Dear Editor,

Let me first of all thank you for providing us extra time to rework our manuscript. As the changes of our manuscript are significant and extensive it is difficult to highlight and mark specific passages that we changed directly in our manuscript. Hence we will here only explain our general changes. However most of the changes are in line with our responses to the two reviewers and follow their recommendations.

We revised our manuscript as follows:

- We reworked and streamlined the introduction and the objectives as recommended by both reviewers. We particularly extended our referencing where possible.

- The rational of our study is now clearly stated – it is the search for the most parsimonious representation of a catchment in a physically-based model. Specifically we hypothesize that this is a single hillslope in the case of hilly and mountainous lower mesoscale catchments.

We test this hypothesis for the two selected research catchments by a two-step procedure

Step 1: First we derive a qualitative model structure of a representative hillslope from our perception of the dominant processes and the related dominant surface and subsurface characteristics in the catchment.

Step 2: We transform this qualitative model structures into a quantitative model structure without the use of an automatic parameter calibration.

We reworked section 2.1 and 2.2 and particularly stress how we inferred the key characteristics and simplifications of the representative hillslope models from the available perceptual models.

We added a more comprehensive explanation of the model setups as recommended by the two reviewers (we list the major changes for more details we refer to our response). Our goal is still to make the model setup as transparent as possible.

1.) For instance we much more carefully parameterize our evapotranspiration routine and use locally observed LAI data in and provide the parameters similar to the soil parameters in Table.

2.) We refined the grid of the Colpach model close to the locations of the macropores and restricted the macropore medium to velocities in the laminar range.

3.) We explain in more detail how we derived the hillslope topography and how we used the ERT data to infer on the relative bedrock topography.
We moved different parts from the data and model section to the appendix to improve the overall readability and yet assure a reproducible study.

We removed the virtual experiments and most of the discussion concerning evapotranspiration from our manuscript.

We considerable revised our discussion section and focused it. We discuss the validity of the available perceptual models, the short comings of the chosen hydrological model, general short comings of our current understanding, for instance on how to represent non-stationary soil morphology and to general limitations of the representative hillslope concept itself.

Finally we would like to thank you and the two reviewers once more for their patient and for their detailed and constructive comments on our manuscript.

Yours sincerely,

Ralf Loritz
Picturing and modeling catchments by representative hillslopes

Ralf Loritz1, Sibylle K. Hassler1, Conrad Jackisch1, Niklas Allrogen2, Loes van Schaik3, Jan Wienhöfer1, and Erwin Zehe1

1 Karlsruhe Institute of Technology (KIT), Institute of water and river basin management, Karlsruhe, Germany
2 University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany
3 Technische Universität Braunschweig, Environmental Systems Analysis, Braunschweig, Germany
4 University Berlin, Institute of Geoecology, Berlin, Germany

Correspondence to: Ralf Loritz (Ralf.Loritz@kit.edu)

Abstract: Despite the numerous hydrological models existing in hydrology we are limited to a few forms of conceptualization when abstracting hydrological systems into different model frameworks. Speaking in black and white terms, in most cases hydrological systems are either represented spatially lumped with conceptual models or spatially explicit with physically-based models. Physically-based models are often parameter-rich, making the parametrization challenging, while conceptual models are parsimonious, with only a few parameters needing to be identified. But this simplistic mathematical expression is often also their drawback since their model states and parameters are difficult to translate to the physical properties of a catchment. It is interesting to note that both hydrological modeling approaches often start with the drawing of a perceptual model. This follows the hydrologist’s philosophy to separate dominant patterns and processes from idiosyncratic system details. Due to the importance of hillslopes as key landscape elements perceptual models are often displayed as 2D cross-sections. In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as blueprint for setting up representative hillslope models. Thereby we test the hypothesis if a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way. We do this by setting up and testing two hillslope models in catchments located in two different geological settings, Schist and Marl, using a two-dimensional physically-based model. Both models are parametrized based on intensive field data and literature values without
automatic calibration. Remarkably we are able to not only match the water balance of both catchments but further have some success in simulating runoff generation as well as soil moisture and sap flow dynamics. Particularly, our findings reveal that both models performed well during the winter season and clearly worse during the summer period. Virtual experiments revealed that this was either due to a poor representation of the onset of vegetation in the Schist catchment or due to emergence of soil cracks in the Marl area. Both findings underpin that a static parameterization of hydrological models might be problematical in case of emergent behavior. Additional virtual experiments revealed that the storage of water in the bedrock is a first order control on the hydrological functioning of the Schist catchment and not so much the topographic gradient. We conclude that the representative hillslope concept is a feasible approach in data rich regions and that this form of abstraction provides an added value to the established conceptualization frameworks in hydrology.
Abstract: This study explores the suitability of a single hillslope as most parsimonious representation of a catchment in a physically-based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically-based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against stream flow data highlights that both models predicted the annual pattern of stream flow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results corroborate that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search of the optimal representation of catchments in physically-based models.

1 Introduction

1.1 Representative hillslope models as catchment pictures

According to Heidegger (1977), “the modern is characterized as the age of the world picture”. Science conceives and grasps the world as a picture rather than simply picturing the world. In hydrology such a picture is for instance reflected by a perceptual model. Perceptual models are abstractions of a hydrological system displaying how dominant properties and processes jointly control its functioning. It is conspicuous that these models are frequently drawn in the form of a hillslope-like cross-section. This reflects that hillslopes are often regarded as the key landscape elements controlling transformation of precipitation and radiation inputs into terrestrial fluxes and stocks of water (e.g. Bronstert and Plate, 1997), energy (Zehe et al., 2010a, 2013) and sediments (Mueller et al., 2010). Although any perceptual model is a simplification and is pre-determined by the designer’s background and experience (Beven, 2012) it provides a useful means to
facilitate communication between researchers with different backgrounds by integrating their knowledge (Seibert and McDonnell, 2002). Further, perceptual models are the natural starting point for any process-oriented model exercise. Due to their simplistic way of abstracting the landscape, the rationale of this study is to explore whether perceptual models of two distinctly different catchments, derived from comprehensive and diverse field observations, may serve as blueprints for setting up representative hillslope models. Recently, Wrede et al. (2015) followed the same idea by deriving conceptual model structures from perceptual models of three headwaters located in the Attert experimental basin, which is also our study area. However, here we use a physically-based model because the underlying equations depend on observable parameters and state variables (Loague and VanderKwaak, 2004; Zehe et al., 2006). The representative hillslope model is hence a straightforward conceptualization of the underlying perceptual model (as illustrated in Figure 3, section 2) by drawing from available field data and expert knowledge. We regard this as the most parsimonious representation of the catchment in a physically-based model framework which provides a spatially explicit but yet effective picture about how gradients, spatial patterns of soil properties and rapid flow paths jointly control the dominant processes. Testing of such an approach offers several avenues for scientific learning as further specified below.

The usefulness of physically-based models as learning tools has been corroborated in several studies, especially those working on the hillslope and lower catchment mesoscale. For instance, the value of physically-based hydrological models has been doubted (e.g. Beven, 1989, Savenije and Hrachowitz, 2016) since their idea was introduced by Freeze and Harlan (1969). Physically-based models like MikeShe (Refsgaard and Storm, 1995) or CATHY (Camporese et al., 2010) typically rely on the Darcy-Richards concept for soil water dynamics, the Penman–Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems (Grayson et al., 1992; Gupta et al., 2012).

Nevertheless the usefulness of physically-based models as learning tool to explore how internal patterns and processes control the integral behavior of hydrological systems, has been corroborated in several studies. For example Pérez et al. (2011) used
Hydrogeosphere (Brunner and Simmons, 2012) together with a regularization scheme for its calibration, to infer how changes in agricultural practices affect the stream flow generation in a catchment. Hopp and McDonnell (2009) explored the role of bedrock topography on the runoff formation. Complementary to this, generation using HYDRUS 3D (Simunek et al., 2006) at the Panola hillslope. Coenders-Gerrits et al. (2013) used the same model structure to examine the role of interception and slope on the subsurface runoff generation. Bishop et al. (2015), Wienhöfer and Zehe (2014) and Klaus and Zehe (2011) focused on using physically-based models to investigate the influence of lateral and vertical preferential flow networks on subsurface water flow and solute transport, including the issue of equifinality and its reduction. These and other studies (e.g. Ebel et al., 2008) corroborate that physically-based models may be benchmarked, Scudeler et al., 2016) show that physically-based models can be set up using a mix of expert knowledge and observed parameters and may be tested against a variety of observations beyond stream flow – such as soil moisture observations, groundwater tables or tracer breakthrough curves. Essentially, such multi-response evaluation reveals whether a model allows consistent predictions of dynamics within the catchment and far. Such studies are, on the one hand an option to increase our limited understanding of the processes underlying physically-based models (Loague and VanderKwaak, 2004), and on the other hand reveal if a model allows consistent predictions of dynamics within the catchment and of its integral response behavior (Ebel and Loague, 2006). Last but not least, virtual experiments with physically-based models are straightforward to implement and interpret, because their parameters and their spatial setup are well connected to those observables we use to characterize hydrological systems. Such virtual experiments may reveal first order controls on hydrological system behaviors, and thereby sustain scientific learning (Weiler and McDonnell, 2004), for instance to decide which variables shall be observed within field campaigns in order to reduce equifinality (Zehe et al., 2014) as further specified below.

1.2 Challenges in modeling catchments by representative hillslopes

Several physically based and distributed model studies employ typical hillslope catenas as building blocks (Bronstert and Plate, 1997; Zehe and Blöschl, 2004; Jackisch et al., 2014). However, the challenge of how to identify a behavioral representative hillslope as most parsimonious representation of a small catchment in a physically-based model has rarely been addressed. This reflects the fact that the identifiability of representative
Setting up a classical physically-based model in a heterogeneous environmental system is, however, a challenge as it requires an enormous amount of highly resolved spatial data, particularly on subsurface characteristics. Such data sets are rare and only available in rather homogeneous systems or in environmental system simulators as Biosphere 2 LEO (Hopp et al., 2009). Therefore, it has been a long standing vision to replace fully distributed physically-based models by aggregated but yet physically-based model concepts for instance the Hillslope Storage Boussinesq approach (HSB, Troch et al., 2003; Berne et al., 2005) or the REW approach (Representative Elementary Watershed e.g. Reggiani and Rientjes, 2005; Zhang and Savenije, 2005). The key challenge in applying these concepts to real catchments is the assessment of a closure relationship, which parameterizes a) hydrological fluxes (Beven, 2006a) and b) soil water characteristics in an aggregated effective manner (Lee et al., 2006; Zehe et al., 2006). Furthermore, it is not completely clear whether the entire range of variability in subsurface characteristics is relevant for hydrological simulations (Dooge, 1986; Zehe et al., 2014). There are, however, promising concepts emerging, for example the work of Hazenberg et al. (2016) who recently developed a hybrid model consisting of the HSB model in combination with a 1-D representation of the Richards equation for the unsaturated zone.

Regardless of whether one favors physically-based, hybrid or more statistical model approaches, a perfect representation of a hydrological system should balance the necessary complexity with greatest possible simplicity (Zehe et al., 2014). The former is necessary to avoid oversimplification. The latter attempts to avoid the drawbacks of over-parametrization (Schoups et al., 2008). In principle there are two ways how one can try to reach this optimum model structure. Either by starting with a complex system representation, for instance a full 3-D catchment model and simplify the model structure as much as possible or by starting at the other end of the spectrum, with the most parsimonious model structure and proceed towards higher complexity. In conceptual rainfall-runoff models which follow the HBV concept (Bergström and Forsman, 1973) the most parsimonious model structure for simulating the behavior of a catchment is a single reservoir. In the case of physically-based models there is more than one starting point. In flatland catchments without dominant lateral flow processes in the soil one might choose a single soil column. This “null model” could be refined into multiple parallel acting columns, to capture variability in vegetation and soil properties. This represents the first generation of land surface components in meteorological models (e.g. ...
Niu et al., 2011) and the first generation of models for the catchment scale dynamics of nitrate (Refsgaard et al., 1999).

However, in hilly or mountainous terrain the smallest meaningful unit is a hillslope including the riparian zone, because rainfall and radiation input depend on slope and aspect, as well as on downslope gradients which cause lateral fluxes in the unsaturated zone (e.g. Bachmair and Weiler, 2011; Zehe and Sivapalan, 2007). This is the reason why hillslopes are often regarded as the key landscape elements controlling transformation of precipitation and radiation inputs into fluxes and stocks of water (e.g. Bronstert and Plate, 1997), energy (Zehe et al., 2010, 2013) and sediments (Mueller et al., 2010).

The most parsimonious representation of a small catchment in a physically-based model could thus be a single representative hillslope. However, the challenge of how to identify such a hillslope has rarely been addressed. This reflects the fact that the identifiability of a representative hillslope has been strongly questioned since the idea was born. For example, Beven (2006) argues that neither is the hillslope form uniquely defined nor is it clear whether it is the form that matters, the pattern of saturated areas (Dunne and Black, 1970) or the subsurface architecture. The enormous spatial variability of soil hydraulic properties and preferential flow paths in conjunction with process non-linearity are additional arguments against the identifiability of representative hillslope models (Beven and Germann, 2013). Nevertheless, hillslopes act as miniature catchments (Bachmair and Weiler, 2011), which made Zehe et al. (2014) postulate that structurally similar hillslopes act as functional units for the runoff generation and might thereby be a key unit for understanding functional behavior of catchments of organized complexity (Dooge, 1986). Complementarily, Robinson et al. (1995) showed that the behavior of catchments up to the lower mesoscale are still strongly dominated by the hillslope behavior, and Kirkby (1976) showed for highlights that in catchments extending up to 50 km² that random river networks had the same explanatory power for runoff generation as the real river network. He concluded that as long as river networks are not dominant the anomalous characteristic areas of the catchments behav the key to understand its functioning. Unfortunately, topographic characteristics are not always conclusive for explaining differences in hydrological behavior, as recently shown by Jackisch (2015) for headwaters located in distinctly different geological parts of the Attert experimental basin.
We hence suggest that in this context it is worth investigating important to what extent the behavior of these lower mesoscale catchments can be explained using a single [note that a representative hillslope model. In line with the arguments stated above such cannot be a representative hillslope can be neither a one-to-one simple copy of a real hillslope in a catchment nor a simple average of several hillslopes and their structural properties. A much more promising avenue might be to conceptualize [set up the representative hillslope as based on a functional analogue of the perceptual model, which is in turn a generalized and simplified picture of the catchment structure and functioning. The challenge in this model-identification process is to balance necessary complexity with greatest possible simplicity by preserving the typical patterns and structural catchment characteristics and to neglect the unnecessary or idiosyncratic ones (Zehe et al., 2014). Naturally, it has to be expected that a representative hillslope is, as a spatially aggregated two-dimensional model of a catchment, not uniquely identifiable because non-uniqueness and equifinality is inherent to all of the governing equations (Kirchner, 2006; Klaus and Zehe, 2010; Zehe et al. 2014). But the degrees of freedom in the identification of behavioral physically model structures can be reduced by using complementary observations such as tracers (Klaus and Zehe 2011, Wienhöfer and Zehe, 2014) or constraining parameters based on observations (Bárdossy, 2006).

