td>
<td>1.525</td>
<td>0.677</td>
<td>0.663</td>
</tr>
<tr>
<td>LSSVM3</td>
<td>1.502</td>
<td>1.877</td>
<td>0.606</td>
<td>0.577</td>
<td>1.522</td>
<td>1.865</td>
<td>0.547</td>
<td>0.496</td>
</tr>
<tr>
<td>LSSVM4</td>
<td>2.281</td>
<td>2.851</td>
<td>0.025</td>
<td>0.025</td>
<td>2.236</td>
<td>2.630</td>
<td>0.008</td>
<td>-0.18</td>
</tr>
<tr>
<td>LSSVM5</td>
<td>2.332</td>
<td>2.858</td>
<td>0.02</td>
<td>0.02</td>
<td>2.216</td>
<td>2.579</td>
<td>0.093</td>
<td>0.036</td>
</tr>
<tr>
<td>LSSVM6</td>
<td>0.775</td>
<td>1.117</td>
<td>0.852</td>
<td>0.85</td>
<td>0.647</td>
<td>0.927</td>
<td>0.926</td>
<td>0.875</td>
</tr>
<tr>
<td>LSSVM7</td>
<td>0.785</td>
<td>1.129</td>
<td>0.849</td>
<td>0.847</td>
<td>0.66</td>
<td>0.932</td>
<td>0.92</td>
<td>0.874</td>
</tr>
<tr>
<td>LSSVM8</td>
<td>0.733</td>
<td>1.074</td>
<td>0.876</td>
<td>0.862</td>
<td>0.619</td>
<td>0.823</td>
<td>0.926</td>
<td>0.902</td>
</tr>
<tr>
<td>LSSVM9</td>
<td>0.481</td>
<td>0.753</td>
<td>0.934</td>
<td>0.932</td>
<td>0.335</td>
<td>0.437</td>
<td>0.974</td>
<td>0.972</td>
</tr>
<tr>
<td>MARS1</td>
<td>0.835</td>
<td>1.129</td>
<td>0.847</td>
<td>0.847</td>
<td>0.857</td>
<td>1.080</td>
<td>0.914</td>
<td>0.831</td>
</tr>
<tr>
<td>MARS2</td>
<td>1.364</td>
<td>1.832</td>
<td>0.597</td>
<td>0.597</td>
<td>1.282</td>
<td>1.607</td>
<td>0.659</td>
<td>0.626</td>
</tr>
<tr>
<td>MARS3</td>
<td>1.359</td>
<td>1.717</td>
<td>0.646</td>
<td>0.646</td>
<td>1.48</td>
<td>1.844</td>
<td>0.558</td>
<td>0.507</td>
</tr>
<tr>
<td>MARS4</td>
<td>2.183</td>
<td>2.728</td>
<td>0.107</td>
<td>0.107</td>
<td>2.392</td>
<td>2.962</td>
<td>0.001</td>
<td>-0.271</td>
</tr>
<tr>
<td>MARS5</td>
<td>2.323</td>
<td>2.86</td>
<td>0.019</td>
<td>0.019</td>
<td>2.245</td>
<td>2.616</td>
<td>0.01</td>
<td>0.008</td>
</tr>
<tr>
<td>MARS6</td>
<td>0.694</td>
<td>0.974</td>
<td>0.886</td>
<td>0.886</td>
<td>0.685</td>
<td>0.986</td>
<td>0.904</td>
<td>0.859</td>
</tr>
<tr>
<td>MARS7</td>
<td>0.691</td>
<td>0.977</td>
<td>0.886</td>
<td>0.886</td>
<td>0.671</td>
<td>0.967</td>
<td>0.911</td>
<td>0.865</td>
</tr>
<tr>
<td>MARS8</td>
<td>0.52</td>
<td>0.767</td>
<td>0.929</td>
<td>0.929</td>
<td>0.5</td>
<td>0.603</td>
<td>0.963</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>RMSE</td>
<td>R²</td>
<td>E</td>
<td>MAE</td>
<td>RMSE</td>
<td>R²</td>
<td>E</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>ANFIS-GP1</td>
<td>1.327</td>
<td>1.718</td>
<td>0.411</td>
<td>0.411</td>
<td>1.072</td>
<td>1.424</td>
<td>0.594</td>
<td>0.581</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>1.245</td>
<td>1.523</td>
<td>0.536</td>
<td>0.536</td>
<td>1.192</td>
<td>1.417</td>
<td>0.601</td>
<td>0.585</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>1.821</td>
<td>2.218</td>
<td>0.017</td>
<td>0.017</td>
<td>1.796</td>
<td>2.148</td>
<td>0.055</td>
<td>0.046</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>1.772</td>
<td>2.196</td>
<td>0.037</td>
<td>0.037</td>
<td>1.794</td>
<td>2.127</td>
<td>0.072</td>
<td>0.065</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>1.721</td>
<td>2.11</td>
<td>0.111</td>
<td>0.111</td>
<td>1.695</td>
<td>2.033</td>
<td>0.178</td>
<td>0.146</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>1.149</td>
<td>1.471</td>
<td>0.568</td>
<td>0.568</td>
<td>1.046</td>
<td>1.304</td>
<td>0.651</td>
<td>0.648</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.966</td>
<td>1.223</td>
<td>0.701</td>
<td>0.701</td>
<td>0.875</td>
<td>1.082</td>
<td>0.761</td>
<td>0.758</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.529</td>
<td>0.675</td>
<td>0.909</td>
<td>0.909</td>
<td>0.73</td>
<td>0.907</td>
<td>0.896</td>
<td>0.830</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.478</td>
<td>0.61</td>
<td>0.926</td>
<td>0.926</td>
<td>0.816</td>
<td>1.038</td>
<td>0.875</td>
<td>0.777</td>
</tr>
<tr>
<td>FG1</td>
<td>1.324</td>
<td>1.715</td>
<td>0.413</td>
<td>0.413</td>
<td>1.073</td>
<td>1.415</td>
<td>0.600</td>
<td>0.584</td>
</tr>
<tr>
<td>FG2</td>
<td>1.151</td>
<td>1.465</td>
<td>0.571</td>
<td>0.571</td>
<td>1.159</td>
<td>1.392</td>
<td>0.621</td>
<td>0.600</td>
</tr>
<tr>
<td>FG3</td>
<td>1.803</td>
<td>2.169</td>
<td>0.06</td>
<td>0.06</td>
<td>1.771</td>
<td>2.093</td>
<td>0.118</td>
<td>0.115</td>
</tr>
<tr>
<td>FG4</td>
<td>1.627</td>
<td>2.072</td>
<td>0.143</td>
<td>0.143</td>
<td>1.64</td>
<td>2.036</td>
<td>0.145</td>
<td>0.141</td>
</tr>
<tr>
<td>FG5</td>
<td>1.683</td>
<td>2.092</td>
<td>0.125</td>
<td>0.125</td>
<td>1.704</td>
<td>2.022</td>
<td>0.163</td>
<td>0.152</td>
</tr>
<tr>
<td>FG6</td>
<td>1.044</td>
<td>1.381</td>
<td>0.619</td>
<td>0.619</td>
<td>0.987</td>
<td>1.201</td>
