River water quality changes in New Zealand over 26 years (1989 – 2014): Response to land use and land disturbance

Jason P. Julian*1,5, Kirsten M. de Beurs2,5, Braden Owsley3,5, Robert J. Davies-Colley3, Anne-Gaelle E. Ausseil4

1Department of Geography, Texas State University, San Marcos, TX, USA
2Department of Geography and Environmental Sustainability, The University of Oklahoma, Norman, OK, USA
3National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New Zealand
4Landcare Research, Palmerston North, New Zealand
5Landscape & Land Use Change Institute (LLUCI), http://tethys.dges.ou.edu/main/, USA

*Corresponding author: Jason.Julian@txstate.edu

Abstract

River water quality reflects land use in the catchment (mobilizing diffuse pollution) as well as point source discharges. In New Zealand (NZ) diffuse pollution vastly outweighs point sources which have largely cleaned up over many decades. Because NZ has good geospatial data on physiographic variables, land cover and agricultural statistics, and time series on water quality at the national scale over several decades, the country is a natural laboratory for investigating water quality response to land use/disturbance and associated diffuse pollution ‘pressures’. We interpreted water quality state and trends for the 26 years from 1989 and 2014 in the National Rivers Water Quality Network (NRWQN), consisting of 77 sites on 35 mostly large river systems with an aggregate catchment amounting to half of NZ’s land area. To characterize water
quality pressures, we used multiple land use datasets spanning 1990 - 2012, plus recently-
developed 8-day land-disturbance datasets using MODIS imagery. Current state and directions of
change in visual clarity and nitrate-nitrite-nitrogen provide a particularly valuable summary of
impact, respectively from mobilization of fine particulate matter and soluble nutrients. We show
that the greatest impact on river water quality in NZ over the 1989-2014 period is high-
producing pastures with their high nutrient inputs to support high densities of livestock. While
land disturbance was not itself a strong predictor of water quality, it did help explain outliers of
land use-water quality relationships, especially those with large areas of plantation forest.
Plantation forestry was strongly associated with water quality impacts, particularly on visual
clarity and particulate nutrients when land disturbed for harvesting generated sediment runoff
and nutrient mobilization. In all, our study demonstrates how interdisciplinary combinations of
expertise including geospatial analysis, land management, remote-sensing, and water quality can
advance understanding of broad-scale and long-term impacts of land use change on river water
quality.

1. Introduction

River water quality reflects all that has happened within its catchment, including
glacial processes, vegetation characteristics, climate, and anthropogenic land uses (Brierley,
2010). Relationships between water quality and these catchment characteristics are not
straightforward because all of these factors interact over both space and time. For example, if
intensive livestock grazing occurs on steep slopes, surface runoff and consequently river
turbidity is expected to be greater than if grazing occurs on flatter areas. Or if fertilizers are
heavily applied to sandy soils with high drainage density, rivers will likely become eutrophied
over a period of decades due to legacy nutrients slowly leaking to the rivers through
groundwater. The influence of land use on water quality has also been shown to vary among different climates (Larned et al., 2004). With all of the various types of intensive land uses that have occurred across diverse landscapes over hundreds of years, rivers with degraded water quality are now widespread.

Historically, water quality in rivers was managed to meet minimal standards (Baron et al., 2002). However, in the last decade, a greater emphasis has been placed on maximizing the ecosystem services provided by healthy rivers, which is driving efforts to improve water quality (Brauman et al., 2007; Davies-Colley, 2013). Early efforts in developed countries to improve water quality focused on point-source pollution, particularly wastewater discharges from factories and treatment plants (Campbell et al., 2004). While the broad-scale reduction in point-source pollution elevated many water quality variables above minimal standards, most rivers globally still have water quality impairments due to diffuse pollution – fine sediments, nutrients, pathogens, toxicants, salts, and other contaminants that are delivered from unknown or many indistinguishable sources across the catchment (Vorosmarty et al., 2010). Agricultural land uses are by far the greatest contributors of diffuse pollution, globally (Foley et al., 2005; Vitousek et al., 1997b); however, the ‘intangible’ sources of diffuse pollution make it difficult to assign cause-and-effect relationships (Campbell et al. 2004).

Most studies that have examined relationships between land use and water quality have used theoretical or numerical models because of the lack of consistent water quality data over long periods. While this practice can be useful for small catchments where much is known about its landscape, land-water relationships are complex with interdependencies, feedbacks, and legacy effects. Empirical studies can shed light on some of these complexities, but they are only useful for their particular catchments and may have limited generality or transferability.
Comparisons of many diverse catchments is probably most useful to advance understanding of broad-scale land-water relationships.

One of the most comprehensive empirical riverine studies to date on land use-water quality relationships has been Varanka and Luoto’s (2012) study of 32 boreal rivers in Finland. They analyzed five water quality variables over 10 years as a function of a suite of physiographic, climate, and land use variables. A similar study was conducted on many of the same rivers in Finland, but with a more sophisticated temporal analysis (Ekholm et al., 2015).