Other reasons why representative hillslope studies are rarely realized are the challenges and data needs that go along with applying physically-based models in larger heterogeneous environmental systems (e.g. Or et al., 2015) as well as the vital debate about their limitations. Physically-based models typically rely on the Darcy-Richards concept for simulating soil water dynamics, the Penman-Monteith equation for simulating soil-vegetation-atmosphere exchange processes and 1-D or 2-D hydraulic approaches for simulating overland and stream flow. Each of these concepts is naturally subject to the limitations arising from our imperfect understanding of the related (bio-) physical processes and the limited transferability of process descriptions which were derived under idealized laboratory conditions to settings in natural systems (Grayson et al., 1992; Gupta et al., 2012). For example, the Darcy-Richards equation assumes dominance of capillarity-controlled, mainly diffusive soil water fluxes and local thermodynamic equilibrium conditions. While these assumption are well justified when the radiation balance controls soil water dynamics it is violated during rainfall events which trigger preferential flow (Hassanizadeh 2002; Simunek et al. 2003; Or 2008). The
variety of concepts that have been proposed to incorporate not-well mixed preferential flow into hydrological models ranges from early stochastic convection (Simmons 1982), double-domain approaches (Haws et al., 2005, Köhne et al., 2006, Bishop et al., 2015), spatially explicit representations of macropores as connected flow paths (Sander and Gerke 2009, Klaus and Zehe, 2010) to pore network models (Vogel and Roth, 2001; Bastardie et al., 2003; Katuwal et al., 2015). As each of these approaches has specific advantages and drawbacks we still lack an approach that is commonly agreed upon for studies at the hillslope scale (Beven and Germann, 2013).

But besides the widely discussed limitations of hydrological models to represent preferential flow, the simulation of soil-vegetation-atmosphere transfer is likely to be an even weaker point. The large number of stomata conductance models that have been proposed (Damour et al., 2010) reflects the uncertainty in the community on how to represent plant physiological controls on transpiration in hydrological and land surface models. Also a proper representation of the vegetation phenology is a challenge for hydrological modelling. Most physically based models account for dynamic changes in leaf area index, root depth and plant cover, however, often in the form of fixed annual cycles that have been derived at a specific catchment or are taken from the literature. Soil water is, however, a limiting factor for growth of agricultural crops (Abrahamsen and Hansen, 2000; Kucharik and Brye, 2003) and the dynamics of functional vegetation, particularly in semi-arid areas (e.g. Rodriguez-Iturbe, 1999; Tietjen and Jeltsch, 2007; Tietjen et al., 2010). This implies that the plant phenology should be more of a dynamic state of the model rather than a parameter set with a fixed annual cycle (Jackisch et al., 2014). In those cases where locally observed time series of phenological data and crop growth are not available, we often rely on parameterizations from the literature. While a transfer of such parameter setups might not impair the simulation of direct runoff reaction on the event scale, it may create serious biases in simulated soil moisture dynamics (Zehe et al., 2010a) and long term simulations of the water balance of a catchment.

Because of the mentioned shortcomings, simulations with physically-based models will essentially bear the fingerprints of the biophysical limitations of the underlying equations and of the limited transferability of parameter sets among places (Beven, 2002). However, these limitations should not be misinterpreted as an argument against applying imperfect physically-based models but rather as a challenge and an option for learning (Loague and VanderKwaak, 2004). Particularly so, since the identification of these
limitations itself is of key importance to separate the predictable from the unpredictable as well as for improving theoretical underpinnings of hydrological models (Clark et al., 2016).

1.3—This is because perceptual models provide a useful means to facilitate communication between field researchers and modelers (Seibert and McDonnell, 2002) and additionally often represent catchments as hillslope-like cross sections. The general idea to translate a perceptual model into a model structure is not new and has already been applied within a conceptual rainfall-runoff model framework even within the same area.

Objectives and approach

Despite— or in fact because of— all the shortcomings and possibilities discussed above, we explore if and how we can picture and model two lower mesoscale catchments in the Attert experimental basin by representative hillslopes. The rationale of our study is not to “sell” a particular model, but a) to shed light on to what extent this most parsimonious representation of the dominant catchment structural properties in a physically-based model allows behavioral simulations of catchment functioning beyond reproduction of stream flow and b) to identify limits in our theories and related physically-based models by analyzing the model deficiencies as proposed by Ebel and Loague (2006). We hence avoid automatic parameter calibration to optimize curve fitting since there are more parsimonious and better suited model structures for this purpose. We instead rely on various available observations, process-based reasoning, and appropriate literature data for conceiving perceptual models and parameterizing representative hillslope models as their functional analogues. More specifically, we use geophysical images to constrain subsurface strata and bedrock topography (as suggested by e.g. Graeff et al., 2009), representative soil-water retention curves derived from a large data set of undisturbed soil samples, soil pits and dye staining experiments, and predefined phenological data (Zehe et al., 2001) for model parametrization.

The key challenge in the hillslope identification process is to achieve the right balance of complexity and simplicity by finding patterns and dominant structures in the overwhelming heterogeneity of the surface and subsurface. By aggregating a catchment in a two-dimensional hillslope and by choosing CATFLOW (described in detail in section 2.3) as the model framework we essentially assume:

• That the spatial organization of the catchment creates anisotropy in the fluxes sustaining the water balance and stream flow production which allows an
aggregated description in two dimensions, representing downslope and vertical flows as well as the dominant gradients, hydraulic properties and flow paths in spatially explicit but yet effective manner.

Timing of streamflow is mainly controlled by the hillslope properties, which implies that the time scale of lateral flow concentration in the hillslope body is larger than the time scale of flood routing in the river network at this scale.

An effective representation of the topology of preferential flow paths is more important than a representation of non-equilibrium between rapid flow and matrix flow at this scale.

An effective soil water retention curve derived from a large data set of undisturbed soil samples is sufficient for simulation of the fluxes and average storage dynamics controlling the water balance and stream flow production. The relevant heterogeneity arises from spatial variability in the saturated hydraulic conductivity and porosity, which may be accounted for in stochastic form.

Finally we benchmark the hillslope models, after successful reproduction of the water balance, against the hydrograph as well as distributed soil moisture and sap flow observations. This exercise will reveal the validity of the listed assumptions and of our notion of the “perfect” balance of complexity and simplicity, as well as whether the parameterization of a representative hillslope is transferable to a different catchment in the same landscape and time. It can be furthermore seen as a first test of the concept of hillslope scale functional units which constrain similarity of runoff production (Zehe et al., 2014). We hence perform several virtual experiments to a) identify first order controls on the functioning of these “functional units” and guide future field campaigns for their identification and b) find key gaps in available process representations in order to sharpen questions for future research.

2. Study site and data basis

2.1 The Attert experimental basin

This study is based on comprehensive laboratory and field data collected in the Attert basin within the CAOS (Catchments As Organized Systems) research unit (Figure 1, Zehe et al., 2014). The Attert basin is located in the mid-western part of the Grand Duchy of Luxembourg and has a total area of 288 km². Mean monthly temperatures range from
18°C in July to a minimum of 0°C in January while mean annual precipitation in the catchment varies around 850 mm (1971–2000) (Pfister et al., 2000). The catchment covers three geological formations, the Devonian schists of the Ardennes massif in the northwest, Triassic sandy marls in the center and a small area of Luxemburg sandstone (Jurassic) in the southern part of the catchment (Martínez-Carreras et al., 2012). Our study areas are headwaters named Colpach in the Schist area (19.4 km²) and Wollefsbach in the Marl area (4.5 km²). As both catchments are located in distinctly different geologies (Figure 1) and land use settings, they differ considerably with respect to runoff generation and the dominant controls (e.g. Bos et al. 1996, Martínez-Carreras et al. 2012, Fenicia et al. 2014, Wrede et al. 2015 and Jackisch 2015).

2.1.1 Colpach catchment: perceptual model of structure and functioning

The Colpach catchment has a total area of 19.4 km² and an elevation range between 265 to 512 m a.s.l. It is situated in the northern part of the Attert basin on the Devonian schists of the Ardennes massif. Around 65 % of the catchment, mainly the steep hillslopes, are forested (Figure 2). In contrast, the plateaus at the hill tops are predominantly used for agriculture and pasture. Several geophysical experiments and drillings showed that bedrock and surface topography are distinctly different. The bedrock is undulating and rough with ridges, depressions and cracks (compare perceptional model Figure 3 A and also ERT image in Figure 6 B). Depressions in the bedrock interface are filled with weathered, silty materials which may form local pools and reservoirs with a high water holding capacity. These features are particularly important since lateral water flow along the bedrock interface is the dominant runoff process (Wrede et al., 2015). The scientific asset of using a physically-based model is that the perceptual model provides important information on typical ordinal differences in hydraulic conductivity of different subsurface strata and the nature and qualitative locations of the dominating preferential flow paths. This information can be implemented into hillslope models in a straightforward manner. The transformation of a qualitative model structure into a quantitative, parametrization of the model depends, however, strongly on the chosen hydrological model and the quality and amount of available data.
Objectives and approach

We hypothesize that a single hillslope in a physically-based model is the most parsimonious representation of a small hilly catchment. The objective of this study is to test this hypothesis in a two-step approach:

- First we derive a qualitative model structure of a representative hillslope from our perception of the dominant processes and the related dominant surface and subsurface characteristics in the catchment.
- In the second step we transform this qualitative model structure into a quantitative model structure without the use of an automatic parameter allocation.

The challenge in deriving a qualitative model structure lies in the separation of the important details from the idiosyncratic ones. This process is to a large extent independent of the chosen hydrological model and is strongly related to the available expert knowledge and quality of the data. The transformation of a qualitative to a quantitative model structure on the other hand depends on the chosen model and whether it is for example based on 2-D or 3-D hillslope module or how rapid flow paths are represented. For this reason the objective of our study is not to “sell” our particular model, but to share the way how we distilled the quantitative model setups in our target catchments from available data and to evaluate the ability of this parsimonious physically-based model to accurately simulate multiple state and flux variables. During the model setup we intendedly avoided using an optimization algorithm to fit the model to the data. In contrary, we relied on various available observations, process-based reasoning, and appropriate literature data for conceiving our perceptual models and parameterizing the representative hillslope models as their quantitative analogues. More specifically, we use geophysical images to constrain subsurface strata and bedrock topography and derived representative soil-water retention curves from a large data set of undisturbed soil samples. Furthermore, we use observations from soil pits, dye staining experiments and observed leaf area indices (LAI) for our model parametrization. Finally we benchmark the hillslope models against normalized double mass curves, the hydrograph as well as against distributed soil moisture and sap flow observations.

2. Study area, data basis and selected model

We focus our model efforts on two different catchments, the Colpach and the Wollefshach, located in the Attert experimental basins in Luxembourg (Figure 1, Pfister...
et al., 2000). These sites offer comprehensive laboratory and field data collected by the CAOS (Catchments As Organized Systems) research unit (Zehe et al., 2014). Besides standard hydro-meteorological data the model setup is based on a) observed soil hydraulic properties of a large number of undisturbed soils cores, b) 2-D electric resistivity profiles in combination with soil pits and augering to infer on bedrock topography, and c) flow patterns from dye staining experiments and soil ecological mapping of earthworm burrows, to infer the nature and density of vertical preferential flow paths. The representative hillslopes for the two catchments were each set up as a single 2-D hillslope in the CATFLOW model (Zehe et al., 2001). The following subsections will provide detailed information on the perceptual models and on the water balance of both catchments. We will shortly refer to the key data and those parts of the model which are relevant for the quantitative model setup, while the appendix provides additional details on both.

2.1 The Attert experimental basin

The Attert basin is located in the mid-western part of the Grand-Duchy of Luxembourg and has a total area of 288 km². Mean monthly temperatures range from 18°C in July to a minimum of 0°C in January; mean annual precipitation in the catchment varies around 850 mm (1971–2000) (Pfister et al., 2000). The catchment covers three geological formations, the Devonian schists of the Ardennes massif in the northwest, Triassic sandy marls in the center and a small area of sandstone (Jurassic) in the southern part of the catchment (Martínez-Carreras et al., 2012). Our study areas are headwaters named Colpach in the schist area (19.4 km²) and Wollefsbach in the marl area (4.5 km²). As both catchments are located in distinctly different geologies and land use settings, they differ considerably with respect to runoff generation and the dominant controls (e.g. Bos et al. 1996, Martínez-Carreras et al. 2012, Fenicia et al. 2014, Wrede et al. 2015, Jackisch 2015).

2.1.1 Colpach catchment: perceptual model of structure and functioning

The Colpach catchment has a total area of 19.4 km² and elevation ranges from 265 to 512 m a.s.l. It is situated in the northern part of the Attert basin in the Devonian schists of the Ardennes massif. Around 65 % of the catchment are forested, mainly the steep hillslopes (Figure 2). In contrast, the plateaus at the hill tops are predominantly used for agriculture and pasture. Several geophysical experiments and drillings showed that bedrock and
surface topography are distinctly different. Specifically, the subsurface structure The
bedrock is undulating and rough with ridges, depressions and cracks (compare perceptual
model Figure 3 A and ERT image in Figure 6 B). Depressions in the bedrock interface are
filled with weathered, silty materials which may form local reservoirs with a high water
holding capacity. These reservoirs are connected by a saprolite layer of weathered schist
which forms a rapid lateral flow path on top of the consolidated bedrock. Rapid flow in
this “bedrock interface” is the dominant runoff process (Wrede et al., 2015), and the
specific bedrock topography is deemed to cause typical threshold-like runoff behavior
similar to the fill-and-spill mechanism proposed by Tromp-Van Meerveld & McDonnell
(2006). Further indication that fill-and-spill is a dominant process is given by the fact that
the parent rock is reported as impermeable, which makes deep percolation through shallower un-weathered schist layers into a large
groundwater body unlikely (Juilleret et al., 2011). The lack of significant observations of
base flow underpins this notion. Furthermore, surface runoff has been rarely been
observed in the catchment, except along forest roads, which suggests a high infiltrability
of the prevailing soils (Bos et al., 1996). This is in line with distributed permeameter
measurements and soil sampling performed by Jackisch (2015). Moreover, numerous
irrigation and dye staining experiments highlight the important role of vertical structures
for rapid infiltration and subsequent subsurface runoff formation (Jackisch (2015),
Jackisch 2015, Figure 2 B). B). These vertical preferential flow paths, the saprolite layer
on top of the impermeable bedrock, the bedrock topography as well as the absence of a
major groundwater body are regarded the dominant structures for the representative
hillslope model (Figure 3 A and C).

2.1.2 Wollefsbach catchment: perceptual model of structure and functioning
The Wollefsbach catchment is located in the Triassic sandy marls formation of the Attert
basin. It has a size of 4.5 km² and low topographic gradients, with 61 m of maximum
elevation difference resulting in gentle slopes covering altitudes between ranging from
245 to 306 m a.s.l. The catchment is intensively used for agriculture and pasture and only
around 7 % are forested (Figure 2 C) and hillslope; only around 7 % are forested.
Hillslopes are often tile-drained (compare perceptual model sketch in Figure
3 B). The marly soils are highly heterogeneous, marly soils range from sandy loams to
thick clay lenses. Generally they are generally very silty with high water holding
capacities and mostly low saturated hydraulic conductivity of the soil matrix. Similar to
the Colpach catchment, vertical preferential flow paths play a major role for the runoff generation; their origin, however, is distinctly different between the seasons. Biopores are dominant in spring and autumn due to the high abundance of earthworms. Because earthworms are dormant during midsummer and winter, their burrows are partly disconnected by ploughing, shrinking and swelling of the soils (Figure 2 D, see also Figure 4). At the same time, soil cracks emerge during long dry spells in midsummer due to the considerable amount of smectite clay minerals in these soils, which drastically increase soil infiltrability in summer (Zehe et al., 2007, Figure 5). The seasonally varying interaction of both types of preferential flow paths with a dense man-made subsurface drainage network is probably considered the reason for the flashy runoff regime of this catchment, where discharge drops rapidly to baseflow level when precipitation events end. This is the key feature that needs to be captured by the representative hillslope model. However, as the exact position of the subsurface drainage network and the worm burrows as well as the threshold for soil crack emergence are unknown, the specific influence of each structure on runoff generation in a hydrological model is difficult to estimate.