<td>0.725</td>
<td>0.705</td>
</tr>
<tr>
<td>FG7</td>
<td>0.968</td>
<td>1.215</td>
<td>0.705</td>
<td>0.705</td>
<td>0.896</td>
<td>1.099</td>
<td>0.757</td>
<td>0.737</td>
</tr>
<tr>
<td>FG8</td>
<td>0.499</td>
<td>0.631</td>
<td>0.921</td>
<td>0.921</td>
<td>0.767</td>
<td>0.925</td>
<td>0.903</td>
<td>0.823</td>
</tr>
<tr>
<td>FG9</td>
<td>0.491</td>
<td>0.61</td>
<td>0.926</td>
<td>0.926</td>
<td>0.729</td>
<td>0.886</td>
<td>0.914</td>
<td>0.86</td>
</tr>
<tr>
<td>GRNN1</td>
<td>1.296</td>
<td>1.692</td>
<td>0.429</td>
<td>0.428</td>
<td>1.094</td>
<td>1.436</td>
<td>0.587</td>
<td>0.574</td>
</tr>
<tr>
<td>GRNN2</td>
<td>1.025</td>
<td>1.336</td>
<td>0.647</td>
<td>0.643</td>
<td>1.072</td>
<td>1.288</td>
<td>0.679</td>
<td>0.657</td>
</tr>
<tr>
<td>GRNN3</td>
<td>1.783</td>
<td>2.152</td>
<td>0.077</td>
<td>0.075</td>
<td>1.762</td>
<td>2.080</td>
<td>0.134</td>
<td>0.105</td>
</tr>
<tr>
<td>GRNN4</td>
<td>1.618</td>
<td>2.079</td>
<td>0.138</td>
<td>0.136</td>
<td>1.586</td>
<td>1.971</td>
<td>0.209</td>
<td>0.196</td>
</tr>
<tr>
<td>GRNN5</td>
<td>1.712</td>
<td>2.108</td>
<td>0.119</td>
<td>0.112</td>
<td>1.705</td>
<td>2.052</td>
<td>0.176</td>
<td>0.13</td>
</tr>
<tr>
<td>GRNN6</td>
<td>0.791</td>
<td>1.067</td>
<td>0.778</td>
<td>0.773</td>
<td>0.83</td>
<td>1.044</td>
<td>0.786</td>
<td>0.775</td>
</tr>
<tr>
<td>GRNN7</td>
<td>0.425</td>
<td>0.598</td>
<td>0.93</td>
<td>0.928</td>
<td>0.789</td>
<td>1.025</td>
<td>0.789</td>
<td>0.783</td>
</tr>
<tr>
<td>GRNN8</td>
<td>0.137</td>
<td>0.202</td>
<td>0.992</td>
<td>0.992</td>
<td>0.566</td>
<td>0.711</td>
<td>0.914</td>
<td>0.895</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.056</td>
<td>0.103</td>
<td>0.998</td>
<td>0.998</td>
<td>0.459</td>
<td>0.592</td>
<td>0.933</td>
<td>0.932</td>
</tr>
<tr>
<td>LSSVM1</td>
<td>1.307</td>
<td>1.706</td>
<td>0.419</td>
<td>0.419</td>
<td>1.083</td>
<td>1.420</td>
<td>0.594</td>
<td>0.583</td>
</tr>
<tr>
<td>LSSVM2</td>
<td>1.008</td>
<td>1.32</td>
<td>0.652</td>
<td>0.652</td>
<td>1.109</td>
<td>1.317</td>
<td>0.67</td>
<td>0.641</td>
</tr>
</tbody>
</table>

Table 8. Comparisons of different models for predicting EP at LSA station.
<table>
<thead>
<tr>
<th>Model</th>
<th>Training MAE</th>
<th>Training RMSE</th>
<th>Training R^2</th>
<th>Training E</th>
<th>Testing MAE</th>
<th>Testing RMSE</th>
<th>Testing R^2</th>
<th>Testing E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP1</td>
<td>0.466</td>
<td>0.859</td>
<td>0.815</td>
<td>0.815</td>
<td>0.280</td>
<td>0.397</td>
<td>0.958</td>
<td>0.953</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>0.82</td>
<td>1.189</td>
<td>0.645</td>
<td>0.645</td>
<td>0.693</td>
<td>0.959</td>
<td>0.748</td>
<td>0.726</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>0.539</td>
<td>0.722</td>
<td>0.869</td>
<td>0.869</td>
<td>0.537</td>
<td>0.679</td>
<td>0.876</td>
<td>0.863</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>1.631</td>
<td>1.958</td>
<td>0.036</td>
<td>0.036</td>
<td>1.486</td>
<td>1.743</td>
<td>0.553</td>
<td>0.096</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>1.298</td>
<td>1.619</td>
<td>0.341</td>
<td>0.341</td>
<td>1.234</td>
<td>1.557</td>
<td>0.406</td>
<td>0.279</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.416</td>
<td>0.786</td>
<td>0.845</td>
<td>0.845</td>
<td>0.316</td>
<td>0.398</td>
<td>0.959</td>
<td>0.953</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.369</td>
<td>0.492</td>
<td>0.939</td>
<td>0.939</td>
<td>0.242</td>
<td>0.329</td>
<td>0.968</td>
<td>0.968</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.225</td>
<td>0.29</td>
<td>0.979</td>
<td>0.979</td>
<td>0.224</td>
<td>0.312</td>
<td>0.976</td>
<td>0.971</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.187</td>
<td>0.244</td>
<td>0.985</td>
<td>0.985</td>
<td>0.203</td>
<td>0.300</td>
<td>0.978</td>
<td>0.973</td>
</tr>
<tr>
<td>FG1</td>
<td>0.467</td>
<td>0.805</td>
<td>0.837</td>
<td>0.837</td>
<td>0.294</td>
<td>0.375</td>
<td>0.963</td>
<td>0.959</td>
</tr>
<tr>
<td>FG2</td>
<td>0.616</td>
<td>0.877</td>
<td>0.807</td>
<td>0.807</td>
<td>0.568</td>
<td>0.685</td>
<td>0.876</td>
<td>0.860</td>
</tr>
<tr>
<td>FG3</td>
<td>0.474</td>
<td>0.672</td>
<td>0.887</td>
<td>0.887</td>
<td>0.479</td>
<td>0.607</td>
<td>0.905</td>
<td>0.890</td>
</tr>
<tr>
<td>FG4</td>
<td>1.066</td>
<td>1.343</td>
<td>0.547</td>
<td>0.547</td>
<td>1.015</td>
<td>1.241</td>
<td>0.542</td>
<td>0.539</td>
</tr>
<tr>
<td>FG5</td>
<td>1.291</td>
<td>1.601</td>
<td>0.356</td>
<td>0.356</td>
<td>1.308</td>
<td>1.659</td>
<td>0.324</td>
<td>0.183</td>
</tr>
</tbody>
</table>

Table 9. Comparisons of different models for predicting Ep at CQ station.