And several other studies have used this same river water quality dataset to investigate environmental drivers. Like Finland, New Zealand (NZ) has an extensive river water quality monitoring network, which has allowed many studies on river water quality state and trends (Smith et al., 1996, 1997; Scarsbrook et al., 2003; Scarsbrook, 2006; Ballantine and Davies-Colley, 2014) and effects of land use (Davies-Colley, 2013; Larned et al., 2004, 2016).

Here, we use NZ as a case study to illustrate long-term relationships among land management, geomorphic processes, and river water quality. NZ provides a particularly valuable case study because: (1) it has had one of the highest rates of agricultural land intensities over recent decades and thus serves as a potential indicator for some developing countries that are also increasing agricultural intensity; (2) it has one of the longest comprehensive national water quality datasets in the world; and (3) it is physiographically-diverse. We examined monthly data for a suite of water quality variables over a 26-year period for 77 very diverse catchments. We then compared these states and trends of river water quality to landscape data that characterized the geomorphology, soil properties, and hydro-climatology of these catchments. We also assessed temporal changes in land cover/use, livestock, and land disturbance over our study period and compared these to temporal changes in water quality variables. Altogether, these
analyses illustrated coincident spatiotemporal patterns in land use and water quality in NZ rivers over a quarter of a century. Most of our analyses were performed at the catchment scale because it integrates the spatiotemporal changes that are reflected in our water quality measurements, it is the appropriate scale to analyze diffuse pollution, and it is the most appropriate spatial management unit (Howard-Williams et al., 2010).

2. Study area

New Zealand, (Aotearoa “Land of the long white cloud” in the language of indigenous Maori people), is a small island nation (~268,000 km²) located between the South Pacific Ocean to the east and the Tasman Sea to the west. Its two main islands (North Island and South Island) are located between 34° and 47° S latitude. Being located on the active boundary between the Australian and Pacific Plates, NZ’s geology and geomorphology are very diverse, including active volcanoes, karst regions, a range of high fold mountains (the Southern Alps), large coastal plains, and rolling hills across both hard- and soft-rocks. Being stretched latitudinally, with nowhere more than about 150 km from the sea, between two major ocean waters combined with its topographic variability, NZ also has a diverse climate with regional extremes, including subtropical in the far north, temperate in the central North Island, extremely wet on the western side of the Southern Alps (up to 10 m annually), and semi-arid in the rain shadow to the east of the Southern Alps.

New Zealand is the last major habitable landmass to be settled by humans. Eastern Polynesians first arrived around 1300 AD (Wilmshurst et al., 2008). Europeans first arrived in the late-1700s, but large-scale settlement did not begin until the 1840s. Broad-scale agriculture spread shortly after and has been intensifying since. While we address land use changes at the
national scale in this study, our water quality analyses focus on 77 diverse catchments across NZ (Fig. 1), which cumulatively cover about half of NZ’s land area.

3. Methods

3.1. Water quality data

Water quality data was obtained from NZ’s National Rivers Water Quality Network (NRWQN), operated and maintained by the National Institute of Water & Atmospheric Research (NIWA). This network represents one of the world’s most comprehensive river water quality datasets: thirteen water quality and two biomonitoring variables have been measured monthly (via in situ measurements and grab samples), with supporting flow estimation, from 1989-2014 at 77 sites whose catchments cumulatively drain approximately half of New Zealand’s land surface (Davies-Colley et al., 2011). Further, this dataset has been operationally stable throughout its history, which allows us to calculate trends over this period. For this study, we focused on eleven water quality variables and their coincident flow (Table 1). We did not analyze ammoniacal nitrogen (NH₄) because early NH₄ samples were biased high by laboratory contamination (Davies-Colley et al., 2011).

All water quality variables, except water temperature (T_w), were flow-normalized (for each site separately) in JMP® Pro (v 11.2.1) with local polynomial regression (LOESS) using a quadratic fit, a tri-cube weighting function, a smoothing window (alpha) of 0.67, and a four-pass robustness to minimize the weights of outliers (Cleveland and Devlin, 1988); where, flow-adjusted value = raw value – LOESS value + median value. With LOESS, there is no assumption about the water quality variable’s relationship with flow. For example, although visual clarity usually decreases systematically with increasing flow (Smith et al., 1997), algae blooms at low...
flows can sometimes reduce clarity. LOESS also allowed us to examine relative water quality changes over long periods.

3.2. Physiographic data

Water quality metrics and trends were compared to a suite of landscape variables (Table 2). Catchment morphometrics (area, slope, ruggedness) were obtained from a 30-m digital elevation model (DEM) that we rescaled from the 25-m DEM produced by Landcare Research. This DEM was interpolated from 20-m contours of the national TOPOBASE digital topographic dataset supplied by Land Information New Zealand (LINZ; scale: 1:50,000). Catchment area (A) is the drainage area (in km2) above the NRWQN station, derived using Arc Hydro tools in ArcGIS 9.3.1 in combination with the River Environment Classification (REC, v2.0) produced by NIWA. Mean catchment slope (S_c) was derived from the same software package, using a 3x3 cell window. We defined ruggedness (R_r) as the standard deviation of the 30-m slope grid for each catchment (sensu Grohmann et al., 2011). Drainage density (D_d) was calculated from the ratio of the total length of REC streams over catchment area (in km/km2).