2.1.3 Water balance and seasonality

The water balance of the Colpach and Wollefsbach catchments for several hydrological years is presented as normalized double mass curves, which are well suited for describing the annual water balance of a catchment because they relate the cumulated runoff to the cumulated precipitation both divided by the sum of the annual precipitation. Annual runoff coefficients in the Colpach catchment vary around 0.51 ± 0.06 within the four hydrological years (Figure 5 A). In the Wollefsbach catchment the annual runoff coefficients are smaller than in the Colpach catchment and vary across a wider range, from 0.26 to 0.46 (as normalized double mass curves. Normalized double mass curves relate cumulated runoff to cumulated precipitation, both divided by the sum of the annual precipitation (Pfister et al., 2002, Seibert et al., 2016). Annual runoff coefficients in the Colpach catchment vary around 0.51 ±0.06 among the four hydrological years (Figure 5 B). In both catchments the winter period is characterized by step-like changes which reflect fast water mobilization during rainfall events partly due to rapid subsurface flow. In contrast, the summer regime in the vegetation period is characterized by a smooth and almost flat line. Accumulated rainfall input is not transformed into additional runoff but predominantly into evapotranspiration.
Additionally we used a temperature index model from Menzel et al., (2003) to detect the onset of the vegetation period and to separate the vegetation-controlled summer regime from the winter period which was already successfully used by Seibert et al. (2016) to mark onset and duration of the summer regime in 22 catchments of the Bavarian Danube basin. A). Annual runoff coefficients are smaller in the Wollefsbach catchment than in the Colpach catchment, and vary across a wider range, from 0.26 to 0.46 (Figure 5 B). In both catchments the winter period is characterized by step-like changes which reflect fast water release during rainfall events partly due to rapid subsurface flow. In contrast, the summer regime is characterized by a smooth and almost flat line when vegetation is active. Accumulated rainfall input is not transformed into additional runoff but is either stored in the system or released as evapotranspiration (Jackisch 2015). As suggested by Seibert et al. (2016) we used a temperature index model from Menzel et al. (2003) to detect the bud break of the vegetation and to separate the vegetation-controlled summer regime from the winter period in these curves.

2.2 Data basis

2.2.1 Surface topography and land use

Topographic analyses are based on a 5 m LIDAR digital elevation model which was aggregated and smoothed to 10 m resolution. Land use data from the “Occupation Biophysique du Sol” is based on CORINE land use classes analyzed by colour infrared areal images which were generated in 1999 from the Luxembourgian surveying administration “Administration du cadaster et de la topographie” at a scale of 1:15000.

2.2.2 Subsurface structure and bedrock topography

We used hillslope-scale 2D electrical resistivity tomography (ERT) in combination with augers and soil pits to estimate bedrock topography in the Schist area. Our auger profiles revealed, in line with Juilleret et al., (2011) and Wrede et al., (2015), that the vertical soil setup comprises a weathered silty soil layer with a downwards increasing fraction of rock fragments, which is underlain by a transition zone of weathered bedrock fragments followed by non-weathered and impermeable bedrock. Spatial subsurface information of representative hillslopes were obtained from 2D ERT sections collected using a GeoTom
device at four profiles on two hillslopes in the Colpach catchment. Based on Wenner configuration with electrode spacing of 0.5 m and 25 depth levels, electrode positions were recorded at a sub-centimeter accuracy using a total station providing 3D position information. Application of a robust inversion scheme as implemented in Res2Dinv (Loke, 2003) resulted in two-layered subsurface resistivity model and additional expert knowledge, the subsurface was subdivided into two main layers of unconsolidated material and solid bedrock. The bedrock interface was picked by the 1500 Ωm isoline, as explained in detail in the appendix. For our study we used seven ERT profiles from the Colpach area (example see Figure 6 B). The upper 1–3 m are characterized by high resistivity values larger than 1500 Ω*m. This is underlain by a layer of generally lower resistivity values smaller than 1500 Ω*m. In line with the study of (Wrede et al., 2015) and in correspondence with the maximum depth of the local auger profiles, we interpreted the transition from high to low resistivity values to reflect the transition zone between bedrock and unconsolidated soil. In consequence, we regard the 1500 Ωm isoline as being representative for the soil-bedrock interface.

2.2.3 Soil hydraulic properties and infiltrability

We determined soil texture, saturated hydraulic conductivity and the soil water retention curve for 5162 soil samples in the Schist area and 28 in the Marlschist area. Saturated and 25 in the marl area. Particularly for the soil hydraulic conductivity was measured with undisturbed 250 ml ring samples with the KSAT apparatus (UMS GmbH). The apparatus records the falling head of the water supply though a highly sensitive pressure transducer which is used to calculate the flux. The functions Jackisch (2015) and Jackisch et al. (2016) found large spatial variability, which was neither explained by slope position nor by the soil depth at which the sample was taken (Figure 7). As our objective was to assess the most parsimonious representative hillslope model, we neglected this variability but used effective soil water retention curve of the drying branch was measured with the same samples in the HYPROP apparatus (UMS GmbH) and subsequently in the WP4C dew point hygrometer (Decagon Devices Inc.). The HYPROP records total mass and matric head in two depths in the sample over some days when it was exposed to free evaporation (Peters and Durner, 2008, Jackisch 2015 for further details). For characteristics for both geological settings we estimated a mean soil retention curve catchments instead. These were not obtained by averaging the parameter of the individual curves, but by grouping the observation points of all soil samples (51 and 28, respectively) for each geological
unit, and averaging them in steps of 0.05 pF. We then fitted a van Genuchten-Mualem model using a maximum likelihood method to these averaged values (Table 1 and Figure 7). The appendix provides additional details on measurement devices and on the dye staining experiments.

2.2.4 Meteorological forcing and discharge

Meteorological data are based on observations from two official meteorological stations (Useldange and Roodt) from provided by the “Administration des services techniques de l’agriculture Luxembourg (ASTA).” Air temperature, relative humidity, wind speed and global radiation are provided with a temporal resolution of 1 h while precipitation data have a temporal resolution at an interval of 5 min. Precipitation was extensively quality checked against six disdrometers which are stationed within the Attert basin and by comparing several randomly selected rainfall events against rain radar observations, both using visual inspection. Discharge observations are provided by the Luxembourg Institute of Science and Technology (LIST).

2.2.5 Sap flow, and soil moisture data and meteorological forcing

The Attert basin is instrumented with 45 automated sensor clusters. A single sensor cluster measures inter alia rainfall, and soil moisture in three profiles with sensors in at various depths. In this study we use 38 soil moisture sensors located in the Schistschist area and 28 sensors located in the Marl area at depths of 10 and 50 cm depth. The measurements (sensors Decagon 5TE) have a temporal resolution of 5 min and an accuracy of ±3 % volumetric water content (VWC) with a resolution of 0.08 % VWC. Furthermore we use sap flow measurements from 28 trees at 11 of the sensor cluster sites. The measurement technique is based on the heat ratio method (Burgess et al., 2001) at 61 trees at a temporal resolution of 12 h means. Selected trees are either European Beech or Oak trees.

2.3 The physically sensors are East30Sensors 3-needle sap flow sensors. As a proxy for sap flow we use the maximum sap velocity of the measurements from three xylem depths (5, 18 and 30 mm) as recorded by each sensor. To represent the daytime flux, we use 12-h daily means between 8am and 8pm.
2.3 The physically-based model CATFLOW

Model simulations were performed using the physically-based hydrological model CATFLOW (Maurer, 1997; Zehe et al., 2001). The model has been successfully used and specified in numerous studies (e.g. Zehe et al., 2005; Zehe et al., 2010; Wienhöfer and Zehe, 2014; Zehe et al., 2014). The basic modelling consists of a 2-D hillslope module which can optionally be combined with a river network to represent a catchment (with several hillslopes). The model employs the standard physically-based approaches to simulate soil water dynamics, optionally solute transport, overland and river flow and evapo-transpiration, which were already mentioned in the introduction and are described in more detail in the appendix. In the following we will only provide details implement of rapid flow paths in the model, as this aspect is differs greatly from model to model – unit is a two-dimensional hillslope. The hillslope profile is discretized by curvilinear orthogonal coordinates in vertical and downslope directions; the third dimension is represented via a variable width of the slope perpendicular to the slope line at each node. Soil water dynamics are simulated based on the Richards equation in the pressure-based form and numerically solved using an implicit mass conservative “Picard iteration” (Celia et al., 1990). The model can simulate unsaturated and saturated subsurface flow and has hence no separate groundwater routine. Soil hydraulic functions after van Genuchten-Mualem are mostly used, though several other parameterizations are possible. Overland flow is simulated using the diffusion wave approximation of the Saint-Venant equation and explicit upstreaming. The hillslope module can simulate infiltration excess runoff, saturation excess runoff, re-infiltration of surface runoff, lateral water flow in the subsurface as well as return flow. For catchment modelling several hillslopes can be interconnected by a river network for collecting and routing their runoff contributions, i.e. surface runoff or subsurface flow leaving the hillslope, to the catchment outlet.

2.3.3.1 Evaporation controls, root water uptake and vegetation phenology

Soil evaporation, plant transpiration and evaporation from the interception store is simulated based on the Penman-Monteith equation. Soil moisture dependence of the soil albedo is also accounted for as specified in Zehe et al., (2001). Annual cycles of plant phenological parameters, plant albedo and plant roughness are accounted for in the form of tabulated data derived within the Weiherbach project (Zehe et al., 2001). Optionally, the impact of local topography on wind speed and on radiation may be considered, if
The atmospheric resistance is equal to wind speed in the boundary layer over the squared friction velocity $u^2 \cdot \text{T}^{-1}$. The former depends on observed wind speed, plant roughness and thus plant height. The friction velocity depends on observed wind speed as well as atmospheric stability, which is represented through six stability classes depending on prevailing global radiation, air temperature and humidity. The canopy resistance is the product of leaf area index and leaf resistance, which in turn depends on stomata and cuticular resistance. The stomata resistance varies around a minimum value, which depends on the Julian day as well as on a function of air temperature, water availability in the root zone, the water vapour saturation deficit and photosynthetic active radiation (Jarvis, (1976)). The soil conductance depends mainly on the thickness of a topsoil layer controlling water vapour transport which is divided by the water vapour diffusivity in soil. Root extraction is accounted for as a sink term that operates as a flux per volume during potential evapotranspiration; the transpired water is extracted uniformly along the entire root depth. When soil water content in the root zone drops below a certain threshold root water uptake is controlled by the difference in matric and root water potentials.

2.3.2 Generation of rapid vertical and lateral flow paths

Vertical and lateral preferential flow paths are represented as connected flow paths containing an artificial porous medium with high hydraulic conductivity and very low retention properties. This approach has already been followed by others (Nieber and Warner 1991; Castiglione et al. 2003; Lamy et al. 2009; Nieber and Sidle 2010) and was proven one of many ways to be suitable account for rapid flow paths in physically-based models. However, it is important to note that such a macropore representation is obviously not an image of the real macropore configuration given the typical grid size of a few centimeters, but a conceptualization to explicitly represent parts of the subsurface with prominent flow paths and the adjacent soil matrix in an effective way. The approach includes the assumption that preserving the connectedness of the rapid flow network (Figure 3) is more important than separating rapid flow and matrix flow into different domains.

Implementations of this approach with CATFLOW were successfully used to predict hillslope scale preferential flow and tracer transport in the Weiherbach catchment, a tile-drained and agriculture dominated agricultural site in Germany (Klaus and Zehe, 2011).
and at the Heumöser hillslope, a forested site with fine textured marly soils in Austria (Wienhöfer and Zehe, 2014). A Poisson process allocates the starting points of the locations of vertical structures sequentially, macropores along the soil surface and may either be selected based on a fixed distance or via a Poisson process based on the surface density of macropores. From these starting points, the generator stepwise extends the vertical preferential pathways downwards to their selected depth, while allowing for a lateral step with a predefined probability of typically 0.05 to 0.1 to establish tortuosity. Lateral preferential flow paths to represent either pipes at the bedrock interface or the tile drains are generated in the same manner: starting at the interface to the stream and stepwise extending them upslope, again with a small probability for a vertical upward or downwards step to allow for a tortuosity. (Figure 3 C and D).

3. Parametrization of the representative hillslope models

3.1 Colpach catchment

3.1.1 Surface topography, and spatial discretization and land use

We selected a real hillslope profile with a length of 350 m, a maximal elevation above the stream of 54 m and a total area of 42600 m², which represents the average elevation difference and lengths of all delineated 241 hillslopes in the Colpach catchment (Figure 6 A). The hillslope was discretized with a 1 m grid size in the downslope and 0.1 m grid size in the vertical direction down to the depth of 2 m (Figure 3C). Land use was set to mixed forest for the entire hillslope since forest covers 65 % of the catchment area, especially the steeper hillslopes (Figure 3). Due to the absence of local data on the plant phenological cycle, we used fixed tabulated data characterizing the annual cycle of leaf area index, ground cover, root depth, plant height, minimum stomata resistance and plant roughness (Manning’s n) derived within the study of Zehe et al., (2001) for the Weiherbach catchment. We are aware that particularly the onset of the vegetation phase depends strongly on the local climate setting. As such, this assumption may be reflected in model bias during this period of the year; we explore the sensitivity of model results for an improved estimate of the start of the vegetation period within the virtual experiment 3. Boundary conditions were set to atmospheric boundary at the top, no flow boundary at the right margin, free outflow boundary condition at the left boundary and a gravitational flow boundary condition at the lower boundary. We used spin-up runs with
We extracted 241 hillslope profiles based on the available DEM in the Colpach catchment using Whitebox GIS (Lindsay J.B., 2014) following the LUMP approach (Landscape Unit Mapping Program, Francke et al., 2008). Based on these profiles (Figure 6 A) we derived a representative hillslope with a length of 350 m, a maximum elevation of 54 m above the stream, and a total area of 42600 m². The hillslope has a mean slope angle of 11.6° and is facing south (186°), similar to the average aspect of the Colpach catchment. The first step in generating the representative hillslope profile was to calculate the average distance to the river of all 241 extracted hillslope profiles as equal to 380 m. In the next step all elevation and width values of the profiles were binned into 1 m “distance classes” from the river ranging up to the average distance of 380 m. For each class the median values of the a) elevation above the stream and b) the hillslope width were derived and used for the representative hillslope profile (Figure 6 A). For numerical simulation the hillslope was discretized into 766 horizontal and 24 vertical elements with an overall hillslope thickness of 3 m. The vertical grid size was set to 0.128 m, with a reduced vertical grid size of the top node of 0.05 m. Grid size in downslope direction varied between 0.1 m within and close to the rapid flow path and 1 m within reaches without macropores (Figure 3 C). The hillslope thickness of 3 m was chosen to reflect the average of the deepest points of the available bedrock topographies extracted from ERT profiles, which was 2.7 m.

Boundary conditions were set to atmospheric boundary at the top and no flow boundary at the right margin. At the left boundary of the hillslope we selected seepage-boundary condition, where the stored water amount above field capacity leaves the system. A gravitational flow boundary condition was established for the lower boundary. We used spin-up runs with initial states of 70 % of saturation for the entire hydrological year of interest and used the resulting soil moisture pattern for model initialization. This initialization approach was also used for the Wollefsbach catchment.