| Method | FG6 | FG7 | FG8 | FG9 | GRNN1 | GRNN2 | GRNN3 | GRNN4 | GRNN5 | GRNN6 | GRNN7 | GRNN8 | GRNN9 | LSSSV1 | LSSSV2 | LSSSV3 | LSSSV4 | LSSSV5 | LSSSV6 | LSSSV7 | LSSSV8 | LSSSV9 | MARS1 | MARS2 | MARS3 | MARS4 | MARS5 | MARS6 | MARS7 | MARS8 | MARS9 | MLP1 | MLP2 | MLP3 | MLP4 | MLP5 | MLP6 | MLP7 | MLP8 | MLP9 | SS | MLR |
|--------|-----|-----|-----|-----|-------|
| | 0.385 | 0.704 | 0.876 | 0.876 | 0.303 | 0.384 | 0.96 | 0.957
| | 0.396 | 0.572 | 0.918 | 0.918 | 0.294 | 0.385 | 0.958 | 0.956
| | 0.287 | 0.38 | 0.964 | 0.964 | 0.229 | 0.299 | 0.974 | 0.973
| | 0.195 | 0.25 | 0.984 | 0.984 | 0.182 | 0.280 | 0.981 | 0.979
| | 0.437 | 0.746 | 0.861 | 0.86 | 0.284 | 0.374 | 0.963 | 0.958
| | 0.574 | 0.845 | 0.823 | 0.821 | 0.507 | 0.651 | 0.883 | 0.874
| | 0.453 | 0.652 | 0.893 | 0.893 | 0.473 | 0.610 | 0.902 | 0.889
| | 1.212 | 1.475 | 0.562 | 0.453 | 1.158 | 1.330 | 0.557 | 0.474
| | 1.318 | 1.617 | 0.354 | 0.342 | 1.253 | 1.548 | 0.395 | 0.287
| | 0.306 | 0.598 | 0.911 | 0.91 | 0.279 | 0.384 | 0.959 | 0.956
| | 0.197 | 0.278 | 0.981 | 0.981 | 0.243 | 0.328 | 0.968 | 0.968
| | 0.145 | 0.203 | 0.99 | 0.99 | 0.177 | 0.240 | 0.983 | 0.983
| | 0.227 | 0.308 | 0.977 | 0.977 | 0.234 | 0.297 | 0.975 | 0.974
| | 0.449 | 0.758 | 0.856 | 0.856 | 0.282 | 0.377 | 0.961 | 0.958
| | 0.552 | 0.825 | 0.829 | 0.829 | 0.503 | 0.650 | 0.888 | 0.874
| | 0.687 | 0.862 | 0.887 | 0.813 | 0.625 | 0.765 | 0.906 | 0.826
| | 1.07 | 1.345 | 0.548 | 0.545 | 1.003 | 1.222 | 0.556 | 0.555
| | 1.305 | 1.626 | 0.336 | 0.335 | 1.233 | 1.543 | 0.406 | 0.292
| | 0.399 | 0.741 | 0.864 | 0.862 | 0.322 | 0.399 | 0.960 | 0.953
| | 0.391 | 0.586 | 0.918 | 0.914 | 0.266 | 0.355 | 0.966 | 0.962
| | 0.407 | 0.634 | 0.916 | 0.899 | 0.284 | 0.392 | 0.968 | 0.954
| | 0.313 | 0.482 | 0.944 | 0.941 | 0.219 | 0.290 | 0.976 | 0.975
| | 0.5 | 0.753 | 0.858 | 0.858 | 0.274 | 0.357 | 0.964 | 0.962
| | 0.559 | 0.806 | 0.837 | 0.837 | 0.509 | 0.653 | 0.888 | 0.873
| | 0.453 | 0.664 | 0.889 | 0.889 | 0.466 | 0.599 | 0.904 | 0.904
| | 0.974 | 1.234 | 0.617 | 0.617 | 1.09 | 1.38 | 0.466 | 0.433
| | 1.236 | 1.51 | 0.427 | 0.427 | 1.321 | 1.741 | 0.277 | 0.10
| | 0.354 | 0.617 | 0.904 | 0.904 | 0.333 | 0.444 | 0.949 | 0.941
| | 0.336 | 0.48 | 0.942 | 0.942 | 0.292 | 0.372 | 0.959 | 0.959
| | 0.273 | 0.426 | 0.954 | 0.954 | 0.221 | 0.300 | 0.973 | 0.973
| | 0.267 | 0.417 | 0.956 | 0.956 | 0.25 | 0.323 | 0.970 | 0.969
| | 0.419 | 0.733 | 0.865 | 0.865 | 0.27 | 0.371 | 0.96 | 0.959
| | 0.55 | 0.81 | 0.835 | 0.835 | 0.509 | 0.658 | 0.887 | 0.872
| | 0.568 | 0.845 | 0.82 | 0.82 | 0.502 | 0.637 | 0.893 | 0.877
| | 1.052 | 1.338 | 0.55 | 0.55 | 0.999 | 1.231 | 0.55 | 0.549
| | 1.299 | 1.61 | 0.348 | 0.348 | 1.263 | 1.591 | 0.381 | 0.247
| | 0.334 | 0.65 | 0.894 | 0.894 | 0.266 | 0.355 | 0.966 | 0.947
| | 0.252 | 0.348 | 0.97 | 0.969 | 0.218 | 0.296 | 0.975 | 0.971
| | 0.185 | 0.239 | 0.986 | 0.986 | 0.167 | 0.230 | 0.985 | 0.984
| | 0.161 | 0.211 | 0.989 | 0.989 | 0.189 | 0.265 | 0.985 | 0.979
| | 0.379 | 0.786 | 0.847 | 0.847 | 0.226 | 0.307 | 0.973 | 0.971
| | 0.389 | 0.534 | 0.928 | 0.928 | 0.317 | 0.398 | 0.955 | 0.955

The table shows the performance metrics for various ML models, including LSSVM, MARS, GRNN, MLP, and MLR, with values for different metrics such as accuracy and precision.