Soils data was obtained from the 1:50,000 Fundamental Soils Layers (FSL), which is maintained by Landcare Research. Methods and data descriptions for this soils database are described in Webb and Wilson (1995) and Newsome et al. (2008). Catchment-scale soil variables (mean value across catchment) that we included in our analysis for being expected to be related to water quality were: soil depth (Z_s), percent of catchment dominated by silty and clayey surface soils ($SC\%$), soil pH (pH_s), cation exchange capacity (CEC), organic matter percentage ($OM\%$), and phosphate retention (P_{ret}). Phosphate retention is a measure (in %) of the
amount of phosphate that is removed from solution by the soil via sorption. Thus, soils with high P_{ret} have low P-availability for plant growth.

Median annual precipitation (MAP), median annual temperature (MAT), and median annual sunshine (MAS) averaged across each catchment was obtained from NIWA’s National Climate Database, which contained 5-km gridded daily weather data (Tait and Turner, 2005). Our values for these three variables represent the median annual precipitation (total mm/y), temperature (mean °C), and sunshine (hours/y) for the period 1981-2010. Relative water storage (RWS) was calculated as the proportion of the annual water yield stored in lakes and reservoirs. Reservoir/lake storage was obtained from the Freshwater Ecosystems of New Zealand (FENZ) Database, described in Snelder (2006). The last hydro-climatological variable we included in our analyses was the median discharge (Q_{50}), which was calculated from the NRWQN ‘flow stamping’ at times of water quality sampling from 1989-2014.

3.3 Land use and disturbance data

There are two national land use datasets for New Zealand. The Land-Use and Carbon Analysis System (LUCAS) was developed by the NZ Ministry for the Environment (MfE, 2012) for reporting and accounting of carbon fluxes and greenhouse gas emissions, as required by the United Nations Framework on Climate Change and the Kyoto Protocol. Accordingly, LUCAS uses 1990 as its reference year and maps land use for 2008 and 2012 as well for 12 classes. The Land Cover Database (LCDB) was developed by Landcare Research (LCR), with contributions from MfE, Department of Conservation (DOC), Ministry for Primary Industries (MPI), and Regional Councils (LCR, 2015). LCDB contains 35 land use classes for 1996, 2001, 2008, and 2012. Both datasets use a minimum mapping area of 1 hectare, and use many of the same data
and methods to map land use. There are however, some key differences in their class
designations and classifications that are important to our analyses: (1) LUCAS includes
Manuka/Kanuka as forest, whereas LCDB designates Manuka/Kanuka as shrub; (2) LUCAS
lumps all post-1989 forests into one class, whereas LCDB differentiates between indigenous and
plantation forests; (3) LUCAS uses a conservative approach to mapping high-producing
grasslands, whereas LCDB uses phenological information to provide more accurate estimations
of high-producing grassland. Because of our focus on (water quality-impacting) plantation
forests and high-producing grasslands, we use the LCDB (v4.1) for our spatial and statistical
analyses. We use LUCAS only to quantify long-term changes from 1990 to 2012, before the
LCDB was initiated in 1996. Table 3 describes the land use classes we used in this research,
which classes are included from both datasets, and the national comparison between LUCAS and
LCDB for 2012.

Livestock numbers for dairy cattle, beef cattle, sheep, and deer (at 1 ha resolution) for
each catchment were derived from maps provided by Ausseil et al. (2013), which is
representative for the year 2011. To assess total livestock impact on land disturbance, we
multiplied each livestock type by its AgriBase stock unit (SU) coefficient: sheep = 0.95 SU, deer
= 1.9 SU, beef cattle = 5.3 SU, and dairy cattle = 6.65 SU (Woods et al., 2006). The total SU for
each catchment was then normalized by catchment area, expressed as stock unit density (SU/ha).

Changes in SU/ha from 1990 to 2012 ($SU/ha_{2012-1990}$) were assessed using district-level data
from StatsNZ (2015) on total numbers of sheep, deer, beef cattle, and dairy cattle. These
livestock numbers were then aggregated for each catchment and multiplied by their respective
SU coefficient. Stock units per hectare were then compared between 1990 and 2012 to assess
change in livestock impacts in each catchment. For Whakatane and Kawerau Districts, 1993 was used because 1990 data was unavailable.

Land disturbance (i.e. bare soil) was quantified for all high-producing grasslands (D_{HG}) and plantation forests (D_{PF}), as well as the whole catchment (D_C) for the period 2000 - 2013.