3.1.2 Land use and vegetation parametrization

According to the land use maps, the hillslopes are mostly forested. As the hilltop plateaus account only for a very small part of the representative hillslope, the land use type for the entire hillslope is set to forest (Figure 2 A). Start and end of the vegetation period was defined using the temperature-degree model of Menzel et al. (2003), which allowed...
successful identification of the tipping point between the winter and vegetation season in
the double mass curves of the Colpach and of the Wollefsbach (compare Figure 5). We
further used observed leaf area indices (LAI) to parameterize the evapotranspiration
routine. However, since only fourteen single measurements at different positions are
available for the entire schist area and vegetation period, we use the median of all LAI
observations from August as a constant value of 6.3 for the vegetation period. To account
for the annual pattern of the vegetation phenology we interpolate the LAI for the first and
last 30 days of the vegetation period linearly between zero and 6.3, respectively. The
other evapotranspiration parameters are displayed in Table 2 and were taken from Breuer
et al. (2003) or Schierholz et al. (2000).

3.1.3 Bedrock-topography and permeability, rapid subsurface flow paths and soil
hydraulic functions

The shape of the bedrock interface was extracted from contour line of
the ERT image based on the 1500 Ω m contour line (Figure 6) to constrain the relative
topography of the bedrock interface in the hillslope model as follows. We scaled the 100
m of bedrock topography to the hillslope length of 380 m. We then used the average
depth to bedrock from all seven available ERT measurements (2.7 m) to scale the
maximum depth to bedrock in our model. To this end we divided the average depth of 2.7
m by the deepest point of the bedrock in Figure 6 B (3.3 m) and used the resulting factor
of 0.88 to reduce the bedrock depth of Figure 6 B relatively at all positions. As a result,
the soil depths to the bedrock interface vary between 1 m to 2.7 m with local depressions
that form water holding pools. Since no major groundwater body is suspected and no
quantitative data on the rather impermeable schist bedrock in the Colpach is available, we
use a relative impermeable bedrock parametrization suggested by Wienhöfer and Zehe
(2014, Table 1). It is important to note that due to this bedrock parametrization water flow
through the hillslope lower boundary tends to zero.
The silty soil above the bedrock was modeled with the representative hydraulic
parameters obtained from field samples listed in Table 1. Since there was no systematic
variation of hydraulic parameters of the individual soil samples with depth, soil hydraulic
parameters were set constant over depth, except for porosity, which was reduced to a
value of 0.35 (m3m$^{-3}$) at 50 cm depth to account for the increasing skeleton fraction of
around 40% in deeper soil layers.
3.1.4 Rapid subsurface flow paths

Macropore depths were drawn from a normal distribution with a mean of 1 m and a standard deviation of 0.3 m. These values are in agreement with the mean soil depth and correspond well with the results of dye staining experiments performed by Jackisch (2015) and Jackisch et al. (2016). Additionally, macropores were slightly tortuous with a probability for a lateral step of 5%. Since no observations for the macropore density were available, we use a fixed macropore distance of 2 m. The macropore distance was chosen rather arbitrarily to reflect their relative density in the perceptual model and to establish a partly connected network of vertical and lateral rapid flow paths. The vertical flow paths were parametrized using an artificial porous medium with high hydraulic conductivity and low retention properties proposed by Wienhöfer and Zehe (2014, Table 1). Also the weathered periglacial saprolite layer which is represented by a 0.2 m thick layer above the bedrock was parameterized as a porous medium following Wienhöfer and Zehe, (2014). The estimated saturated hydraulic conductivity of $1 \times 10^{-3} \text{ m s}^{-1}$ corresponds well with the velocities described by Angermann et al. (2016). This ensures that the Reynolds number is smaller than 10, implying that flow can be considered laminar and the application of Darcy’s law is still appropriate (Bear, 1972).

3.2 Wollefsbach catchment

As a result, the soil depths in the hillslope varied between 1 m to 1.8 m with local depressions that form water holding pools. Since no quantitative data on bedrock permeability are available, we use the relative impermeable bedrock parametrization of Wienhöfer and Zehe (2014) but increased the bedrock porosity from 0.35 to 0.4 to account for storage in fractures and cracks (Table 1). The silty soil above the bedrock was characterized by the representative hydraulic parameters obtained from field samples listed in Table 1. Macropore depths were drawn from a normal distribution with mean 1 m and standard deviation 0.3 m in agreement with the reported mean soil depth and dye staining experiments. Additionally, macropores were slightly tortuous with a probability for a lateral step of 5%. Conductivity of vertical macropores was set to $5 \times 10^{-2} \text{ m s}^{-1}$, which corresponds well with the observation for earthworm burrows (Shipitalo and Butt, 1999). Weathered Schist at the soil bedrock interface was represented by a 0.2 m thick layer using the parameter of the macropore medium from Wienhöfer and Zehe, (2014; Table 1). Stochastic heterogeneity of soil hydraulic
properties was accounted for by perturbing the saturated hydraulic conductivity with multiples generated with a two-dimensional turning band generator (Zehe et al., 2010a).

As proposed in (Zehe et al., 2010b) we used a rather short range of 5 m and a nugget to sill ratio of 0.75.

3.2 Wollefsbach catchment

3.2.1 Surface topography, and spatial discretization and land use

Topography and land use is much more uniform in the Wollefsbach compared to the Colpach. We again selected a hillslope with since only eight relatively similar hillslope profiles were derived from the DEM in the Wollefsbach we randomly chose one of those with a length of 653 m, a maximal elevation above the river of 53 m and an area of 373600 m², which is 853 m long and has a maximal elevation of 53 m above the river².

The hillslope has a mean slope angle of 8.1° and is facing south (172°). The hillslope was discretized into 550553 horizontal and 2021 vertical elements with an overall hillslope thickness of 2 m (Figure 3 D). The vertical grid size was in general set to 0.1 m while grid with a reduced top and bottom node spacing of 0.05 m. Grid size in downslope lateral direction varied between 0.12 m within and close to the rapid flow paths and 2 m within reaches without macropores (Figure 3 B and D).

3.2.2 Land use and vegetation parametrization

Land use was divided into grassland within the steeper and lower part of the hillslope, and after 425 m from the creek, set to corn cultivation. This configuration reflects well the typical land use pattern in the catchment for larger distances to the creek (>325 m). Due to the absence of local vegetation data we used fixed tabulated data characterizing grassland and corn derived within the Weiherbach catchment (Zehe et al., 2001), from Breuer et al. (2003). Start and end point of the vegetation period for the grassland and the start point for the corn cultivation were again identified by the temperature index model of Menzel et al. (2003). The vegetation period for the corn cultivation ends in the beginning of October since this is the typical period for harvesting. The intra-annual vegetation dynamics were taken from Schierholz et al. (2000).
3.2.3 Bedrock-topography and permeability, rapid subsurface flow paths and soil hydraulic functions

Contrary to the Colpach, geophysical measurements and augerings revealed bedrock and surface to be more or less parallel. Soil depth was set to constant 1 m and the soil was parameterized using the representative soil retention curves shown in Figure 7. The bedrock was again parameterized according to values Wienhöfer & Zehe (2014) proposed for the marly impermeable bedrock at the Heumöser hillslope in Austria (Table 1). Because of), which is also in a marl geology.

3.2.4 Rapid subsurface flow paths

Based on the perceptual model (Figure 3 B and D) and the reported vertical and lateral drainage structures in the catchment we generated a rather dense network of vertical flow paths. The depths of the structure generator, which vertical flow paths were partly connected to, were drawn from a 10 cm thick normal distribution with a mean of 0.8 m and a standard deviation of 0.1 m. The tile drain was generated at the standard depth of 80 cm assuming that it extended 0.8 m extending 400 m upslope originating from the hillslope creek interface. The position of macropores was selected with a Poisson process along the soil surface with a minimum distance of 3 m. Due to the apparent changes in soil structure either by earthworm burrows or emergent soil cracks (Figure 4), we used different macropore setups for the winter and the vegetation season. For the winter setup we implemented vertical drainage structures every four meters. In the summer setup we added fast flow paths every two meters to account for additional cracks and earthworm burrows. The positions of the conceptual macropores were selected arbitrarily to create an image of the perceptual model and to assure that the soil surface and the tile drain were well connected. Vertical flow paths and the pipe were parametrized using a similar to the Colpach with the same artificial porous medium (Table 1) proposed by Wienhöfer and Zehe, (2014). Boundary conditions were set to atmospheric boundary at the top, no flow boundary at the right margin, initialization and a free outflow boundary condition and a gravitational flow boundary condition were prescribed at the left boundary and the lower boundary. The model was initialized in the spin up phase were the same manner as described for the Colpach model.
Both reference hillslopes (A1 reference model Colpach; A2 reference model Wollefsbach) were set up to reproduce the normalized double mass curves in both catchments of the hydrological year 2014 within which a few test simulations were judged using the Kling-Gupta efficiency (KGE) (Gupta et al. 2009). In the next step we compared the sum of simulated overland flow, subsurface storm flow across the right hillslope boundary and deep percolation across the bottom boundary to observed stream flow hydrograph, both visually and also based on the KGE, the Nash-Sutcliffe efficiency (NSE) and the logarithmic NSE (log NSE). Furthermore, we validated the model setups without any tuning against available soil moisture observations as well as against sap flow velocities observed in the in the Colpach.

3.3.1 Virtual experiments

We performed three virtual experiments in the Colpach by changing surface and bedrock topography as well as plant physiological cycles to explore first order controls on the water balance and the relative importance of the underlying observations. Additionally, we performed a virtual experiment in the Wollefsbach by increasing the hydraulic conductivity of the soils in the summer months to account for the effect of emerging soil cracks on runoff generation.

VE1 Colpach Experiment 1, double gradient: The reference representative hillslope (A1) was selected to match the average hillslope length and elevation range of 241 delineated hillslope profiles in the Colpach catchment (Figure 6 A). To check how strongly the simulated stream flow depends on the gradient in relief energy we increased the elevation range by a factor of two, yielding a maximum elevation of 108 m above the creek by a preserved hillslope length.

VE2 Colpach Experiment 2, bedrock topography: To shed light on the role of bedrock topography we compared four additional simulations with the reference model setup (A1). In the second hillslope the 0.2 m thick bedrock interface was removed (VE2.1). In the third hillslope we removed the bedrock interface and assumed parallel bedrock topography with the surface at 1 m depth (VE2.2). The fourth hillslope likewise has surface bedrock topography at 1 m depth, but we added a no-flow boundary condition for
the lower 70% of the right boundary to create a depression which has approximately the same volume as all depressions in the reference slope (VE2.3). This approach is expected to create a small storage volume that might create subsurface runoff by filling and spilling, as shown by Graeff et al., (2009). Last not least, we used the reference hillslope but removed the vertical macropores (VE2.4).

VE3 Colpach Experiment 3, changed onset of phenological cycle: The reference hillslope employed a fixed phenological cycle for mixed forest, which was derived in the Weiherbach catchment (Zehe et al., 2001). However, the start and end of the phenological cycle is subject to inter-annual variations which can be described well by a temperature index model proposed by Menzel et al., (2003). Hence, we changed the onset and end of the vegetation period in the parameter table in accordance with the temperature index model, while keeping unchanged the other temporal patterns in-between, like the leaf area index or root depth.

VE4 Wollefsbach Experiment 4, challenge of dealing with emergent soil structures: The fact that either worm burrows in spring/ fall or shrinkage cracks during dry spells in midsummer control the soil hydraulic behavior and runoff formation in the Wollefsbach, implies that the vertical flow paths in the model structure should be time-, or more precisely, state dependent. As CATFLOW does not treat soil hydraulic parameters/macropores as state dependent but as constant, one cannot expect a rigid parameter setup to reproduce the hydrographs in winter and summer in an acceptable manner. This expectation was corroborated by our first simulation carried out with the reference model for the Wollefsbach (A2). We hence tested the additional value of a state dependent soil structure in a first tentative approach by subdividing the simulation period into a winter and summer period, based on the temperature index model of Menzel et al., (2003). The winter period was simulated with the setup specified in the reference model (A2) until the onset of the summer period. We then started a second simulation with an elevated infiltrability using the final state of the first simulation as initial state. Infiltrability was increased by an enlarged hydraulic conductivity of the upper 100 cm by a factor of 25, 50 and 75 within three different model runs. Since the model run with the factor 75 yielded the best results with respect to the discharge (estimated on KGE), we used this model setup for the vegetation period in virtual experiment 4.
Both hillslopes models were set up within a few test simulations to reproduce the normalized double mass curves in both catchments of the hydrological year 2014. We choose the normalized double mass curves as a fingerprint of the annual pattern of runoff generation since it is particular suitable for detecting differences in inter-annual and seasonal runoff dynamics of a catchment (Jackisch, 2015). Model performance was judged by visual inspection as well as by using the Kling-Gupta efficiency (KGE, Gupta et al. 2009).

In a second step we compared the simulated overland flow and subsurface storm flow across the left hillslope boundary to observed discharge. Water leaving the hillslope through the lower boundary was neglected from the analysis because in both setups the total amount was smaller than 1% of the overall hillslope outflow. We compared the specific discharge of the hillslopes to the observed specific discharge of the two catchments in mm h^{-1} by dividing measured and simulated discharge by the area of the catchments and the hillslopes. Our goal was to test if our hillslope models represented the typical subsurface filter properties which are relevant for the runoff generation in both selected hydrological landscapes (schist and marl area in the Attert basin). We measured the model performance with respect to discharge again based on the KGE. Since it is advisable to calculate and display various measures of model performance (Schaefli and Gupta, 2007), we calculated the Nash-Sutcliffe efficiency (NSE; a measure of model performance with emphasis on high flows) and the logarithmic NSE (log NSE; a performance measure suited for low flows). As both catchments are characterized through a strong seasonality we further separated the simulation period in a winter and vegetation period and calculated the KGE, NSE as well as the logNSE separately for each of the seasons. In addition, we followed Klemeš (1986) and performed a proxy-basin test to check if the runoff simulation is transposable within the same hydrological landscape and conducted a split sampling to examine if the models also work in the hydrological year of 2013. Finally, we judged the model goodness visually for selected rainfall-runoff events.

In a third step we evaluated the model setups against available soil moisture observations. A natural starting point for a modeling study would be to classify the available soil moisture observation for instance by their landscape position. However, similar to the case of the soil water retention properties, the small scale variability of the soil properties seems to be too dominant, as grouping according to hillslope position was not conclusive (Jackisch, 2015; appendix A4). We therefore extracted simulated soil moisture at 20 virtual observation points at different downslope positions at the respective depth of the
soil moisture observations (10 and 50 cm), and compared the median of the simulated virtual observations against the 12-hours-rolling median of the observed soil moisture using the KGE and the Spearman rank correlation. Finally, we analyzed simulated transpiration of the Colpach model by plotting it against the 12-hours-rolling median of the daily sap flow velocities observed in the Schist area of the Attert basin. As sap flow is a velocity and transpiration is a normalized flow they are not directly comparable. This is why we normalized both observed sap flow and simulated transpiration by dividing their values by their range and only discuss the correlation among the normalized values. The visual inspection shows additionally to which extent maximum and minimum values of both normalized time series coincide. This cannot be inferred from the correlation coefficient.