<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP1</td>
<td>0.532</td>
<td>0.698</td>
<td>0.87</td>
<td>0.87</td>
<td>0.451</td>
<td>0.605</td>
<td>0.903</td>
<td>0.902</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>0.72</td>
<td>1.001</td>
<td>0.734</td>
<td>0.734</td>
<td>0.728</td>
<td>0.965</td>
<td>0.754</td>
<td>0.728</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>0.937</td>
<td>1.164</td>
<td>0.64</td>
<td>0.64</td>
<td>0.991</td>
<td>1.178</td>
<td>0.694</td>
<td>0.631</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>1.567</td>
<td>1.94</td>
<td>0.001</td>
<td>0.001</td>
<td>1.59</td>
<td>1.943</td>
<td>0.017</td>
<td>-0.004</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>1.569</td>
<td>1.931</td>
<td>0.009</td>
<td>0.009</td>
<td>1.557</td>
<td>1.910</td>
<td>0.084</td>
<td>0.029</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.377</td>
<td>0.521</td>
<td>0.928</td>
<td>0.928</td>
<td>0.333</td>
<td>0.448</td>
<td>0.948</td>
<td>0.947</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.357</td>
<td>0.482</td>
<td>0.938</td>
<td>0.938</td>
<td>0.311</td>
<td>0.397</td>
<td>0.961</td>
<td>0.958</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.272</td>
<td>0.356</td>
<td>0.966</td>
<td>0.966</td>
<td>0.329</td>
<td>0.427</td>
<td>0.965</td>
<td>0.951</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.242</td>
<td>0.312</td>
<td>0.974</td>
<td>0.974</td>
<td>0.347</td>
<td>0.453</td>
<td>0.949</td>
<td>0.945</td>
</tr>
<tr>
<td>FG1</td>
<td>0.519</td>
<td>0.686</td>
<td>0.875</td>
<td>0.875</td>
<td>0.438</td>
<td>0.590</td>
<td>0.908</td>
<td>0.907</td>
</tr>
<tr>
<td>FG2</td>
<td>0.612</td>
<td>0.79</td>
<td>0.834</td>
<td>0.834</td>
<td>0.613</td>
<td>0.764</td>
<td>0.846</td>
<td>0.845</td>
</tr>
<tr>
<td>FG3</td>
<td>0.943</td>
<td>1.151</td>
<td>0.648</td>
<td>0.648</td>
<td>1.012</td>
<td>1.188</td>
<td>0.701</td>
<td>0.624</td>
</tr>
<tr>
<td>FG4</td>
<td>1.572</td>
<td>1.925</td>
<td>0.015</td>
<td>0.015</td>
<td>1.576</td>
<td>1.922</td>
<td>0.024</td>
<td>0.018</td>
</tr>
<tr>
<td>FG5</td>
<td>1.519</td>
<td>1.862</td>
<td>0.08</td>
<td>0.08</td>
<td>1.67</td>
<td>2.014</td>
<td>0.02</td>
<td>-0.081</td>
</tr>
<tr>
<td>FG6</td>
<td>0.358</td>
<td>0.485</td>
<td>0.938</td>
<td>0.938</td>
<td>0.299</td>
<td>0.397</td>
<td>0.959</td>
<td>0.958</td>
</tr>
<tr>
<td>FG7</td>
<td>0.344</td>
<td>0.462</td>
<td>0.943</td>
<td>0.943</td>
<td>0.29</td>
<td>0.373</td>
<td>0.965</td>
<td>0.963</td>
</tr>
<tr>
<td>FG8</td>
<td>0.269</td>
<td>0.347</td>
<td>0.968</td>
<td>0.968</td>
<td>0.295</td>
<td>0.375</td>
<td>0.974</td>
<td>0.952</td>
</tr>
<tr>
<td>FG9</td>
<td>0.26</td>
<td>0.36</td>
<td>0.966</td>
<td>0.966</td>
<td>0.278</td>
<td>0.369</td>
<td>0.964</td>
<td>0.963</td>
</tr>
<tr>
<td>GRNN1</td>
<td>0.519</td>
<td>0.68</td>
<td>0.878</td>
<td>0.877</td>
<td>0.457</td>
<td>0.607</td>
<td>0.904</td>
<td>0.902</td>
</tr>
<tr>
<td>GRNN2</td>
<td>0.556</td>
<td>0.733</td>
<td>0.859</td>
<td>0.857</td>
<td>0.581</td>
<td>0.736</td>
<td>0.86</td>
<td>0.856</td>
</tr>
<tr>
<td>GRNN3</td>
<td>0.926</td>
<td>1.127</td>
<td>0.664</td>
<td>0.662</td>
<td>1.02</td>
<td>1.197</td>
<td>0.705</td>
<td>0.619</td>
</tr>
<tr>
<td>GRNN4</td>
<td>1.564</td>
<td>1.926</td>
<td>0.023</td>
<td>0.022</td>
<td>1.578</td>
<td>1.930</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>GRNN5</td>
<td>1.526</td>
<td>1.882</td>
<td>0.09</td>
<td>0.059</td>
<td>1.621</td>
<td>1.971</td>
<td>0.011</td>
<td>-0.033</td>
</tr>
<tr>
<td>GRNN6</td>
<td>0.322</td>
<td>0.438</td>
<td>0.949</td>
<td>0.949</td>
<td>0.314</td>
<td>0.409</td>
<td>0.957</td>
<td>0.955</td>
</tr>
<tr>
<td>GRNN7</td>
<td>0.238</td>
<td>0.327</td>
<td>0.972</td>
<td>0.972</td>
<td>0.295</td>
<td>0.404</td>
<td>0.961</td>
<td>0.957</td>
</tr>
<tr>
<td>GRNN8</td>
<td>0.119</td>
<td>0.17</td>
<td>0.992</td>
<td>0.992</td>
<td>0.308</td>
<td>0.400</td>
<td>0.960</td>
<td>0.956</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.047</td>
<td>0.084</td>
<td>0.998</td>
<td>0.998</td>
<td>0.367</td>
<td>0.524</td>
<td>0.929</td>