The methods for calculating disturbance are described in de Beurs et al. (2016). Briefly, MODIS BRDF corrected reflectance data (MCD43A4) at 463 m spatial resolution and eight day temporal resolution was used to calculate Tasseled Cap brightness, greenness and wetness based on the coefficients following Lobser and Cohen (2007). These indices consist of linear combinations of all seven MODIS reflectance bands to represent general image brightness which is comparable to albedo, image greenness which is comparable to the better known vegetation indices such as NDVI and EVI, and image wetness which is linked to the amount of water captured in the vegetation, most comparable to normalized difference water indices. Missing pixels were ignored. We then calculated the mean and standard deviation of each tasseled cap index for each combination of land cover class (LCR, 2015) and climatic region for each 8-day time period. We then used these measures to standardize the calculated tasseled cap indices. To determine how disturbed each pixel was at any point in time, we then calculated the forest and grassland disturbances. The forest disturbance index is calculated as the standardized brightness minus the standardized greenness and wetness. The idea is that disturbed forests appear brighter and less green and less wet than undisturbed forests. The grassland index is the negative sum of all indices, indicating that disturbed grasslands appear darker, less green and less wet than undisturbed grasslands.

3.4 Statistical methods
We used nonparametric Spearman rank correlation coefficients (r_s) instead of actual values to look at relationships between variables, because many of the relationships are curvilinear. Statistical significance was taken to be an alpha of 0.05. Bivariate comparisons between all variables (Tables 1-3) were performed to explore for associations and identify correlated variables before later multivariate analyses. Median values (from the 26-y monthly time-series) for water quality variables at each site were used when compared to physiographic and land use variables of their corresponding catchment. Stepwise regression was then used to rank-order the relative contributions of multiple landscape variables associated with each major water quality variable. Stepwise regression was used because it accounts for correlations among the independent landscape variables. The order of variables in the stepwise regression model and the sign of their coefficient (proportional [+ vs. inverse [-]) provides an objective measure of the contribution of each landscape variable to river water quality. The level of entry into the model was set to $p = 0.05$. All the above statistical analyses were performed in JMP® Pro (v 11.2.1).

Temporal trends in water quality (1989 – 2014) and disturbance (2000 – 2013) data were assessed with the seasonal Kendall test which was corrected for temporal autocorrelation using the rkt R package; missing values were ignored. We also calculated the Seasonal Kendall slope estimators (SKSE) using the same R package. Because some NRWQN sites had multiple measurements in some months, a few records (no more than five) were removed from each site in order to ensure 12 monthly values for each year for the SKSE test. There were also occasional missing values for some variables throughout the time-series, particularly in the early years. Of particular note, there were no TN values for 1994 as a result of contamination by leaking ammonia refrigerant during storage of frozen subsamples. HV1 did not have data for 18 months from 2012-2014.
In order to make trend comparisons among sites and derive an estimate of percent change per year, we normalized SKSE values by dividing them by the raw data median to give the relative SKSE (RSKSE) in percent change per year (Smith et al., 1996). Given that water temperature (T_w) uses an arbitrary scale in °C, we only report SKSE values for this variable. We also used the trend categories of Scarsbrook (2006): (1) no significant trend – the null hypothesis for the Seasonal Kendall test was not rejected ($p > 0.05$); (2) significant increase/decrease – the null hypothesis for the Seasonal Kendall test was rejected ($p < 0.05$); and (3) ‘meaningful’ increase/decrease – the trend was significant, and the magnitude of the trend (RSKSE) was greater than 1% per year. According to Ballantine and Davies-Colley (2014), a 1% change per year translates to slightly more than 10% change per decade (due to compounding), a rate of change that is easily detectable and observable.

4. Results

4.1. Physiographic characteristics

The 77 NRWQN catchments were physiographically diverse in terms of morphometric, soil, and hydro-climatological variables (Table 4; Supplement Table 1). Most notable with regards to its direct influence on runoff and water quality was median annual precipitation (MAP), which ranged from 533 to 7,044 mm/y. When combined with the wide range of catchment areas (A), median discharge (Q_{50}) varied over three orders of magnitude, from 0.4 to 515 m3/s, and annual water yield from 103 to 3,475 mm/y. In terms of soil, about a quarter of the catchments had very sandy surface soils ($SC\% < 10$) and a quarter had fine-textured soils ($SC\% > 70$). Phosphate retention (P_{ret}), an important variable for fertilizer management and
consequently water quality, was particularly high (>57%; 10th percentile) for catchments HM2, HM5, HM6, WA1, WA2, WA3, and WN5.

Several physiographic variables (Table 2) displayed strong latitudinal trends from North to South (r: MAT (-0.83), MAS (-0.61), Rr (0.58), Zs (-0.57), and $Pret$ (-0.52)). Many of the physiographic variables were strongly correlated ($p < 0.001$; Supplement Fig. 1). Notable ones include (r): A v Q_{50} (0.89), Sc v D_d (-0.79), Rr v Sc (0.67), Q_{50} v Rr (0.57), RWS v Q_{50} (0.55), RWS v A (0.54), Rr v D_d (-0.52), $OM\%$ v Zs (0.47), MAP v Sc (0.47), Zs v Sc (-0.42), Zs v $SC\%$ (-0.41), $Pret$ v pH_s (0.40), MAP v $Pret$ (0.39), and MAT v $OM\%$ (0.38). In consideration of these relationships and perceived importance for water quality (sensu Varanka and Luoto, 2012), we used the following subset of minimally correlated physiographic variables for subsequent multivariate analyses: catchment slope (Sc), silt-clay percentage ($SC\%$), phosphate retention ($Pret$), and median flow (Q_{50}).