4. Results

4.1 DoubleNormalized double mass curves and stream flow time series discharge

As depicted in Figure 8 A and C the reference The hillslope models A1 and A2 reproduce the typical shape of the normalized double mass curves – the steep, almost linear increase in the winter period and the transition to the much flatter summer regime – in both catchments very well. This is further illustrated by the comparison of two typical saturation patterns simulated for winter and summer in the Colpach (Figure 10 B). Local bedrock depressions are close to saturation during the winter season, and hence ready to create runoff by filling and spilling in response to rapid infiltration through vertical macropores. These pools are, however, fairly dry during summer after a period of transpiration and root water uptake. The absence of free water sustaining fill and spill runoff generation explains the flat summer regime in the double mass curves and thus the dominant role of transpiration which may be sustained even by strongly bound soil water. The KGEs of 0.87 and 0.94 in the Colpach and Wollefsbach (Fig. 8 A, B).

The KGEs of 0.92 and 0.9 obtained for the Colpach and the Wollefsbach, respectively, corroborate that within the error ranges both double mass curves are almost perfectly explained by the models. We may As a major groundwater body is unlikely in both landscapes, a large inter-annual change in storage is not suspected and we hence state that the hillslope models closely portray the seasonal patterspatterns of the catchment’s water balance, also because of the catchments. This is further confirmed by the close accordance of simulated and observed annual runoff coefficients match very well (Table
We obtain 0.52 compared to the observed value of 0.55 in the Colpach and 0.39 compared to an observed value of 0.42 in the Wollefsbach. In addition to the seasonal water balances, both models also match observed discharge time series in an acceptable manner (KGE 0.88 and 0.71; Table 3). A closer look at the simulated and observed runoff time series (Figure 8 B9 and D) indicates, however, that the models performed differently model performance differs in both catchments. Generally we observed a better matching of observed stream flow model accordance during the wet winter period and season, when around 80% of the overall annual runoff is generated in both catchments. In contrast, there are clear deficiencies during dry summer conditions. For instance, the reference This is also highlighted by the different performance measures which are in both catchments higher during the winter period than during the vegetation period (Table 3).

The Colpach model (A1) misses especially the steep and flashy runoff events in June, July and August, and July—underestimates discharge in summer. It also misses the characteristic double peaks of the catchment as highlighted by runoff events 2 and 3 (Figure 8 B). Note9). Although the model simulates a second peak, it is either too fast (event 2) or the simulated runoff of the second peak is too small (event 3). This finding suggests that our perceptual model of the Colpach catchment needs to be revised, as further elaborated in the discussion. Another shortcoming is the missing snow routine of CATFLOW which can be inferred from event 1 (Figure 9 top left panel). While snow is normally not a major control of runoff generation in the rather maritime climate of the Colpach catchment, the runoff event 1 happened during temperatures below zero and was most likely influenced by snowfall and subsequent snow melt, which might explain the delay in observed rainfall-runoff response.

In the Wollefsbach model the ability to match the hydrograph also differed strongly between the different seasons (Table 3; Figure 10). The flashy runoff respond in summer is not always well captured by the model, as for example for a convective rainfall event with rainfall intensities of up to 18 mm (10 mins)\(^{-1}\) in August (Figure 10, event 2). On the contrary, runoff generation during winter is generally simulated acceptably (KGE = 0.74). Yet, the model strongly underestimates several runoff events in winter too (Figure 10, event 1). As temperatures during these events were close to zero, this might again be a result of snow accumulation, which cannot be simulated with CATFLOW due to the missing snow routine. It is of key importance to stress that we only achieve
acceptable simulations of runoff production in the Wollefsbach when using two different macropore setups for the winter and the summer periods to account for the emergence of cracks (Figure 4) by using a denser 2m-spacing of macropores. When using a single macropore distance of either 2 m (summer setup) or 4 m (winter setup) in the entire simulation period the model shows clear deficits with a KGE of 0.61 and 0.53, respectively. Furthermore, we are able to improve the performance of the Wollefsbach model if we use velocities faster than 1×10^{-3} m/s for the drainage structures. However, this violates the laminar flow assumption and the application of Darcy’s law becomes inappropriate.

4.2 Model sensitivities, split sampling and spatial proxy test

Sensitivity tests for the Colpach reveal that the model performance of matching the double mass curves is strongly influenced by the presence of connected rapid flow paths. A complete removal of either the vertical macropores or the bedrock interface from the model domain decreases the model performance considerably (KGE 0.71 or 0.72, respectively). In contrast, reducing the density of vertical macropores from 2 m to 3 or 4 m only leads to a slight decrease in model performance (KGE 0.85 and 0.82, respectively). In an additional sensitivity test we changed the bedrock topography from the one inferred from the ERT data to a surface parallel one, which reduces model performance with respect to discharge (KGE < 0.6).

The temporal split-sampling reveals that the representative hillslope model (A1) of the Colpach also performs well with respect in matching the hydrograph of the previous hydrological year, with an NSE of 2012-13 (KGE = 0.72-82). Furthermore, the parameter setup was tested within uncalibrated simulations for the Weierbach—a headwater catchment (0.45 km²), a headwater of the Colpach in the same geological setting. This again leads to acceptable results (KGE = 0.81, NSE = 0.68). The same applies to the representative hillslope model of the Wollefsbach which also performs well in matching the hydrograph of the previous year (KGE = 0.7). Furthermore, the parameter setup was tested within an uncalibrated simulation for the Schwebich catchment (30 km²), a headwater of the Attert basin in the same geological setting, as the Wollefsbach, and again with acceptable results of a (KGE of 0.81 and a NSE of 0.68-71). In the Wollefsbach we found visually even stronger seasonal differences in model performance with respect to matching the hydrograph. This is further shown by the low overall model performance of 0.26 for the NSE and 0.64 for the KGE in contrast to a
relative high logNSE of 0.82 (Table 2). The differences in the logNSE and NSE further explain the strong influence of the overestimated runoff events in August and September on the NSE that have almost no volume because of their short duration as a result of the flashy runoff regime of the catchment. The reference model (A2) led to a strong overestimation of runoff behavior in summer due to strong overland flow production during convective events in August and September (Figure 8 D). No significant overland flow was simulated during the rest of the year. This suggests that without the representation of cracks by using separate summer macroporosity (VE4), soil infiltrability is obviously too small compared to the real system as soon as cracks have emerged.

4.2.3 Simulated and observed soil moisture dynamics

It is of great interest as to what extent we can compare the model performance in reproducing ensemble of soil moisture or sap flow time series from the virtual observation points to the ensemble of available observations is consistent with the strengths and deficiencies of the simulated hydrographs and double mass curves. Clearly we cannot expect that our simulations are capable of reproducing the observed spatial variability of both distributed data sources, as this needs a fully distributed model setup, which may have to account for the variability of the terrestrial filter properties and of the rainfall and radiation forcing within the catchment. A representative hillslope should, however, be ergodic and hence match the averaged temporal dynamics and plot within the envelope of available soil moisture observations, which are displayed in Figure 9 for both catchments and both observation depths. Note that the spread in the observations in 10 cm is much larger in the Colpach catchment, particularly in the dry months of June and July, while the opposite holds true for soil moisture observations at 50 cm depth. This suggests that the differences in runoff generation in the two catchments might also arise from differences in storage and storage-related controls.

To estimate the representative soil moisture dynamics from the distributed observations we employed a twelve-hour rolling median, which we compared to the spatially averaged soil moisture simulated at the respective depths. Model goodness was determined visually and by means of the KGE and the Spearman Rank correlation. Simulated soil moisture at 10 cm depth for (Figure 11) in the Colpach was systematically too high by around a volume of 25%. Yet the simulation is within the envelope that is spanned by the observations and the KGE of 0.69 suggests some predictive power for top soil moisture.
Also, soil moisture dynamics are matched well with a spearman rank correlation of 0.8. This holds true especially if compared to the median of spearman rank correlations of all sensor pairs, which is 0.66 (Spearman rank correlation \(r_s = 0.83 \)). This is further confirmed when comparing this value to the median Spearman rank correlation coefficient of all sensor pairs (\(r_s = 0.66 \)). However, simulated soil moisture at 10 cm depth was systematically higher than the average of the observations. The predictive power in matching the observed average soil moisture dynamics was small (KGE = 0.43; Figure 11 A). Contrary to the positive bias, the total range of the simulated ensemble appears with 0.1 m\(^3\) m\(^{-3}\) much smaller than the huge spread in the observed time series (0.25 m\(^3\) m\(^{-3}\)). In line with the findings presented in the previous section, the model showed deficiencies in the summer period with respect to capturing the strong declines in soil moisture in June and July. Simulated soil moisture at 50 cm depth exhibits a strong positive bias as it is above and again underestimates the envelope spanned by the spread in the observations and has no observed time series. The predictive power is slightly better (KGE = 0.89). Yet the changes in deeper soil moisture storage, while simulated and observed average dynamics are in good accordance, as reflected by the spearman rank correlation of 0.91 (\(r_s = 0.89 \)).

Contrary to what we found for the Colpach, the simulation in 10 cm underestimated the rolling median of simulated soil moisture time series observed in 10 cm for the Wollefsbach (Figure 9 C), yet it falls into the state space spanned by the observations; it only slightly underestimates the rolling median of the observed soil moisture (Figure 11 C). The predictive power is with a higher (KGE of 0.45 worse) than in the Colpach, while the match of the temporal dynamics is with a rank correlation coefficient of 0.68, also slightly lower (\(r_s = 0.81 \)). Again the model failed in reproducing the strong decline in soil moisture between May and July. It is, however, interesting to note that the model is nearly unbiased during August and September. This is especially interesting since the reference Wollefsbach model does not perform too well with respect to simulating discharge simulations during this time period. Simulated soil moisture at 50 cm depth showed similar model deficiencies as found for the Colpach, while the bias predictive power was slightly smaller (KGE = 0.44), and also the dynamics is matched slightly worse (\(r_s = 0.79 \)).
When recalling the soil water retention curves (Figure 7), one can infer that a soil water content of 0.2 m3 m$^{-3}$ corresponds to pF around 3.8 in the Colpach and to pF around 4.1 in the Wollefsbach. That in mind it is interesting to note that some observed soil moisture values are below this threshold throughout the entire year. This is particularly the case for soil moisture observation at 50 cm depth in the Colpach where almost 50 % of the sensors measure water contents close to the permanent wilting point throughout the wet winter period. This also holds true for 8 sensors at 10 cm depth.

4.4 Normalized simulated transpiration versus normalized sap flow velocities

As sap flow provides a proxy for transpiration, we compared normalized, averaged sap flow velocities of all beech and oak trees to the normalized simulated transpiration of the reference hillslope model of the Colpach. Mean The three-day-rolling-mean of sap flow stayed close to zero until the end of April and started to rise after the predicted onset of bud break of the observed trees. The Colpach model is able to match the bud break of the vegetation period. In contrast, simulated transpiration is already slightly above zero in January and exhibits a first peak at the beginning of March. This indicates that the predefined phenological cycle is, as expected, inappropriate for matching with the first sprout in this area. Simulations well. Furthermore, simulations and observations are in good accordance during midsummer. In the period between August and October the simulations underestimate the observations, because the predefined phenology declines too early. These deficiencies of the model to properly match onset and end of the vegetation period are reflected in the rank correlation coefficient of 0.62. Due to the fact that periods of high transpiration and sap flow activity have, while being out of phase, a similar length, the model still matches the accumulated annual evapotranspiration well and the annual water balance is reproduced properly—while in April and May the simulations are too high (Figure 12). Nevertheless, the model has some predictive power (KGE = 0.65), and is able to mimic the dynamics well ($r_2 = 0.75$).

4.4 Virtual experiments to search for first-order controls

VE1 Colpach Experiment 1, double gradient: Opposite to our expectation we found that the doubling of the topographic gradient had only a minor effect on the simulated double mass curves and hydrographs, respectively (Figure 11F). The KGE decreased from 0.85 to 0.8 while logNSE increased from 0.75 to 0.85. In fact runoff peaks were slightly smaller in the winter period compared to the reference hillslope model. While this appears
counterintuitive on first sight, it may be attributed to the decrease in subsurface storage volumes in the bedrock depressions in the steeper hillslope.

Contrary to the VE1 this finding and in line with our expectation, virtual experiment 2 revealed the key importance of bedrock topography. The removal of the soil bedrock interface, which allowed for rapid flow in the weathered schist, reduced the NSE to 0.8 and the KGE even more to 0.7 (Table 2), mainly due to a reduction in simulated flood peaks (Figure 11 B). The key role of rapid flow paths is further corroborated by the model run (VE 2.4) which left out the vertical macropores from the reference setup (Figure 11 E); again simulated peaks are too small and the KGE is reduced to 0.7. The removal of the bedrock depression by assuming surface-parallel bedrock topography did completely change the simulated rainfall runoff behavior (Figure 11 C). The corresponding hydrograph appears very much like a separated base flow component due to the absence of peaks and high frequency components; this is in line with the clear reduction of the NSE to 0.56 and the KGE to 0.59 (Table 2).

Most interestingly we found that the hillslope with the conceptualized depression in the hill foot/riparian zone performed even marginally better than the reference setup, particularly with the better match of the largest summer flood in August (Figure 11 D). The corresponding KGE of 0.91 and NSE of 0.88 (Table 2) suggest a nearly perfect performance within the error margins. We hence state that the results of virtual experiment 2 are fully in line with our expectations for a system which works according to the fill and spill concept. Yet, they provide a surprise, which is not so much the finding that several bedrock architectures perform similarly well, but that the location and connectedness of the bedrock seems to be of minor importance at this scale, as further explained in the discussion.

Our third virtual experiment revealed that the improved representation of the onset and end of the phenological cycle based on the temperature index model of Menzel et al. (2003) clearly improved the model performance with respect to matching the observed onset of sap flow activity (Figure 10 A). This went along with an improved simulation of the double mass curves (Figure 12 A). Given a KGE of 0.95 and the fact that simulated and observed
annual runoff coefficients are with 0.54 and 0.56 in almost perfect accordance, this setup is the most behavioral one of all tested setups (Table 2). A closer look at the simulated hydrograph reveals also a clear improvement, particularly with respect to the logNSE (Table 2). The more realistic runoff reaction in early summer can be explained by the fact that bedrock depressions are still wet enough to create runoff due to the later onset of transpiration. Yet the model still showed deficiencies, for instance, the overestimation of the first runoff events in May and the underestimation of subsequent events in June and July. The clear improvements which were already caused by this minor and straightforward implementation of the dynamic onset of plant phenology suggests that much more substantial improvements of transpiration controls might be a key for substantially improving hydrological models.

VE4 Wollefsbach Experiment 4, challenge of dealing with emergent soil structures: The virtual experiment in the Wollefsbach which uses a separated summer soil hydraulic conductivity revealed and improved strongly matching runoff (Figure 8 D); this is reflected in the increase in KGE from 0.64 to 0.76 and NSE from 0.26 to 0.74 compared to the reference model (A2s). However the simple quick fix of multiplying the hydraulic conductivity by 75 has also clear drawbacks, as the value was selected by manual calibration on discharge. The model performance with respect to soil moisture became clearly worse as shown in Figure 9 C and D. The overall spearman rank correlation decrease to 0.51 at 10 cm depth, which can be explained by the fact that water flushes through the soil at 10 and 50 cm to the bedrock interface due to the increased hydraulic conductivity of the entire soil profile. We may hence state that such a quick fix of increasing the hydraulic conductivity of the top soil to improve simulated stream flow production is inappropriate for capturing the effect of emergent soil cracks for the right reasons.