<td>0.927</td>
</tr>
<tr>
<td>LSSVM1</td>
<td>0.517</td>
<td>0.679</td>
<td>0.878</td>
<td>0.878</td>
<td>0.442</td>
<td>0.596</td>
<td>0.906</td>
<td>0.905</td>
</tr>
<tr>
<td>LSSVM2</td>
<td>0.55</td>
<td>0.713</td>
<td>0.865</td>
<td>0.865</td>
<td>0.546</td>
<td>0.695</td>
<td>0.873</td>
<td>0.872</td>
</tr>
<tr>
<td>LSSVM3</td>
<td>0.996</td>
<td>1.214</td>
<td>0.638</td>
<td>0.608</td>
<td>1.074</td>
<td>1.267</td>
<td>0.678</td>
<td>0.573</td>
</tr>
<tr>
<td>LSSVM4</td>
<td>1.554</td>
<td>1.918</td>
<td>0.022</td>
<td>0.022</td>
<td>1.568</td>
<td>1.937</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>LSSVM5</td>
<td>1.527</td>
<td>1.865</td>
<td>0.078</td>
<td>0.075</td>
<td>1.654</td>
<td>1.996</td>
<td>0.016</td>
<td>-0.06</td>
</tr>
<tr>
<td>LSSVM6</td>
<td>0.367</td>
<td>0.504</td>
<td>0.933</td>
<td>0.932</td>
<td>0.325</td>
<td>0.437</td>
<td>0.951</td>
<td>0.949</td>
</tr>
<tr>
<td>LSSVM7</td>
<td>0.364</td>
<td>0.496</td>
<td>0.937</td>
<td>0.935</td>
<td>0.328</td>
<td>0.427</td>
<td>0.961</td>
<td>0.951</td>
</tr>
<tr>
<td>LSSVM8</td>
<td>0.385</td>
<td>0.538</td>
<td>0.935</td>
<td>0.923</td>
<td>0.379</td>
<td>0.493</td>
<td>0.953</td>
<td>0.935</td>
</tr>
<tr>
<td>LSSVM9</td>
<td>0.278</td>
<td>0.382</td>
<td>0.963</td>
<td>0.961</td>
<td>0.296</td>
<td>0.397</td>
<td>0.961</td>
<td>0.958</td>
</tr>
<tr>
<td>MARS1</td>
<td>0.52</td>
<td>0.69</td>
<td>0.874</td>
<td>0.874</td>
<td>0.443</td>
<td>0.601</td>
<td>0.904</td>
<td>0.904</td>
</tr>
<tr>
<td>MARS2</td>
<td>0.534</td>
<td>0.686</td>
<td>0.875</td>
<td>0.875</td>
<td>0.524</td>
<td>0.673</td>
<td>0.881</td>
<td>0.879</td>
</tr>
<tr>
<td>MARS3</td>
<td>0.915</td>
<td>1.132</td>
<td>0.660</td>
<td>0.66</td>
<td>1.032</td>
<td>1.226</td>
<td>0.675</td>
<td>0.60</td>
</tr>
<tr>
<td>MARS4</td>
<td>1.571</td>
<td>1.94</td>
<td>0.0</td>
<td>0</td>
<td>1.591</td>
<td>1.939</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>MARS5</td>
<td>1.486</td>
<td>1.833</td>
<td>0.107</td>
<td>0.107</td>
<td>1.712</td>
<td>2.069</td>
<td>0.024</td>
<td>-0.139</td>
</tr>
<tr>
<td>MARS6</td>
<td>0.339</td>
<td>0.449</td>
<td>0.946</td>
<td>0.946</td>
<td>0.273</td>
<td>0.362</td>
<td>0.966</td>
<td>0.965</td>
</tr>
<tr>
<td>MARS7</td>
<td>0.335</td>
<td>0.437</td>
<td>0.949</td>
<td>0.949</td>
<td>0.282</td>
<td>0.358</td>
<td>0.966</td>
<td>0.966</td>
</tr>
<tr>
<td>MARS8</td>
<td>0.287</td>
<td>0.374</td>
<td>0.963</td>
<td>0.963</td>
<td>0.314</td>
<td>0.386</td>
<td>0.976</td>
<td>0.96</td>
</tr>
<tr>
<td>Models</td>
<td>Training RMSE</td>
<td>Training R^2</td>
<td>Testing RMSE</td>
<td>Testing R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARS9</td>
<td>0.27</td>
<td>0.814</td>
<td>0.361</td>
<td>0.793</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP1</td>
<td>0.529</td>
<td>0.669</td>
<td>0.906</td>
<td>0.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP2</td>
<td>0.523</td>
<td>0.873</td>
<td>0.873</td>
<td>0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP3</td>
<td>0.908</td>
<td>1.124</td>
<td>1.181</td>
<td>0.698</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP4</td>
<td>1.544</td>
<td>1.564</td>
<td>1.931</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP5</td>
<td>1.541</td>
<td>0.058</td>
<td>1.929</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP6</td>
<td>0.334</td>
<td>0.894</td>
<td>0.355</td>
<td>0.966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP7</td>
<td>0.333</td>
<td>0.944</td>
<td>0.348</td>
<td>0.968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP8</td>
<td>0.247</td>
<td>0.972</td>
<td>0.405</td>
<td>0.978</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLP9</td>
<td>0.244</td>
<td>0.973</td>
<td>0.340</td>
<td>0.977</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRNN1</td>
<td>0.350</td>
<td>0.938</td>
<td>0.388</td>
<td>0.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRNN2</td>
<td>0.422</td>
<td>0.952</td>
<td>0.486</td>
<td>0.942</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. Comparisons of different models for predicting E_p at HK station.