4.2. Land use change and disturbance

Land use in NZ, like physiography, varied widely; and our 77 catchments captured this diversity (Fig. 1; Supplement Table 2). Thirteen catchments were dominated (>50%) by non-plantation forests (NF), with one (WN2) containing more than 94%. Thirteen other catchments were dominated by shrub/grassland (SG) that was not intensively managed. The most dominant land use was grasslands that were intensively managed (hereafter high-producing grasslands; HG), covering the majority of the area for 31 catchments. Together, these three land uses made up 84% of the catchments’ areas. Plantation forest (PF) was the majority land use for three catchments: RO3, RO5, and RO2, all in the volcanic plateau of central North Island. Open water (OW) was the majority land use for one catchment (RO1) and relatively high (>10%) for two
others (RO6, DN10). Barren/other (BO), which was largely bare rock, was relatively high (>10%) for 13 mountainous catchments. Urban (UR) coverage rarely exceeded 1%, with only one catchment greater than 2% (WN1). Annual cropland (AC) exceeded 1% in 11 catchments, but never exceeded 8%. Vegetated wetland (VW) and perennial cropland (PC) were minimal in all catchments, each rarely exceeding 1%.

In general, non-plantation forest (NF), shrub/grassland (SG) and barren (BO) areas dominated mountainous catchments with high S_c and low Z_s; while high-producing grasslands (HG) dominated most lowland catchments with low S_c, high Z_s, and high pH_s. Like HG, plantation forest (PF) mostly occurred on flat areas ($r_s = -0.48$ with S_c) with thick soils (0.35 with Z_s) that were less acidic (0.31 with pH_s). PF was also significantly proportional to P_{ret} ($r_s = 0.24$). Given the relative dominance of catchment land use, relationships with physiographic variables, and potential effects on water quality in NZ rivers (Davies-Colley, 2013; Howard-Williams et al., 2010), the land use variables used for subsequent multivariate analyses were NF, SG, HG, PF, and OW.

Land use change in the 77 catchments from 1990 to 2012 was usually minor (Supplement Table 2). The greatest change was a 13.4% increase in PF in GS1, which was almost entirely accounted for by a 13% decrease in SG. Thirteen other catchments experienced small increases (3.0 - 6.6%) in PF, accounted for by decreases in SG or HG or both. HM3 and HM4 had the greatest increases in HG at 3.4% and 2.0%, respectively. High-producing grasslands (HG) for the other 75 catchments remained virtually unchanged (< 0.4%) or decreased. WH3 had the greatest decrease in HG at -4.8%. Land use change in other catchments was negligible. Changes in total stock unit density between 1990 and 2012 ($SUD_{2012-1990}$) were also minor with only two catchments (AK1 and AK2: both -5.1 SU/ha owing to urban fringe expansion) changing more...
than 1.6 SU/ha over this period (Supplement Table 3). Temporal changes in $SUD_{2012-1990}$ for 56 of the 77 catchments were within the range of -1.0 to 1.0 SU/ha.

Although land use and total livestock densities changed little in 1990-2012, livestock types changed considerably for many catchments (Supplement Table 3). The general pattern was dairy cattle replacing sheep. The number of dairy cattle from 1990 to 2012 increased in 72 catchments, with a mean increase of 0.6 SU/ha for all catchments; while the number of sheep decreased in all 77 catchments (mean = -0.9 SU/ha). Deer and beef cattle numbers changed little: 0.0 and -0.2 SU/ha, respectively.

When 2011 livestock densities were compared with physiographic variables, the strongest relationships were found with combined SUD of dairy and beef cattle (hereafter SUD_{cattle}; Supplement Fig. 2). SUD_{cattle} decreased strongly with increasing slope, S_c ($r_s = -0.79$), but increased with Z_s (0.43), pH_s (0.32), and P_{ret} (0.27). SUD_{cattle} also increased with MAT (0.68) and MAS (0.42), but decreased with MAP (-0.34). Thus, highest cattle densities were found in catchments such as WA3 (with the highest SUD_{cattle} at 15.7 SU/ha) that were relatively flat, warm, sunny, and dry, with deep soils that had relatively high pH and high P-retention.

High-producing grasslands (HG) had similar, but less strong, correlations with these same physiographic variables.