5 Discussion

The presented model results partly corroborate our hypothesis that single representative hillslopes might serve as the most parsimonious representations of two distinctly different lower meso-scale catchments in a physically-based model. The setups of the representative hillslopes were derived as close images of the available perceptual models and by drawing from a variety of field observations, literature data and expert knowledge.
The hillslope models were afterwards tested against stream flow data, including a split sampling and a proxy basin test, and against soil moisture and partly against sap flow observations. From the fact that stream flow simulations were acceptable in both catchments when being judged solely on model efficiency criteria, one could conclude that the hillslopes portray the dominant structures and processes which control the runoff generation in both catchments well. A look beyond streamflow-based performance measures revealed, however, clear deficiencies in stream flow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch in simulated soil water dynamics. In the next sections we will hence discuss the strengths and the weaknesses of the representative hillslope model approach. More specifically, in section 5.1 we will focus on the role of soil heterogeneity, preferential flow paths and the added value of geophysical images. In section 5.2 we will discuss the consistency of both models with respect to their ability to reproduce soil moisture and transpiration dynamics. Finally in section 5.3, we discuss if the general idea to picture and model a catchment by a single 2-D representative hillslope is indeed appropriate to simulate the functioning of a lower-mesoscale catchment.

5.1.1 The role of soil heterogeneity for discharge simulations

By using an effective soil water retention curve, instead of accounting for the strong variability of soil hydraulic properties among different soil cores (section 2.2.3) we neglect the stochastic heterogeneity of the soil properties controlling storage and matrix flow. This simplification is a likely reason why the model underestimates the spatial variability in soil moisture time series (compare section 5.2.1). However, our approach does not perform too badly in simulating the normalized double mass curves as well as the runoff generation, at least to some extent, in both catchments. Especially during the winter, when around 80% of the runoff is generated, runoff is reproduced acceptably well. As our models do not represent the full heterogeneity of the soil water characteristics but are still able to reproduce the runoff dynamics in winter, we reason in line with Ebel and Loague, (2006). This study provides strong evidence that physically-based simulations with representative hillslope models may closely portray water storage and release behavior of two distinctly different lower mesoscale catchments. In line with the blueprint of Freeze and Harlan, (1969) we disclaimed any form of calibration of the underlying model. Instead the model structures were set up as one-to-one images of our
perceptual models of the catchment structure and the dominant processes, using a variety of different data and process insights. Hillslope models were then parameterized according to the available very diverse data as well as from the literature, within a handful of test simulations and benchmarked against different response and storage measures without any additional parameter tuning. In the following we discuss what can be learned from the successful part of this approach with respect to a) the widely discussed role of soil heterogeneity and preferential flow paths, b) the potential of physically based models to accommodate and thus integrate multi-dimensional data, and c) the validity of the assumptions underlying the representative hillslope concept. We then discuss the feasibility of the concept of functional units and related to this, the partly astonishing findings we obtained within three virtual experiments. Finally, we change perspective on the various deficiencies and discuss the related inherent limitations of the representative hillslope concept itself and, more importantly, the limitations of the theories underpinning physically based models, with emphasis on bio-physical processes and emergent behavior. We conclude the discussion with a final reflection on our notion of complexity and simplicity.

5.1 Can a representative hillslope model mimic the functioning of a catchment?

that heterogeneity of soil water retention properties is not too important for reproducing the stream flow generation in catchments. In this context it is helpful to recall the fact that hydrological models with three to four parameters are often sufficient to reproduce the stream flow of a catchment. This corroborates that the dimensionality of stream flow is much smaller than one could expect given the huge heterogeneity of the retention properties. This finding has further implications for hydrological modelling approaches as it once more opens the question on the amount of information that is stored in discharge data and how much can be learned when we do hydrology backwards (Jakeman and Hornberger, 1993). Our conclusion should, however, not be misinterpreted that we claim the spatial variability of retention properties to be generally unimportant. The variability of the soil properties of course plays a key role as soon as the focus shifts from catchment-scale runoff generation to solute transport processes, infiltration patterns or to water availability for evapotranspiration.
5.1.2 The role of drainage structures and macropores for discharge simulations

By representing preferential flow paths as connected networks containing an artificial porous medium in the Richards domain, we assume that preserving the connectedness of the network is more important than the separation of rapid flow and matrix flow into different domains. The selected approach was successful in reproducing runoff generation and the water balance for the winter period in the Wollefsbach and Colpach catchments. Simulations with a disconnected network, where either the saprolite layer at the bedrock interface or the vertical macropores were removed, reduced the model performance in the Colpach model from KGE = 0.88 to KGE = 0.6 and KGE = 0.71, respectively. We hence argue that capturing the topology and connectedness of rapid flow paths is crucial for the simulation of stream flow release with representative hillslopes. We furthermore showed that a reduction in the spatial density of macropores from a 2 m to 4 m spacing did not strongly alter the quality of the discharge simulations. This insensitivity can partly be explained by the fact that several configurations of the rapid flow network may lead to a similar model performance. From this insensitivity and the equifinality of the network architecture (Klaus and Zehe, 2010; Wienhöfer and Zehe, 2014) we conclude that it is not the exact position or the exact extent of the macropores which is important for the runoff response but the bare existence of a connected rapid flow path (Jakeman and Hornberger, 1993).

However, our results also reveal limitations of the representation of rapid flow paths in CATFLOW. For instance model setups with higher saturated hydraulic conductivities (>10⁻³) of the macropore medium clearly improved the model performance in the Wollefsbach but violated the fundamental assumption of Darcy’s law of pure laminar flow. This was likely one reason why capturing rapid flow was much more difficult with the selected approach for the Wollefsbach. Another reason was that the emergence of cracks, implying that the relative importance of rapid flow paths for runoff generation is not constant over the year, as highlighted by the findings of dye staining experiments (Figure 4). Given this non-stationary configuration of the macropore network it was indispensable to use a summer and winter configuration to achieve acceptable simulations. This indicates that besides the widely discussed limitations of the different approaches to simulate macropore flow, another challenge is how to deal with emergent behavior and related non-stationary in hydrological model parameters. This is in line with the work of Mendoza et al. (2015), who showed that the agility of hydrological models is
often unnecessarily constrained by using static parametrizations. We are aware that the
use of a separate model structure in the summer period is clearly only a quick fix, but it
highlights the need for more dynamic approaches to account for varying morphological
states of the soil structure during long-term simulations.

5.1.3 The role of bedrock topography and water flow through the bedrock

The Colpach model was able to simulate the double peak runoff events which are deemed
as typical for this hydrological landscape. However, the model did not perform
satisfactorily with regard to peak volume and timing. A major issue that hampers the
simulation of these runoff events is that the underlying hydrological processes are still
under debate. While Martínez-Carreras et al. (2015) attributes the first peak to water from
the riparian zone and the second to subsurface storm flow, other researchers (Angermann
et al., 2016; Graeff et al., 2009) suggested that the first peak is caused by subsurface
storm flow and the second one by release of groundwater. The representative hillslope
model in its present form only allows simulation of overland flow and subsurface storm
flow and not the release of groundwater because of the low permeability of the bedrock
medium of \(10^{-9}\) m s\(^{-1}\). The deficiency of this model to reproduce double peak runoff
events shows that neglecting water flow through the bedrock is possibly not appropriate
(Angermann et al., 2016) and that both the perceptual model and the setup of the
representative hillslope for the Colpach need to be refined. We hence suggest that the
representative hillslope approach provides an option for a hypothesis-driven refinement of
perceptual models, within an iterative learning cycle, until the representative hillslope
reproduces the key characteristics one regards as important.

The importance of bedrock topography for the interplay of water flow and storage close
to the bedrock was further highlighted by the available 2-D electric resistivity profiles. A
model with surface-parallel bedrock topographies performed considerably worse in
matching stream flow in terms of the selected performance measures and particularly did
not produce the double peak events. This underlines the value of subsurface imaging for
process understanding, and is a hint that the Colpach is indeed a fill-and-spill system
(Tromp-Van Meerveld and McDonnell, 2006). It also shows that 2-D electric resistivity
profiles can be used to constrain bedrock topography in physically-based models (Graeff
et al., 2009), which can be of key importance for simulating subsurface storm flow (Hopp
and McDonnell, 2009; Lehmann et al., 2006). Although we used constrained bedrock
topography only in a straightforward, relative manner in this study, our results
corroborated the added value of ERT profiles for hydrological modelling in this kind of hydrological landscapes. Nevertheless, we know that a much more comprehensive study is needed to further detail this finding.

5.2 Integration and use of multi-response and state variables

5.2.1 Storage behavior and soil moisture observations

Both hillslope models reveal much clearer deficiencies with respect to soil moisture observations. While average simulated and observed soil moisture dynamics are partly in good accordance, both models are biased except for the Wollefsbach model at 10 cm depth. In the Wollefsbach catchment this might be explained by the fact that we use an uniform soil porosity for the entire soil profile, although porosity is most likely lower at larger depths for instance due to a higher skeleton fraction. This is no explanation for the Colpach catchment as porosity was reduced in deeper layers with respect to the skeleton fraction. In this context it is interesting to note that quite a few of the soil moisture observations are suspiciously low with average values around 0.2. The resulting pF values of around 3.8 and 4.1 in the Colpach and Wollefsbach, respectively, indicate dry soils even in the wet winter period. This fact has two implications: The first is that the chosen model is almost not capable to simulate such small values, because root water uptake stops at the permanent wilting point and is small at these pF values. The second is that these sensors may have systematic measurement errors, possibly due to entrapped air close to the sensor (Graeff et al., 2010), which implies that measured values will be systematically too low. From this we may conclude that average soil moisture dynamics in both catchments might be higher and the spatial variability of soil moisture time series in turn lower as it appears from the measurements.

Additional to the mismatch of the soil moisture simulations, the model fails in reproducing the strong decline in observed soil moisture between May and July 2014. A likely reason for this is that plant roots in the model extract water uniformly within the root zone, while this process is in fact much more variable (Hildebrandt et al., 2015).

5.2.2 Simulated transpiration and sap velocities

It is no surprise that evapotranspiration in our two research catchments is - with a share of around 50 % of the annual water balance - equally important as stream flow. It is also no surprise that evapotranspiration is dominated by transpiration as both catchments are
almost entirely covered by vegetation. However, measuring transpiration remains a
difficult task, and a lack of reliable transpiration data often hinders the evaluation of
hydrological models with respect to this important flux. While it is possible to calculate
annual or monthly evapotranspiration sums based on the water balance, more precise
information about the temporal dynamics of transpiration is difficult to obtain. Therefore
we decided to evaluate our transpiration routine with available sap flow velocity data,
because although the absolute values are somewhat error-prone, the dynamics are quite
reliable. We tried to account for the uncertainties of the measurements by deriving a
three-day-rolling median of 28 observations instead of using single sap flow velocity
measurements. As we are comparing sap flow velocity to the simulated transpiration as a
normalized flow, we only compare the dynamics of both variables. It is remarkable that
despite the uncertainties in the sap flow velocity measurements and our ad-hoc
parametrization of the vegetation properties, the comparison of sap flow velocity and
simulated transpiration provides additional information, which cannot be extracted from
the double mass curve or discharge data. For example, based on the comparison with sap
flow velocities we were able to evaluate if the bud break of the dormant trees was
specified correctly by the temperature index model of Menzel et al. (2003). Additionally,
we could identify that the spring and autumn dynamics of transpiration, in April as well
as in August and September, are matched poorly by the model while the pattern
corresponds well in May, June and July. We attribute this discrepancy to the lack of
measured LAI values in spring and autumn and to our possibly overly simple vegetation
parametrization including several parameters like root depth or plant albedo which are
held constant throughout the entire vegetation period. We are aware that this comparison
of modeled transpiration with sap flow velocity is only a first, rather simple test; however
it encourages the use of sap flow measurements for hydrological modeling. It shows
furthermore that the concept of a representative hillslope offers various opportunities for
integrating diverse field observations and testing the model’s hydrological consistency,
for example evaluating it against soil water retention data and sap flow velocities.

5.3 The concept of representative hillslope models

The attempt to model catchment behavior using a two-dimensional representative
hillslope implies a symmetry assumption in the sense that the water balance is dominated
by the interplay of hillslope parallel and vertical fluxes and the related driving gradients
(Zehe et al., 2014). This assumption is corroborated by the good/acceptable but yet
seasonally dependent performance of both hillslope models with respect to matching the water balance and the hydrographs. We particularly learn that the timing of runoff events in these two catchments is dominantly controlled by the structural properties of the hillslopes, particularly bedrock topography in concert with soil permeability. This is remarkable for the Colpach catchment which has a size of 19.4 km², but in line with Robinson et al., (1995) who showed that catchments smaller than of up to 20 km² are still be hillslope dominated. It is obvious that a representative hillslope model cannot perform well as soon as the time scales of flood routing and rainfall variability start dominating the response behavior and timing of stream flow.

With respect to matching observed storage behavior both hillslope models had clear deficiencies in simulating the observed average soil moisture data. While simulated and observed average soil moisture dynamics were satisfyingly matched within the topsoil, both models were biased at 50 cm depth. This might be explained by the fact that we used a single soil type for the entire soil profile while porosity in the deeper ranges is most likely lower (e.g. higher skeleton fraction). Particularly, the models failed in reproducing the strong decline in soil moisture between May and July 2014. A likely reason for this is that plant roots in the model extract water uniformly within the root zone, while plants possibly optimize the amount of energy they have to invest to access soil water sustaining transpiration (Hildebrandt et al., 2015). We also found that benchmarking of the model against sap flow data provided additional information about the representation of vegetation controls, which cannot be extracted from the double mass curve or discharge data. We hence conclude that the proposed concept offers various opportunities for integrating diverse field observations and testing their hydrological consistencies, including soil water retention data and images from geophysics and dye staining experiments. We further conclude that the idea of hillslope-scale functional units, which act similarly with respect to runoff generation and might hence serve as building blocks for catchment models, has been corroborated. This is particularly underpinned by the fact that the parameterization of the reference model was – without tuning – transferable to a headwater in the same geological setting. In this respect we were astonished by the fact that the huge observed variability of soil water retention properties could be represented in a rather straightforward manner.
5.2 Is subsurface heterogeneity a dead end for a representative hillslope model?

Both hillslopes were parametrized using a representative soil water retention curve using experimental data from either 53 or 28 undisturbed soil cores within a maximum likelihood approach. Since the two hillslope models are able to successfully simulate the water balance, we may, in line with Ebel and Loague, (2006) conclude that heterogeneity of retention properties is not too important for reproducing runoff of lower mesoscale catchments. This finding is also in line with the common knowledge that stream flow is a low-dimensional variable, which may be reproduced by a three to four parameter model. We are fully aware that spatial variability of retention properties might be of importance when dealing with solute transport or infiltration patterns in catchments. We also like to stress that our approach may support the optimization of soil sampling with respect to the minimum sample size that is needed to robustly determine a representative retention curve for water balance modelling. We leave this here for further virtual experiments.

The fact that the overwhelming heterogeneity of subsurface must not be a dead end for the idea of a representative hillslope model can also be concluded from our representation of preferential flow. The straightforward implementation as connected flow paths containing an artificial porous medium was sufficient to reproduce runoff generation and the water balance for the whole time period in the Colpach and for the winter period in the Wollefsbach catchment. This becomes more evident when looking at Figure 11 B and F where the removal of either the bedrock interface or the vertical macropores reduced the KGE from 0.84 to 0.72 and 0.71, respectively. Despite the known limitations of this approach, or in fact of all approaches to simulate macropore flow (Beven and Germann, 2013), it seems that capturing the topology and connectedness of rapid flow path is crucial for setting up representative hillslopes at this scale. We also may conclude that particularly the hydraulic properties of the macropores observed at other places (Wienhöfer and Zehe, 2014; Klaus and Zehe, 2010) can be transferred across system borders. But this fact should not be misinterpreted; it is not the exact position or the exact extent of the macropore setup which is important but rather the hydraulic behavior of the macropore medium and the idea of a connected flow path topology. We are aware that such flow path topology is not uniquely defined, as shown by Wienhöfer and Zehe (2011). It seems that equifinality and the concept of a representative hillslope is rather more a blessing than a curse since there is an infinite number of possible macropore
setups which yield the same runoff characteristics. If this were not the case, we could not
transfer macropore setups from the literature across system borders and successfully
simulate two distinct runoff regimes which are strongly influenced by preferential flow.