<table>
<thead>
<tr>
<th>Model</th>
<th>0.649</th>
<th>0.828</th>
<th>0.766</th>
<th>0.73</th>
<th>0.578</th>
<th>0.714</th>
<th>0.852</th>
<th>0.782</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSSVM3</td>
<td>1.10</td>
<td>1.333</td>
<td>0.301</td>
<td>0.301</td>
<td>1.151</td>
<td>1.469</td>
<td>0.311</td>
<td>0.08</td>
</tr>
<tr>
<td>LSSVM4</td>
<td>1.296</td>
<td>1.588</td>
<td>0.009</td>
<td>0.007</td>
<td>1.349</td>
<td>1.611</td>
<td>0.007</td>
<td>-0.107</td>
</tr>
<tr>
<td>LSSVM5</td>
<td>0.481</td>
<td>0.64</td>
<td>0.841</td>
<td>0.839</td>
<td>0.658</td>
<td>0.787</td>
<td>0.868</td>
<td>0.736</td>
</tr>
<tr>
<td>LSSVM6</td>
<td>0.463</td>
<td>0.609</td>
<td>0.856</td>
<td>0.854</td>
<td>0.491</td>
<td>0.603</td>
<td>0.891</td>
<td>0.845</td>
</tr>
<tr>
<td>LSSVM7</td>
<td>0.441</td>
<td>0.571</td>
<td>0.880</td>
<td>0.872</td>
<td>0.552</td>
<td>0.664</td>
<td>0.917</td>
<td>0.812</td>
</tr>
<tr>
<td>LSSVM8</td>
<td>0.326</td>
<td>0.425</td>
<td>0.930</td>
<td>0.929</td>
<td>0.398</td>
<td>0.501</td>
<td>0.925</td>
<td>0.893</td>
</tr>
<tr>
<td>MARS1</td>
<td>0.506</td>
<td>0.661</td>
<td>0.828</td>
<td>0.828</td>
<td>0.662</td>
<td>0.791</td>
<td>0.860</td>
<td>0.733</td>
</tr>
<tr>
<td>MARS2</td>
<td>0.664</td>
<td>0.862</td>
<td>0.708</td>
<td>0.708</td>
<td>0.858</td>
<td>1.023</td>
<td>0.766</td>
<td>0.554</td>
</tr>
<tr>
<td>MARS3</td>
<td>0.603</td>
<td>0.758</td>
<td>0.774</td>
<td>0.774</td>
<td>0.5</td>
<td>0.638</td>
<td>0.842</td>
<td>0.826</td>
</tr>
<tr>
<td>MARS4</td>
<td>1.084</td>
<td>1.315</td>
<td>0.319</td>
<td>0.319</td>
<td>1.185</td>
<td>1.500</td>
<td>0.243</td>
<td>0.041</td>
</tr>
<tr>
<td>MARS5</td>
<td>1.266</td>
<td>1.56</td>
<td>0.043</td>
<td>0.043</td>
<td>1.364</td>
<td>1.634</td>
<td>0.001</td>
<td>-0.138</td>
</tr>
<tr>
<td>MARS6</td>
<td>0.438</td>
<td>0.581</td>
<td>0.867</td>
<td>0.867</td>
<td>0.733</td>
<td>0.899</td>
<td>0.869</td>
<td>0.655</td>
</tr>
<tr>
<td>MARS7</td>
<td>0.426</td>
<td>0.547</td>
<td>0.882</td>
<td>0.882</td>
<td>0.536</td>
<td>0.691</td>
<td>0.891</td>
<td>0.797</td>
</tr>
<tr>
<td>MARS8</td>
<td>0.407</td>
<td>0.517</td>
<td>0.895</td>
<td>0.895</td>
<td>0.682</td>
<td>0.807</td>
<td>0.917</td>
<td>0.722</td>
</tr>
<tr>
<td>MARS9</td>
<td>0.322</td>
<td>0.414</td>
<td>0.932</td>
<td>0.932</td>
<td>0.397</td>
<td>0.515</td>
<td>0.927</td>
<td>0.887</td>
</tr>
<tr>
<td>MLP1</td>
<td>0.512</td>
<td>0.671</td>
<td>0.823</td>
<td>0.823</td>
<td>0.657</td>
<td>0.793</td>
<td>0.855</td>
<td>0.732</td>
</tr>
<tr>
<td>MLP2</td>
<td>0.686</td>
<td>0.878</td>
<td>0.697</td>
<td>0.697</td>
<td>0.822</td>
<td>0.979</td>
<td>0.792</td>
<td>0.591</td>
</tr>
<tr>
<td>MLP3</td>
<td>0.707</td>
<td>0.903</td>
<td>0.679</td>
<td>0.679</td>
<td>0.821</td>
<td>0.973</td>
<td>0.797</td>
<td>0.626</td>
</tr>
<tr>
<td>MLP4</td>
<td>1.073</td>
<td>1.309</td>
<td>0.325</td>
<td>0.325</td>
<td>1.137</td>
<td>1.459</td>
<td>0.293</td>
<td>0.092</td>
</tr>
<tr>
<td>MLP5</td>
<td>1.306</td>
<td>1.591</td>
<td>0.005</td>
<td>0.005</td>
<td>1.329</td>
<td>1.576</td>
<td>0.028</td>
<td>-0.058</td>
</tr>
<tr>
<td>MLP6</td>
<td>0.47</td>
<td>0.623</td>
<td>0.847</td>
<td>0.847</td>
<td>0.657</td>
<td>0.779</td>
<td>0.878</td>
<td>0.741</td>
</tr>
<tr>
<td>MLP7</td>
<td>0.421</td>
<td>0.542</td>
<td>0.884</td>
<td>0.884</td>
<td>0.485</td>
<td>0.594</td>
<td>0.897</td>
<td>0.847</td>
</tr>
<tr>
<td>MLP8</td>
<td>0.431</td>
<td>0.554</td>
<td>0.88</td>
<td>0.879</td>
<td>0.671</td>
<td>0.786</td>
<td>0.916</td>
<td>0.736</td>
</tr>
<tr>
<td>MLP9</td>
<td>0.34</td>
<td>0.444</td>
<td>0.923</td>
<td>0.923</td>
<td>0.386</td>
<td>0.491</td>
<td>0.930</td>
<td>0.897</td>
</tr>
<tr>
<td>SS</td>
<td>0.523</td>
<td>0.683</td>
<td>0.827</td>
<td>0.827</td>
<td>0.64</td>
<td>0.773</td>
<td>0.823</td>
<td>0.822</td>
</tr>
<tr>
<td>MLR</td>
<td>0.328</td>
<td>0.431</td>
<td>0.927</td>
<td>0.927</td>
<td>0.396</td>
<td>0.505</td>
<td>0.927</td>
<td>0.925</td>
</tr>
</tbody>
</table>
Table 12. Accuracy ranks * of the soft computing models in estimating E_p.

<table>
<thead>
<tr>
<th>Stations</th>
<th>ANFIS-GP</th>
<th>FG</th>
<th>GRNN</th>
<th>LSSV</th>
<th>MARS</th>
<th>MLP</th>
<th>MLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ALT</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>MQ</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>BJ</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>LSA</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>CQ</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>HZ</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>HK</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ALL</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>38</td>
<td>27</td>
<td>37</td>
<td>43</td>
<td>10</td>
<td>57</td>
</tr>
</tbody>
</table>

*Accuracy ranks were determined according to the RMSE, MAE, E and R^2 criteria. For the HEB, for example, MLP has the highest accuracy (1st model) while the MLR has the lowest accuracy (7th model).
Table 13. Comparisons of different models for predicting Ep at all stations.