Catchment disturbance (D_C) varied widely over both space and time between 2000 and 2013 (Supplement Table 4). The maximum amount of D_C at one time was 35.7% for WN3 on 07-Apr-2003, almost entirely due to bare pastures. D_C exceeded 15% on six other occasions (264 days in total) in this catchment. In general, the North Island (Fig. 2) had a greater extent and intensity of disturbance than the South Island (Fig. 3). The most intense disturbances occurred as a result of plantation forest harvests, and these disturbances were on average visible for about 1.5
y up to about 4 y, with exceptions lasting more than 6 y. Indeed, D_C was strongly correlated to
PF coverage ($r_s = 0.51$). The catchment with the highest median D_C (10.5%) was RO3, which
had 69.8% of its catchment in PF and 17.7% in HG. Fourteen other catchments had D_C above
5%, and two-thirds of these were dominated by either PF or HG.

We also analyzed disturbance of plantation forests (D_{PF}) and high-producing grasslands
(D_{HG}) separately for each catchment. For catchments with at least 21.4-km2 (100 MODIS pixels,
for the sake of statistical robustness) of plantation forest, the mean (\pmSD) D_{PF} (from 2000 to
2013) was 10.6 \pm 5.6%. The catchments with the highest D_{PF} were those with low mean annual
precipitation, MAP ($r_s = -0.42$). There were no significant relationships between D_{PF} and any of
the other physiographic variables. For catchments with at least 21.4-km2 of high-producing
grasslands, the mean (\pmSD) D_{HG} was 6.0 \pm 6.4%. The catchments with the highest D_{HG} were
those with low mean annual sunshine ($MAS; r_s = -0.25$), low mean annual temperature ($MAT; -$
0.30), high catchment slope ($S_c; 0.25$), and high ruggedness ($R_r; 0.31$). The six catchments with
the highest D_{HG} (>15%) all had low phosphate retention ($P_{ret}; <32\%$). While it is assumed that
greater densities of livestock lead to greater pasture disturbance, we did not find a proportional
relationship between stock unit density (SUD) and D_{HG} across space (i.e. among catchments). In
fact, the highest median D_{HG} was found for catchments with low SUD ($r_s = -0.45$). Over time
however, we observed a fairly strong trend ($r_s = 0.50$) of lower D_{HG} with decreasing SUD ($-\$
$SUD_{2012-1990}$). In all there were seven catchments with significant or meaningful decreases in
D_{HG} from 2000 to 2013 (assessed with Seasonal Kendall slope; SKSE), all of which had a
negative $SUD_{2012-1990}$.

4.3 Water quality characteristics and trends
4.3.1 Flow relationships

All water quality variables (per site) had strong relationships with flow (Q) except water temperature (T_w), which instead followed a seasonal pattern. Conductivity ($COND$) generally decreased with Q for most sites, with exceptions being AX1, DN2, DN10, NN5, RO1, RO6, and TK1. For several sites, $COND$ was high for flood flows. Water pH (pH_w) decreased with Q for most sites likely due to relatively acidic rainfall, with exceptions being AX3, AX4, RO5, and RO6. Several sites experienced high pH_w during high flows. The typical pattern for dissolved oxygen (DO) for most sites was a wide range at low flows, and high flows converging to near 100% DO. The exceptions were sites where DO decreased with flow (DN1, HM4, HM5, WH4) and lake-fed sites where DO was high (>90%) for virtually all flows (AX2, AX4, DN4, D10, RO1, RO6, TK4).

Visual clarity ($CLAR$) had a strong (mean r^2 of 0.53 among all sites) exponential-decay trend with flow for almost all sites, as has been reported previously (Smith et al., 1997). Four sites, all lake-fed, had their highest $CLAR$ for intermediate flows (DN10, RO1, RO6, HM3). Of these four, the first three had high $CLAR$ (>2m) for virtually all flows. Turbidity ($TURB$) had generally the opposite trend of $CLAR$ (as could be expected given the inverse relationship of these variables), and increased near-linearly with Q (albeit with more scatter than $CLAR$). Several of the lake-fed sites had relatively low $TURB$ at high flows (AX1, AX2, DN1, DN10, RO1, RO2, RO6). Colored dissolved organic matter ($CDOM$) generally increased with flow as has been reported previously by Smith et al. (1997); the lake-fed sites of RO1, RO2, and RO6 were exceptions. CDOM was sometimes low during floods, likely due to a dilution effect.

Total nitrogen (TN) generally increased with Q, but with a high degree of scatter, for almost all sites. The exceptions were AX1, AX2, AX4, DN10, RO1, RO6, and TK4, where TN
was low for all flows, usually less than 100 mg/m³. The trends of oxidized nitrogen (NO_x) with flow varied widely among the sites. For many sites (26/77), NO_x increased with Q, usually with a positive logarithmic trend (i.e. asymptotes at high flows) due to dilution effects at high flows. A couple sites displayed a concave upward parabolic trend where NO_x concentrations were lowest for intermediate flows and high for both low and high flows (CH2, DN6), which we were unable to explain but is likely due to source of flow. Total phosphorous (TP) generally increased with Q at 73 of the sites, reflecting mobilization of suspended matter (containing P) with Q. Exceptions were the lake-fed sites of DN10, RO1, and RO6, where TP was low for all flows, usually ≤ 10 mg/m³. At the lake-fed site of RO2, TP actually decreased with Q. Dissolved reactive phosphorus (DRP) generally increased with Q for most sites; however, there were many exceptions. Twenty sites had no detectable trend with Q ($r^2 < 0.10$). DRP actually decreased with Q at four sites (HM5, RO2, TU2, WA3).