5.3 Hillslope scale structures as first order control on water storage and release

5.3.1 Is surface topography a first order control in the Colpach?

The potential energy difference is a major control on runoff as runoff generation is mostly
driven by gravity. Nevertheless, surface topography can only be a poor means to
classify relevant potential energy differences for runoff generation. For instance
Jackisch (2015) showed that variables extracted from topography could not explain
differences in runoff generation between the three geological settings of the Attert
catchment. Extracted topographic variables such as the topographic wetness index
suggested that two catchments, which produce runoff in a distinctly different fashion,
should operate similarly. Furthermore, Fenicia et al., (2016) report in the same research
area that a conceptual model built upon geological hydrological response units (HRU)
performed in a superior fashion with respect to explaining spatial variability of the
streamflow than a model built upon topographic HRUs. In line with this we found that a
doubled gradient in relief energy had almost no influence on the simulated water balance
in the Colpach, despite a marginal reduction of simulated flood peaks. The
counterintuitive peak reduction reflects the decrease in subsurface storage volume in the
bedrock depressions in the steeper hillslope. From this finding we may conclude that
runoff production in this highly permeable and highly porous soil setting is not limited by
the topographic gradient, as its doubling did not substantially increase subsurface flow
velocities. Nevertheless further virtual experiments with reduction of the topographic
gradient are needed to estimate the lower threshold above which simulations become
insensitive to gradient changes.

5.3.2 Is bedrock topography a first order control in the Colpach?

Contrary to the findings regarding surface topography our simulations were highly
sensitive to changes in bedrock topography and the presence/absence of a bedrock
interface and macropores. Particularly, the assumption of surface-parallel bedrock
changed the response behavior of the hillslope completely, by produced a hydrograph
which looked like a separated base flow component. Our findings fully corroborate the
argumentation of Wrede et al. (2015) who stated that the dominant runoff generation in
the Colpach works according to the fill and spill mechanism (Tromp Van Meerveld and McDonnell, 2006). In line with Hopp and McDonnell, (2009) we also found that local depressions in bedrock topography and a varying soil depth jointly control filling and spilling during subsurface runoff production. The real surprise of this virtual experiment was, however, that the catchment scale fingerprint of a fill and spill system can be simulated in several ways. One alternative was a spatially explicit representation of bedrock topography as observed with electrical resistivity tomography at two typical hillslopes, which implies that connectivity between these depressions depends on subsurface wetness (Lehmann et al., 2006). The other feasible alternative was a hillslope that combined surface parallel bedrock topography with a large depression at the hill foot sector, which had the same total storage volume as the explicit bedrock topography. This second alternative produced a small riparian zone and performed even slightly better with respect to matching the hydrograph. Hence we may conclude that it is not the detailed representation of the subsurface architecture, including location of the depressions along the slope line, but the correct representation of the total volume of all depressions which makes up the behavioral catchment model. The last finding has important implications for geophysical explorations of the shallow subsurface, as it is likely possible to extract a representative catchment average storage volume from geophysical data at a few hillslopes and translate this into a conceptualized storage volume in the model. This procedure is most likely sufficient, which is promising as geophysical exploration of the subsurface of each individual hillslope in a catchment is unfeasible.

5.3.3 Is vegetation a first order control in the Colpach?

The model performance with respect to matching the average sap flow dynamics and particularly the results of the related virtual experiment 3 corroborates that the phenological cycle of beech trees is a first order control on the water balance in this area. As the onset of the vegetation phase depends strongly on the local climate setting, our first simulation based on predefined phenological cycles was biased when the system switched from dominance of abiotic controls to dominance of bio-physical controls. In line with Seibert et al. (2016) we found that a simple temperature index proposed by Menzel et al., (2003) is feasible for both detecting the tipping point between summer and the winter regime in the double mass curve and to determine start and endpoint of the vegetation phase in the model. This is underpinned by the model results with the improved onset of the vegetation which showed indeed only small improvement in the
simulation of the discharge but an almost perfect fit of the normalized double mass curves with a KGE of 0.95. As the SVAT modules need air temperature anyway, a dynamic phenological cycle is straightforward to implement in CATFLOW.

5.4 Limitations and challenges

5.4.1 The need to go distributed

An example of the limitations of our single hillslope approach is the deficiencies of both models encountered to capture flashy rainfall-runoff events in the vegetation period. Besides the existence of emergent structures, these events might likely be caused by localized convective storms, probably with a strong contribution of the riparian zones (Martínez-Carreras et al., 2015) and forest roads in the Colpach catchment, and by localized overland flow in the Wollefsbach catchment (Martínez-Carreras et al., 2012). Such fingerprints of a non-uniform rainfall forcing cannot be captured by a simulation with a single hillslope; it requires a distributed, spatially aggregated model setup, and a river network. Similarly, one cannot expect a single hillslope to reproduce the observed variability of soil moisture and sapflow, which reflects the interplay of the spatial pattern and radiative forcing in combination with the heterogeneity of local soil and land use properties. Yet model complexity. Nevertheless, we suggest that a representative hillslope model structure provides the right start-up for a subsurface parameterization, i.e. of a functional unit when setting up a fully distributed catchment model consisting of several hillslopes and an interconnecting river network. Simulations with distributed rainfall and using the same functional unit parameterization for all hillslopes would tell how the variability in response and storage behavior can be explained compared to the single hillslope. In the case where different functional units are necessary to reproduce the variability of distributed fluxes and storage dynamics, these can either be generated by further stochastic perturbation or one might choose to measure the key variable in accordance with the virtual experiments. We also suggest that our statistical approach to compare simulated and observed soil moisture and sap flow might hence serve as building blocks for catchment models, has been corroborated. This is more appropriate than a point/grid cell-based evaluation. The latter technique would only be appropriate particularly underpinned by the fact that the parameterization
of both models was – without tuning – successfully transferred to headwaters in the case of perfect observations of rainfall and terrestrial properties with perfect spatio-temporal resolution, same geological setting and worked also well for other hydrological years.

5.4.2 The inherent limitations of the Richards equation

The presented simulations are affected by inherent limitations of the Richards equation and the approach we used to represent rapid flow. The major deficiency of the Richards equation is the local equilibrium assumption and related to this, the assumption that gravity driven flow and capillarity controlled flow are always controlled by the same Darcian frictional loss term \(k(\theta) \). This assumption can and should be relaxed particularly during strong rainfall forcing, for instance by treating gravity flow as a separate advection term. The related key challenges are not only the numerical solution of such an advection diffusion equation but the proper representation of the energy loss for the advection and the fact that kinetic energy of soil water flow may no longer be neglected. The limitations of the Richards equation should not be mistaken for non-importance of capillary forces in soils: there would be no soil water storage and probably no terrestrial vegetation without capillary forces. Capillarity is a first order control of soil water dynamics during radiation driven conditions and the Darcy-Richards concept is sufficient for simulating soil water dynamics in this context (Zehe et al., 2010, 2014).

Any physical theory or model, while being based on inference, is yet an empirical fit to observables with its purpose to explain a class of phenomena as broadly as possible (Popper, 1935). All physically based models we use today are incomplete in the sense that there are phenomena which fall outside their range of validity. A representative hillslope model remains hence “a lousy model” as it needs to rely on an incomplete description of the water fluxes in the catchment. Nevertheless, there is much to be learned from imperfect solutions, as long as we are aware of their advantages and drawbacks and as long as we stick to the blueprint of Freeze and Harlan (1969). Our study shows that beside the usually discussed limitations, the real challenge is to deal with emergent behavior. This is in fact a straightforward implication of the fact that both soil structure and vegetation structure are rather “slowly” varying morphological state variables of the hydrological system than constant/stationary parameters. Soil structures in the clay-rich soils of the Wollefsbach are non-stationary due to the active/ dormant phase of earthworm burrows and due to crack formation during dry spells. Our use of summer and winter macroporosity was a tentative first step to show the need and the potential of
treating hydraulic properties not as static but dynamic. A proper representation of such non-linear feedbacks in physically based models is a two-fold challenge with respect to gaining the necessary understanding of the underlying thresholds and with respect to stability of the numerical solution when dealing with such a non-linear feedback.

5.4.3 Bio-physical controls on transpiration – the weakest link in the chain?

Numerical experiment 3 (VE3) corroborated that the improved representation of the onset of the vegetation phase as a temperature dependent variable yielded superior simulations of all forms of water release. While this was straightforward to implement, it remains a tentative first step, because the evolution of plant morphological parameters remains the same within every year. We argue that much more substantial improvements of bio-physical controls might be the key for further improving the fundamental basis of our models. The ideal solution is of course coupling with a dynamic vegetation model, as proposed by Schymanski et al., (2008) or Tietjen et al., (2010) for pristine vegetation in semi-arid areas. This implies that phenology evolves in response to climate and hydrological controls, thereby creating feedbacks. It furthermore offers more realistic ways for implementing root water uptake, as a distributed process along the root zone for instance by optimizing the amount of energy plants have to invest to access soil water (Hildebrandt et al., 2015). The challenge is, however, that ecological limitations in humid regions are less obvious, which implies that these models cannot simply be transferred to our regions. The coupling of hydrological models and crop models which have been developed in an independent fashion is furthermore not a straightforward exercise (Jackisch et al., 2014). Despite these challenges, we need a paradigm shift in accepting that transpiration is part of the plant’s metabolism, gas exchange and photosynthesis and thus reflects (optimal) behavior of plants (Schymanski et al., 2009) rather than plants acting as a water pump. The literature is full of different and much more realistic models for parameterizing stomata conductance (Damour et al., 2010) that step beyond the heavy parameterization of Jarvis (1972), which reflects the outworn paradigm of the “plant as water pump”.

6. Conclusions

We overall conclude that perceptual models of catchments can be translated into representative hillslope models which successfully portray the spatial-aggregated
functioning. This was demonstrated for two distinctly different catchments and implies
that hillslope-scale functional units might indeed be identified as building blocks for
catchments and that their behavioral parameter sets are transferable within the same
landscape setting. The general idea to translate a perceptual model into a model structure
is not new and has already been applied with a conceptual rainfall-runoff model
framework even within the same area (Wrede et al., 2015). Here the scientific asset is that
we use a physically-based model which can be parameterized directly on field
measurements since the parameters are directly related to the physical processes and their
controlling structures. The drawback is that physically-based models are parameter
intensive, limited due to the incomplete representation of physics and are data greedy
which means that they need to be based on extensive field data which is only available in
a few research catchments around the world. But what might seem like a drawback is also
to their benefit since their simulations reflect naturally both the strength and limitations of
the underlying representations of bio-physical processes. This offers the option to learn
not only from the successful part of the study but particularly also from model
deficiencies as they unmask limitations in the theoretical underpinnings and of the
representative hillslope concept itself. We conclude that using physically-based models,
even in such an aggregated and abstract manner provides insights into cause and effect
relationships explaining what happens due to which reasons. This cannot be obtained to
such an extent by conceptual models simply because they have been designed to
reproduce rainfall runoff relations as parsimoniously as possible. Their advantage is the
simpler mathematical formulation and thereby a strong reduction in the number of
parameters. This fact makes them easy to calibrate and hence the first choice for studies
in data sparse catchments as well as for comparative hydrology. Nonetheless, a simple
mathematical representation does not automatically mean that the model structures and
the parameters are straightforward to interpret. This is evident not only in the fact that
internal states and parameters of conceptual models are difficult to compare and derive
from field observations, but also that their model structure is neither simple nor intuitive
to interpret. As a consequence, model improvements and model comparisons often need
to be benchmarked purely on a statistical foundation. Physically-based models are not
based on simple mathematical equations, but their setup reflects much more intuitively
the perception of the system, particularly in the subsurface.
Therefore, we close with the note that simplicity in hydrology should not be mistaken for
a mathematically simplified process description, parameter parsimony or minimum of
model elements. To us it rather means achieving the perfect level of abstraction of the
system we want to analyze—perfect in the sense of Antoine de Saint-Exupéry\(^1\)—
balancing necessary complexity with the greatest possible simplicity. A behavioral
representative hillslope is hence not a simple average of all the existing hillslopes in a
catchment but a behavioral, maybe not yet perfect, abstraction of a catchment—a picture
in the sense of Heidegger.

The exercise to picture and model the functioning of an entire catchment by using a single
representative hillslope proved to be successful and instructive. The picturing approach
allowed us to consider both quantitative and qualitative information in the physically-
based modeling process. This concept made an automated parameter calibration
unnecessary and lead to overall acceptable stream flow simulations in two lower-
mesoscale catchments. A closer look, however, revealed limitations arising from the
drawn perceptual models, the chosen hydrological model or the applicability of the
concept itself.

Distilling a catchment into a representative hillslope model obviously cannot reflect the
entire range of the spatially distributed catchment characteristics. But as the stream flow
dynamics of the catchments were simulated reasonably well and the models were even
transferable to different catchments it seems that, the use of physically-based models and
the large heterogeneities in subsurface characteristics must not prevent meaningful
simulations. Additionally, our results highlight the importance of considering non-
stationarity of catchment properties in hydrological models on seasonal time scales and
emphasize once more the value of multi-response model evaluation. A representative
hillslope model for a catchment is, hence, perhaps less accurate than a fully distributed
model, but in turn also requires considerably less data and reduced efforts for setup and
computation. Therefore, this approach provides a convenient means to test different
perceptual models and it can serve as a starting point for increasing model complexity
through combination of different hillslopes and a river network to model a catchment in a
more distributed manner.

\(^1\) “A perfect picture is not achieved when there is nothing left to be added, but when there
is nothing left to be taken away.” Antoine de Saint-Exupéry
Acknowledgements

This research contributes to the “Catchments As Organized Systems (CAOS)” research group (FOR 1598) funded by the German Science Foundation (DFG). Laurent Pfister and Jean-Francois Iffly from the Luxembourg Institute of Science and Technology (LIST) are acknowledged for organizing the permissions for the experiments and providing discharge data for Wollebsbach and Colpach. We thank Laurent Pfister and Jean-Francois Iffly for organizing the permissions for the experiments and providing discharge data for Wollebsbach and Colpach. We furthermore also thank the whole CAOS team of phase I & II. Particular we thank Malte Neuper (KIT) for support and discussions on the rainfall data and Markus Weiler, Theresa Blume and Britta Kattenstroth for providing and collecting the soil moisture data. Finally we would like to thank the two anonymous reviewers as they significantly helped to improve and restructure this manuscript.
References

Klaus, J. and Zehe, E.: A novel explicit approach to model bromide and pesticide...

Figure 1 Map of the Attert basin with the two selected headwater catchments of this study (Colpach and Wollefsbach). In addition, the cluster sites of the CAOS research unit are displayed.
Figure 2 (A) Typical steep forested hillslope in the Colpach catchment; (B) Soil profile in the Colpach catchment after a brilliant blue sprinkling experiment was conducted. The punctual appearance of blue color illustrates the influence of vertical structures on soil water movement in this Schistschist area. (C) Plain pasture site of the Wollesfbach catchment; (D) Soil profile in the Wollesfbach catchment after a brilliant blue experiment showing the influence of soil cracks and vertical structures on the soil water movement.
Figure 3 Perceptual models of the (A) Colpach and (B) Wollesbach and their translation into a representative hillslope model for CATFLOW. Small sections of the CATFLOW model hillslope are displayed for the (C) Colpach and for the (D) Wollesbach and not the entire hillslope.