<table>
<thead>
<tr>
<th>Model</th>
<th>Training MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
<th>Testing MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP1</td>
<td>1.204</td>
<td>1.681</td>
<td>0.739</td>
<td>0.739</td>
<td>1.022</td>
<td>1.378</td>
<td>0.804</td>
<td>0.803</td>
</tr>
<tr>
<td>ANFIS-GP2</td>
<td>1.906</td>
<td>2.522</td>
<td>0.412</td>
<td>0.412</td>
<td>1.768</td>
<td>2.345</td>
<td>0.437</td>
<td>0.431</td>
</tr>
<tr>
<td>ANFIS-GP3</td>
<td>1.913</td>
<td>2.377</td>
<td>0.478</td>
<td>0.478</td>
<td>1.877</td>
<td>2.262</td>
<td>0.475</td>
<td>0.471</td>
</tr>
<tr>
<td>ANFIS-GP4</td>
<td>1.23</td>
<td>1.451</td>
<td>0.171</td>
<td>0.171</td>
<td>1.20</td>
<td>1.490</td>
<td>0.268</td>
<td>0.054</td>
</tr>
<tr>
<td>ANFIS-GP5</td>
<td>1.305</td>
<td>1.594</td>
<td>0.001</td>
<td>0.001</td>
<td>1.333</td>
<td>1.585</td>
<td>0.029</td>
<td>-0.072</td>
</tr>
<tr>
<td>ANFIS-GP6</td>
<td>0.994</td>
<td>1.446</td>
<td>0.807</td>
<td>0.807</td>
<td>0.88</td>
<td>1.228</td>
<td>0.847</td>
<td>0.844</td>
</tr>
<tr>
<td>ANFIS-GP7</td>
<td>0.917</td>
<td>1.341</td>
<td>0.834</td>
<td>0.834</td>
<td>0.782</td>
<td>1.113</td>
<td>0.872</td>
<td>0.872</td>
</tr>
<tr>
<td>ANFIS-GP8</td>
<td>0.606</td>
<td>0.846</td>
<td>0.934</td>
<td>0.934</td>
<td>0.601</td>
<td>0.833</td>
<td>0.933</td>
<td>0.928</td>
</tr>
<tr>
<td>ANFIS-GP9</td>
<td>0.517</td>
<td>0.738</td>
<td>0.95</td>
<td>0.95</td>
<td>0.486</td>
<td>0.666</td>
<td>0.957</td>
<td>0.957</td>
</tr>
<tr>
<td>FG1</td>
<td>1.208</td>
<td>1.676</td>
<td>0.74</td>
<td>0.74</td>
<td>1.028</td>
<td>1.377</td>
<td>0.805</td>
<td>0.804</td>
</tr>
<tr>
<td>FG2</td>
<td>1.883</td>
<td>2.511</td>
<td>0.417</td>
<td>0.417</td>
<td>1.741</td>
<td>2.332</td>
<td>0.443</td>
<td>0.438</td>
</tr>
<tr>
<td>FG3</td>
<td>1.8</td>
<td>2.221</td>
<td>0.544</td>
<td>0.544</td>
<td>1.812</td>
<td>2.148</td>
<td>0.524</td>
<td>0.521</td>
</tr>
<tr>
<td>FG4</td>
<td>1.106</td>
<td>1.336</td>
<td>0.298</td>
<td>0.298</td>
<td>1.151</td>
<td>1.469</td>
<td>0.318</td>
<td>0.075</td>
</tr>
<tr>
<td>FG5</td>
<td>1.288</td>
<td>1.567</td>
<td>0.034</td>
<td>0.034</td>
<td>1.326</td>
<td>1.565</td>
<td>0.009</td>
<td>-0.044</td>
</tr>
<tr>
<td>FG6</td>
<td>0.936</td>
<td>1.378</td>
<td>0.824</td>
<td>0.824</td>
<td>0.821</td>
<td>1.154</td>
<td>0.865</td>
<td>0.862</td>
</tr>
<tr>
<td>FG7</td>
<td>0.883</td>
<td>1.294</td>
<td>0.845</td>
<td>0.845</td>
<td>0.753</td>
<td>1.072</td>
<td>0.882</td>
<td>0.880</td>
</tr>
<tr>
<td>FG8</td>
<td>0.589</td>
<td>0.834</td>
<td>0.936</td>
<td>0.936</td>
<td>0.607</td>
<td>0.842</td>
<td>0.931</td>
<td>0.929</td>
</tr>
<tr>
<td>FG9</td>
<td>0.518</td>
<td>0.744</td>
<td>0.949</td>
<td>0.949</td>
<td>0.495</td>
<td>0.678</td>
<td>0.956</td>
<td>0.954</td>
</tr>
<tr>
<td>GRNN1</td>
<td>1.193</td>
<td>1.669</td>
<td>0.743</td>
<td>0.743</td>
<td>1.013</td>
<td>1.373</td>
<td>0.806</td>
<td>0.805</td>
</tr>
<tr>
<td>GRNN2</td>
<td>1.839</td>
<td>2.49</td>
<td>0.427</td>
<td>0.427</td>
<td>1.716</td>
<td>2.311</td>
<td>0.453</td>
<td>0.448</td>
</tr>
<tr>
<td>GRNN3</td>
<td>1.772</td>
<td>2.216</td>
<td>0.549</td>
<td>0.546</td>
<td>1.773</td>
<td>2.127</td>
<td>0.532</td>
<td>0.532</td>
</tr>
<tr>
<td>GRNN4</td>
<td>1.11</td>
<td>1.335</td>
<td>0.311</td>
<td>0.299</td>
<td>1.178</td>
<td>1.472</td>
<td>0.316</td>
<td>0.077</td>
</tr>
<tr>
<td>GRNN5</td>
<td>1.295</td>
<td>1.581</td>
<td>0.025</td>
<td>0.016</td>
<td>1.342</td>
<td>1.600</td>
<td>0.02</td>
<td>-0.091</td>
</tr>
<tr>
<td>GRNN6</td>
<td>0.819</td>
<td>1.234</td>
<td>0.86</td>
<td>0.859</td>
<td>0.733</td>
<td>1.075</td>
<td>0.884</td>
<td>0.880</td>
</tr>
<tr>
<td>GRNN7</td>
<td>0.724</td>
<td>1.114</td>
<td>0.886</td>
<td>0.885</td>
<td>0.642</td>
<td>0.963</td>
<td>0.905</td>
<td>0.904</td>
</tr>
<tr>
<td>GRNN8</td>
<td>0.458</td>
<td>0.674</td>
<td>0.958</td>
<td>0.958</td>
<td>0.489</td>
<td>0.723</td>
<td>0.947</td>
<td>0.946</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.265</td>
<td>0.425</td>
<td>0.984</td>
<td>0.983</td>
<td>0.364</td>
<td>0.573</td>
<td>0.967</td>
<td>0.966</td>
</tr>
<tr>
<td>LSSVM1</td>
<td>1.198</td>
<td>1.667</td>
<td>0.743</td>
<td>0.743</td>
<td>1.017</td>
<td>1.371</td>
<td>0.807</td>
<td>0.806</td>
</tr>
<tr>
<td>LSSVM2</td>
<td>1.85</td>
<td>2.495</td>
<td>0.425</td>
<td>0.425</td>