4.3.2 Catchment characteristics

Median monthly values of water quality variables for the 77 catchments ranged widely (Table 5; Supplement Table 5). Some rivers had exceptional water quality all around, while others had either current issues with multiple variables or worsening temporal trends (assessed with SKSE from 1989 to 2014; Table 6). Because of the dependence of water quality on flow, we first assessed temporal trends in Q. Only two catchments had significant increases in Q (AX4, WH4), with the latter also being ‘meaningful.’ Three catchments had significant decreases in Q (HM3, HM5, TU2) and five others also had ‘meaningful’ decreases in Q (CH2, GY4, HM4, RO3, RO4).
Water temperatures (T_w) were not particularly high for any of the catchments; however, 21 rivers had significant increases in T_w, possibly the signature of climate change. The highest rates of T_w increase ($0.04^\circ\text{C}/\text{y} < \text{SKSE} < 0.08^\circ\text{C}/\text{y}$) were for large alpine rivers in the central South Island covered mostly by shrub/grasslands (TK3, TK4, TK6, AX3). Because of its strong latitudinal trend (stronger than any land use effect), T_w was not analyzed further. Dissolved oxygen (DO) was close to 100% for most catchments, but was particularly low (<90%) for two catchments: RO2 which was affected by discharge from a large pulp mill at Kawerau, and AK2 which is on the Auckland fringe and thus affected by various peri-urban activities. DO was very high (>110%) for one catchment (HV2) due to supersaturation from high periphyton in this nutrient-enriched river. Temporal trends in DO from 1989 to 2014 were relatively minor (RSKSE < 0.5%/y), except RO2 which had a significant increase (RSKSE = 0.7%/y) attributable to progressive improvements in treatment of organic waste from its large pulp mill. Conductivity ($COND$) was low (<115 µS/cm) for all South Island catchments and varied considerably for the North Island (54-528 µS/cm). Most catchments (52/77) experienced significant or ‘meaningful’ increases in $COND$ from 1989 to 2014. Water pH (pH_w) was neutral to alkaline for all rivers, which have been described as calcium-sodium bicarbonate waters by Close and Davies-Colley (1990), and only displayed minor changes (RSKSE < ±0.1%/y) over the 26-year study period. Median visual water clarity ($CLAR$) was exceptionally high (>5 m) for seven catchments and very low (<1 m) for 22 catchments. Since 1989, $CLAR$ improved in almost half of the rivers, and worsened in 4 rivers (Table 6; Supplement Table 5). $TURB$ was strongly inversely proportional to $CLAR$ ($r_s = -0.97$) and generally followed opposite trends of $CLAR$. However, fewer of its trends were significant and it had a disproportionally large number of ‘meaningful’ increases (17 catchments compared to only 2 ‘meaningful’ decreases in $CLAR$). $CDOM$ was low...
for most of the rivers, with only five catchments greater than 2.0 m$^{-1}$. Nineteen of the catchments experienced significant or ‘meaningful’ decreases in CDOM since 1989. Only one catchment had a ‘meaningful’ increase in CDOM (TK3).

Total nitrogen (TN) was high (>250 mg/m3) for more than half of the catchments, with the vast majority (30/39) of these being lowland catchments (<150 m in elevation). Most of these catchments also had high NO_x. Thirty-three catchments had significant or ‘meaningful’ increases in TN from 1989 to 2014, while only five had significant or ‘meaningful’ decreases in TN (Table 6). NO_x had a similar number of increasing temporal trends, but also had ‘meaningful’ decreases for 12 catchments. Total phosphorous (TP) followed a similar geographical pattern as TN. Eighteen of the 23 catchments with high TP (>30 mg/m3) were lowland catchments. Most of the catchments with high TP (18/23) also had high DRP (>9 mg/m3). Seventeen catchments had ‘meaningful’ increases in DRP, compared to only three with ‘meaningful’ decreases. There was more of a balance in temporal trends of TP, with eight ‘meaningful’ increases and seven ‘meaningful’ decreases.

In addition to the expected correlations between $CLAR$ and $TURB$, and among the nitrogen and phosphorous constituents, several other significant relationships existed among the water quality variables (Supplement Fig. 3). TP was correlated with $CLAR$ ($r_s = -0.77$), $TURB$ (0.73), TN (0.71), NO_x (0.61), $CDOM$ (0.62), and $COND$ (0.65). DRP was also correlated with TN (0.71), NO_x (0.65), and $CDOM$ (0.58). $CDOM$ was correlated with TN (0.63). Finally, $COND$ and T_w were correlated (0.67). Taking into consideration this broad multicollinearity, we focus our multivariate analyses on several key water quality variables, particularly those that experienced the most changes from 1989 to 2014 (Table 6): $CLAR$, TN, NO_x, TP, and DRP.