Figure 4 Emergent structures in the Wollesbach catchment for the sampling dates. In May macropore flow through earth worm burrows dominates infiltration, while in July clearly visible soil cracks occur. In contrast, a more homogenous infiltration pattern is visible in November, especially at 3 cm depth.
Figure 5 Normalized double mass curves for each hydrological year from 2010 to 2014 in the Colpach catchment (A) and from 2011 to 2014 in the Wollefsbach catchment (B). The transition period marks the time of the years when the catchment shifts from the winter period to the vegetation period. The separation of the seasons is based on a temperature index model from Menzel et al., (2003). Since the season shift varies between the hydrological years the transition period is displayed as an area.
Figure 6 (A) Profile of all hillslope extracted from a DEM in the Colpach catchment. The two hillslope profiles we used in this study are highlighted in blue (reference model setup) and red (virtual...
experiment 1 (VE1) steeper hillslope. (B) Bedrock topography of a hillslope in the Schist area measured using ERT. The contour line displays the 1500 Ωm isoline which is interpreted as soil bedrock interface.

Figure 7 Fitted soil water retention curves and measured soil water retention relationships for the Colpach (A) and Wollesbach (B) catchment.
Table 1: Hydraulic and transport parameter values used for different materials in the basic model setups.

<table>
<thead>
<tr>
<th>Type of structure</th>
<th>Saturated hydraulic conductivity Ks (m·s⁻¹)</th>
<th>Total porosity Θs (–)</th>
<th>Residual water content Θr (–)</th>
<th>Reciprocal air entry value α (m⁻¹)</th>
<th>Shape parameter n (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colpack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil layer</td>
<td>5×10⁻⁴</td>
<td>0.57</td>
<td>0.05</td>
<td>6.45</td>
<td>1.5</td>
</tr>
<tr>
<td>Soil–bedrock</td>
<td>2×10⁻³</td>
<td>0.35</td>
<td>0.05</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bedrock interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrock</td>
<td>1×10⁻⁹</td>
<td>0.4</td>
<td>0.05</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Wolfsbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil layer</td>
<td>2.92×10⁻⁴</td>
<td>0.46</td>
<td>0.05</td>
<td>0.66</td>
<td>1.4</td>
</tr>
<tr>
<td>Drainage system</td>
<td>2×10⁻³</td>
<td>0.25</td>
<td>0.1</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bedrock</td>
<td>5×10⁻³</td>
<td>0.45</td>
<td>0.11</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 8 Simulated and observed normalized double mass curves of (A) the Colpach and (B) the Wollefsbach catchment. The double mass curves are separated into a winter and a vegetation period after Menzel et al., (2003). The simulated runoff against the observed runoff are displayed in (B) for the Colpach and in (D) for the Wollefsbach. Moreover, in (D) the simulation period is separated into a winter and vegetation period and the model result with the emergent structures through the increased hydraulic conductivity (VE4) is displayed for the vegetation period. (2003).
Table 2: Benchmarks for simulated double mass curves and simulated discharge for all model setups used in this study.

<table>
<thead>
<tr>
<th>Model setup</th>
<th>Double mass curve: KGE</th>
<th>Discharge: NSE</th>
<th>LogNSE</th>
<th>KGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colpach models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1: Reference Colpach model</td>
<td>0.87</td>
<td>0.84</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td>Virtual Experiments 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE1: Steeper topography</td>
<td>0.86</td>
<td>0.81</td>
<td>0.83</td>
<td>0.8</td>
</tr>
<tr>
<td>Virtual Experiments 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE2.1: No bedrock interface</td>
<td>0.82</td>
<td>0.8</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>VE2.2: Parallel bedrock</td>
<td>0.78</td>
<td>0.56</td>
<td>0.60</td>
<td>0.59</td>
</tr>
<tr>
<td>VE2.3: Conceptualized storage</td>
<td>0.95</td>
<td>0.88</td>
<td>0.8</td>
<td>0.81</td>
</tr>
<tr>
<td>VE2.4: No vertical structures</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Experiments 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE3: Improved starting point for the phenological cycle</td>
<td>0.95</td>
<td>0.84</td>
<td>0.8</td>
<td>0.86</td>
</tr>
<tr>
<td>Wollefsbach models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2: Reference Wollefsbach model</td>
<td>0.97</td>
<td>0.26</td>
<td>0.82</td>
<td>0.64</td>
</tr>
<tr>
<td>Virtual Experiment 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE4: Emergent structures</td>
<td>0.95</td>
<td>0.74</td>
<td>0.61</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Figure 9 Observed and simulated runoff of the Colpach catchment. Moreover, three rainfall runoff events are highlighted and displayed separately.
Figure 10 Observed and simulated runoff of the Wollefsbach catchment. Two rainfall runoff events are highlighted and displayed separately.
Figure 11 Observed soil moisture at 10 and 50 cm depths in the schist (A and B) and marl (C and D) area of the Attert catchment. Additionally the 12 hours rolling median (black) derived from the soil moisture observations and the simulated soil moisture dynamics at the respective depths (blue Colpach; red orange Wolfsbach; green Wolfsbach with emergent structures) are displayed.
A. Simulation reference model

B. Winter and vegetation periods

Rel. saturation (r):
- 0 - 0.15
- 0.15 - 0.3
- 0.3 - 0.45
- 0.45 - 0.6
- 0.6 - 0.75
- 0.75 - 0.85
- 0.85 - 1

Bedrock topography:
- 0.45 - 0.6
- 1
Figure 12: (A) Normalized observed average sap velocities from 28 trees in the Colpach catchment against (green) and normalized simulated transpiration from the reference model as well as from the model with the improved transpiration routine, both were Colpach model smoothed with a three-day rolling mean. (B) Section of the Colpach reference model (dashed blue). Additionally, the ensemble of all 28 sap flow measurements is displayed in grey.
Table 1 Hydraulic and transport parameter values used for different materials in the model setups.

<table>
<thead>
<tr>
<th>Type of structure</th>
<th>Saturated hydraulic conductivity K_s (m s$^{-1}$)</th>
<th>Total porosity Θ_s (–)</th>
<th>Residual water content Θ_r (–)</th>
<th>Alpha value α (m$^{-1}$)</th>
<th>Shape parameter n (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colpach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil layer</td>
<td>5×10^{-4}</td>
<td>0.57</td>
<td>0.05</td>
<td>4.93</td>
<td>1.05</td>
</tr>
<tr>
<td>Macropores & soil bedrock interface</td>
<td>1×10^{-3}</td>
<td>0.25</td>
<td>0.1</td>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bedrock</td>
<td>1×10^{-9}</td>
<td>0.2</td>
<td>0.05</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Wolfsbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil layer</td>
<td>2.92×10^{-4}</td>
<td>0.46</td>
<td>0.05</td>
<td>0.66</td>
<td>1.05</td>
</tr>
<tr>
<td>Drainage system</td>
<td>1×10^{-3}</td>
<td>0.25</td>
<td>0.1</td>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bedrock</td>
<td>1×10^{-9}</td>
<td>0.2</td>
<td>0.05</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 2: Vegetation parameter values for the different land use forms in the winter period (January) and in the vegetation period (June) with the relative saturation for every cell-model setup.

<table>
<thead>
<tr>
<th>Vegetation</th>
<th>Start / End of the Vegetation period [doy]</th>
<th>LAI [-]</th>
<th>Root depth [m]</th>
<th>Through fall rate [%]</th>
<th>Plant height [m]</th>
<th>Intercepton [mm]</th>
<th>Maximum stomata conductance [mm s⁻¹]</th>
<th>Albedo [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colpach:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest (Fagus sylvatica)</td>
<td>97 / 307</td>
<td>6.3⁴</td>
<td>1.8</td>
<td>95</td>
<td>24⁴</td>
<td>2</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Wollefsbach:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn (Zea mays)</td>
<td>97 / 307</td>
<td>4⁵</td>
<td>1.2¹</td>
<td>100</td>
<td>2</td>
<td>3</td>
<td>2.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Pasture</td>
<td>97 / 274</td>
<td>6²</td>
<td>1.3³</td>
<td>100</td>
<td>0.4</td>
<td>3.1³</td>
<td>2.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

¹ value for gley brown soils; ² mean value (Breuer et al., 2003); ³ Trifolium spec.; ⁴ observed
Table 3: Benchmarks for simulated double mass curves and simulated discharge for all model setups used in this study.

<table>
<thead>
<tr>
<th>Model setup</th>
<th>Double mass curve:</th>
<th>Discharge:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KGE</td>
<td>KGE</td>
</tr>
<tr>
<td>Colpach models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Colpach model</td>
<td>0.92</td>
<td>0.88</td>
</tr>
<tr>
<td>Performance winter:</td>
<td>0.95</td>
<td>0.88</td>
</tr>
<tr>
<td>Performance summer:</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>Wollefsbach models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Wollefsbach model</td>
<td>0.9</td>
<td>0.71</td>
</tr>
<tr>
<td>Performance winter:</td>
<td>0.85</td>
<td>0.74</td>
</tr>
<tr>
<td>Performance summer:</td>
<td>0.74</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Appendix

A1 Subsurface structure and bedrock topography

Spatial subsurface information of representative hillslopes were obtained from 2-D ERT sections collected using a GeoTom (GeoLog) device at seven profiles on two hillslopes in the Colpach catchment. We used a Wenner configuration with electrode spacing of 0.5 m and 25 depth levels; electrode positions were recorded at a sub-centimeter accuracy using a total station providing 3D position information. Application of a robust inversion scheme as implemented in Res2Dinv (Loke, 2003) resulted in the two-layered subsurface resistivity model shown in Figure 6B. The upper 1-3 m are characterized by high resistivity values larger than 1500 Ω*m. This is underlain by a layer of generally lower resistivity values smaller than 1500 Ω*m. In line with the study of Wrede et al. (2015) and in correspondence with the maximum depth of the local auger profiles, we interpreted the transition from high to low resistivity values to reflect the transition zone between bedrock and unconsolidated soil. In consequence, we regard the 1500 Ωm isoline as being representative for the soil-bedrock interface. For our modeling study we have access to seven ERT profiles within the Colpach area (example see Figure 6B).

A2 Soil hydraulic properties, infiltrability and dye staining experiments

Saturated hydraulic conductivity was measured with undisturbed 250 ml ring samples with the KSAT apparatus (UMS GmbH). The apparatus records the falling head of the water supply though a highly sensitive pressure transducer which is used to calculate the flux. The soil water retention curve of the drying branch was measured with the same samples in the HYPROP apparatus (UMS GmbH) and subsequently in the WP4C dew point hygrometer (Decagon Devices Inc.). The HYPROP records total mass and matric head in two depths in the sample over some days when it was exposed to free evaporation (Peters and Durner, 2008, Jackisch 2015 for further details). For both geological settings we estimated a mean soil retention curve by grouping the observation points of all soil samples (62 and 25 for schist and marl, respectively), and averaging them in steps of 0.05 pF. We then fitted a van Genuchten-Mualem model using a maximum likelihood method to these averaged values (Table 1 and Figure 7). We used a representative soil water retention curve because the young soils on periglacial slope deposits prevail in the both headwaters exhibit large heterogeneity which cannot be grouped in a simple manner. This is due to a) the general mismatch of the scale of 250 mL undisturbed core samples with
the relevant flow paths and b) the high content of gravel and voids, which affect the retention curve especially above field capacity and concerning its scaling with available pore space (Jackisch 2015, Jackisch et al. 2016). The dye tracer images, Figure 2 B and D, were obtained with high rainfall intensities of 50 mm in 1 h on 1 m² and the sprinkling water was enriched with 4.0 g l⁻¹ Brilliant Blue dye tracer (Jackisch et al. 2016). The aim of these rainfall simulations was to visualize the macropore networks in the topsoil, to gather information on the potential preferential flow paths relevant for infiltration.

A3 Physically-based model CATFLOW

The model CATFLOW has been successfully used and specified in numerous studies (e.g. Zehe et al., 2005; Zehe et al. 2010; Wienhöfer and Zehe, 2014; Zehe et al., 2014). The basic modeling unit is a two-dimensional hillslope. The hillslope profile is discretized by curvilinear orthogonal coordinates in vertical and downslope directions; the third dimension is represented via a variable width of the slope perpendicular to the slope line at each node. Soil water dynamics are simulated based on the Richards equation in the pressure based form and numerically solved using an implicit mass conservative “Picard iteration” (Celia et al., 1990). The model can simulate unsaturated and saturated subsurface flow and hence has no separate groundwater routine. Soil hydraulic functions after van Genuchten-Mualem are commonly used, though several other parameterizations are possible. Overland flow is simulated using the diffusion wave approximation of the Saint-Venant equation and explicit upstreaming. The hillslope module can simulate infiltration excess runoff, saturation excess runoff, re-infiltration of surface runoff, lateral water flow in the subsurface as well as return flow. For catchment modeling several hillslopes can be interconnected by a river network for collecting and routing their runoff contributions, i.e. surface runoff or subsurface flow leaving the hillslope, to the catchment outlet. CATFLOW has no routine to simulate snow or frozen soil.

A3.1 Evaporation controls, root water uptake and vegetation phenology

Soil evaporation, plant transpiration and evaporation from the interception store is simulated based on the Penman–Monteith equation. Soil moisture dependence of the soil albedo is also accounted for as specified in Zehe et al. (2001). Annual cycles of plant phenological parameters, plant albedo and plant roughness are accounted for in the form of tabulated data (Zehe et al., 2001). Optionally, the impact of local topography on wind speed and on radiation may be considered, if respective data are available. The
atmospheric resistance is equal to wind speed in the boundary layer over the squared friction velocity [\(\text{mm d}^{-1} \)]. The former depends on observed wind speed, plant roughness and thus plant height. The friction velocity depends on observed wind speed as well as atmospheric stability, which is represented through six stability classes depending on prevailing global radiation, air temperature and humidity. The canopy resistance is the product of leaf area index and leaf resistance, which in turn depends on stomata and cuticular resistance.
Figure 11 Virtual experiment 2: (A) Simulated runoff from the reference model setup (VE1), (B) model setup with no bedrock interface (VE2.1), (C) model setup with a parallel bedrock to the surface topography (VE2.2), (D) model setup with a conceptualized storage at the hill foot (VE2.3), (E) hillslope without vertical structures (VE2.4), (F) increased topographic gradient through a steeper hillslope topography (VE3).

The stomata resistance varies around a minimum value, which depends on the Julian day as well as on air temperature, water availability in the root zone, the water vapor saturation deficit and photosynthetic active radiation (Jarvis, 1976). The resulting root water uptake is accounted for as a sink in the Richards equations term, and is specified as a flux per volume, which is extracted uniformly along the entire root depth.

Figure A1 shows the soil moisture observations of the Colpach catchment group by their position at the hillslope. This figure highlights, similar to Figure 7 for the soil water retention properties, that the small-scale variability of the prevailing soils makes a simple grouping by the landscape position difficult.

Figure 12 Virtual experiment 3: Normalized double mass curves (A) and discharge (B) from the model with the improved starting point of vegetation period (red), from the original model setup (blue) as well as the observed normalized double mass curve and runoff (grey).
Figure A1 Soil moisture observations grouped by their landscape position. (A) Soil moisture observations at the hillslope foot and hence close to the river. (B) Soil moisture observations at the upper part of the hillslope.