<td>1.703</td>
<td>2.312</td>
<td>0.453</td>
<td>0.447</td>
</tr>
<tr>
<td>LSSVM3</td>
<td>1.854</td>
<td>2.314</td>
<td>0.506</td>
<td>0.505</td>
<td>1.858</td>
<td>2.215</td>
<td>0.493</td>
<td>0.492</td>
</tr>
<tr>
<td>LSSVM4</td>
<td>1.10</td>
<td>1.333</td>
<td>0.301</td>
<td>0.301</td>
<td>1.151</td>
<td>1.469</td>
<td>0.311</td>
<td>0.08</td>
</tr>
<tr>
<td>LSSVM5</td>
<td>1.296</td>
<td>1.588</td>
<td>0.009</td>
<td>0.007</td>
<td>1.349</td>
<td>1.611</td>
<td>0.007</td>
<td>-0.017</td>
</tr>
<tr>
<td>LSSVM6</td>
<td>0.935</td>
<td>1.386</td>
<td>0.823</td>
<td>0.822</td>
<td>0.806</td>
<td>1.149</td>
<td>0.866</td>
<td>0.864</td>
</tr>
<tr>
<td>LSSVM7</td>
<td>0.933</td>
<td>1.369</td>
<td>0.827</td>
<td>0.827</td>
<td>0.8</td>
<td>1.134</td>
<td>0.867</td>
<td>0.867</td>
</tr>
<tr>
<td>LSSVM8</td>
<td>0.824</td>
<td>1.148</td>
<td>0.879</td>
<td>0.878</td>
<td>0.774</td>
<td>1.023</td>
<td>0.893</td>
<td>0.892</td>
</tr>
<tr>
<td>LSSVM9</td>
<td>0.494</td>
<td>0.719</td>
<td>0.952</td>
<td>0.952</td>
<td>0.476</td>
<td>0.657</td>
<td>0.958</td>
<td>0.955</td>
</tr>
<tr>
<td>MARS1</td>
<td>1.198</td>
<td>1.666</td>
<td>0.744</td>
<td>0.744</td>
<td>1.021</td>
<td>1.373</td>
<td>0.806</td>
<td>0.805</td>
</tr>
<tr>
<td>MARS2</td>
<td>1.793</td>
<td>2.428</td>
<td>0.455</td>
<td>0.455</td>
<td>1.676</td>
<td>2.268</td>
<td>0.476</td>
<td>0.468</td>
</tr>
<tr>
<td>MARS3</td>
<td>1.772</td>
<td>2.206</td>
<td>0.55</td>
<td>0.55</td>
<td>1.77</td>
<td>2.125</td>
<td>0.534</td>
<td>0.533</td>
</tr>
<tr>
<td>MARS4</td>
<td>1.084</td>
<td>1.315</td>
<td>0.319</td>
<td>0.319</td>
<td>1.185</td>
<td>1.500</td>
<td>0.243</td>
<td>0.040</td>
</tr>
<tr>
<td>MARS5</td>
<td>1.268</td>
<td>1.561</td>
<td>0.04</td>
<td>0.04</td>
<td>1.386</td>
<td>1.677</td>
<td>0.012</td>
<td>-0.199</td>
</tr>
</tbody>
</table>
Table 14. Evaluation of the optimal models by training with testing dataset and testing with training dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>EMAE</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFIS-GP9</td>
<td>0.447</td>
<td>0.631</td>
<td>0.959</td>
<td>0.959</td>
<td>0.526</td>
<td>0.792</td>
<td>0.945</td>
<td>0.942</td>
</tr>
<tr>
<td>FG9</td>
<td>0.476</td>
<td>0.686</td>
<td>0.951</td>
<td>0.951</td>
<td>0.591</td>
<td>0.864</td>
<td>0.934</td>
<td>0.931</td>
</tr>
<tr>
<td>GRNN9</td>
<td>0.230</td>
<td>0.331</td>
<td>0.989</td>
<td>0.989</td>
<td>0.493</td>
<td>0.820</td>
<td>0.941</td>
<td>0.927</td>
</tr>
<tr>
<td>LSSVM9</td>
<td>0.703</td>
<td>0.962</td>
<td>0.907</td>
<td>0.907</td>
<td>0.784</td>
<td>1.170</td>
<td>0.882</td>
<td>0.826</td>
</tr>
<tr>
<td>MARS9</td>
<td>0.600</td>
<td>0.783</td>
<td>0.937</td>
<td>0.937</td>
<td>0.691</td>
<td>0.968</td>
<td>0.916</td>
<td>0.913</td>
</tr>
<tr>
<td>MLP9</td>
<td>0.383</td>
<td>0.537</td>
<td>0.970</td>
<td>0.970</td>
<td>0.481</td>
<td>0.735</td>
<td>0.953</td>
<td>0.950</td>
</tr>
</tbody>
</table>

Table 15. The MLP model performances tested at different stations with full weather inputs

<table>
<thead>
<tr>
<th>Station</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
<th>MAE</th>
<th>RMSE</th>
<th>R^2</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEB</td>
<td>0.150</td>
<td>0.197</td>
<td>0.996</td>
<td>0.996</td>
<td>0.498</td>
<td>0.687</td>
<td>0.970</td>
<td>0.956</td>
</tr>
<tr>
<td>ALT</td>
<td>0.193</td>
<td>0.255</td>
<td>0.994</td>
<td>0.994</td>
<td>0.524</td>
<td>0.831</td>
<td>0.980</td>
<td>0.957</td>
</tr>
<tr>
<td>MQ</td>
<td>0.446</td>
<td>0.542</td>
<td>0.984</td>
<td>0.983</td>
<td>0.693</td>
<td>0.908</td>
<td>0.974</td>
<td>0.960</td>
</tr>
<tr>
<td>BJ</td>
<td>0.187</td>
<td>0.241</td>
<td>0.992</td>
<td>0.992</td>
<td>0.468</td>
<td>0.813</td>
<td>0.930</td>
<td>0.921</td>
</tr>
<tr>
<td>LSA</td>
<td>0.270</td>
<td>0.342</td>
<td>0.976</td>
<td>0.976</td>
<td>0.636</td>
<td>0.788</td>
<td>0.880</td>
<td>0.876</td>
</tr>
<tr>
<td>CQ</td>
<td>0.114</td>
<td>0.159</td>
<td>0.992</td>
<td>0.992</td>
<td>0.317</td>
<td>0.740</td>
<td>0.865</td>
<td>0.862</td>
</tr>
<tr>
<td>HZ</td>
<td>0.208</td>
<td>0.271</td>
<td>0.981</td>
<td>0.981</td>
<td>0.403</td>
<td>0.535</td>
<td>0.937</td>
<td>0.924</td>
</tr>
<tr>
<td>HK</td>
<td>0.317</td>
<td>0.393</td>
<td>0.934</td>
<td>0.934</td>
<td>0.414</td>
<td>0.548</td>
<td>0.922</td>
<td>0.882</td>
</tr>
</tbody>
</table>