4.4 Water Quality relationships with physiography, land use, and disturbance

There was a predictable relationship between catchment area (A) and Q_{50} ($r_s = 0.89$; all following parentheses in this section are r_s unless specified), and CLAR generally decreased with $A (-0.37)$. Except for TURB (0.32), no other water quality variables had significant relationships with catchment area. Several water quality variables correlated with catchment slope (S_c), including: TN (-0.72), TP (-0.63), and DRP (-0.65), meaning N and P concentrations were relatively high in lowland (low slope) catchments. DRP (0.65) and TP (0.61) were directly proportional to mean annual temperature (MAT), but this association probably arises because the highest phosphorus values occurred mainly in lowland catchments and some of the northernmost catchments, temperature being strongly correlated with altitude and latitude. DRP also had a (counterintuitive) significant relationship with soil phosphate retention, P_{ret} (0.35). No other strong physiographic relationships emerged from our analyses.

The strongest relationships between water quality and land use (Table 7) included high-producing grasslands (HG), which had strong positive relationships with several water quality variables except CLAR which decreased as HG increased. The lesser-managed shrub/grasslands (SG) had generally opposite relationships with water quality, but note that SG did not have significant relationships with TURB or CLAR. Non-plantation forest (NF) followed the same trends as SG, but had fewer significant relationships with water quality. Plantation forest (PF), on the other hand, followed the same trends as HG, with poorer water quality being associated with greater coverage of PF; although correlations were not as strong as HG. CDOM, DRP, and all N-constituents had significant negative correlations with open water (OW), meaning that water quality improved with greater OW coverage, plausibly due to entrainment of fine sediment and nutrients.
Water quality was correlated with all stock unit density (SUD) metrics (Table 7; Supplement Fig. 4), except deer (SUD_{de}) which only had relatively weak relationships with TN and NO_x. The nutrients and CDOM had the strongest correlations with SUD_{cattle}, which includes both dairy and beef cattle. $COND$, $CLAR$, and $TURB$ had the strongest (slightly) correlations with SUD_{be}. Overall, degraded water quality was strongly associated with high livestock densities, even stronger than coverage of high-producing grasslands.

No significant correlations between water quality and total catchment disturbance (D_C) were found; however, there were significant associations when disturbance was isolated by high-producing grasslands (D_{HG}) and plantation forest (D_{PF}; Table 7). Unexpectedly, $CLAR$ and $TURB$ were not correlated to D_{HG}, and surprisingly, the rest of the water quality variables had a significant inverse relationship with D_{HG}. Conversely, $CLAR$ was the only water quality variable correlated to plantation forest disturbance, D_{PF} ($r_s = -0.27$). Some interesting results emerged when temporal trends in water quality (via SKSE) were assessed for catchments with high disturbance. Of the 15 catchments with D_c greater than 5%, six had ‘meaningful’ increases in $TURB$ (RO3, HM4, RO6, WA6, HV6, HM2; all in North Island); while only one (HV5) had a ‘meaningful’ decrease in $TURB$. Most of these 15 catchments also experienced significant increases in TN (9 catchments; 7/9 also ‘meaningful’) and NO_x (10 catchments; 8/10 also ‘meaningful’). Interestingly, TP and DRP significantly increased in only two of these highly disturbed catchments.

4.5 Multivariate water quality relationships

In order to build on the above correlation analyses, the water quality variables of $CLAR$, TN, NO_x, TP, and DRP were each assessed in a multivariate stepwise regression, using the
following ten physiographic and land use independent variables: S_c, $SC\%$, P_{ret}, Q_{50}, NF, SG, HG, PF, OW, and SUD_{cattle} (Table 8). The residual plots for all five water quality variables met the assumptions of normality and linearity, but displayed heteroscedasticity with wide scatter for high values. $CLAR$ was correlated to -HG, followed by +OW, -Q_{50}, and -PF, where signs represent whether the relationship is positive (+) or inverse (-). Thus, water clarity was predictably lower for larger rivers that drain larger areas of high-producing grasslands and/or plantation forests, but improved with increased open water coverage (Fig. 4).

The combined stock unit density for beef and dairy cattle (SUD_{cattle}) was the primary predictor for all four nutrient variables, with TN, TP, and DRP also being proportional to plantation forest coverage (PF; Table 8). Coverage of high-producing grasslands (HG) and silt-clay surface soils ($SC\%$) were also proportional factors for TN. In sum, land use was the primary and secondary predictor for all five water quality variables (Fig. 4).

5. Discussion

5.1 River water quality states and trends

We found a wide range of water quality across NZ rivers (Table 5), with drastic differences between upland and lowland rivers, distinguished by the 150 m elevation threshold. For example, visual water clarity ($CLAR$), which is often used as a ‘master variable’ for overall water quality (Davies-Colley et al., 2003; Julian et al., 2008), was high for upland rivers (mean = 3.2 m), with only two [alpine glacial flour-affected] rivers below the ANZECC (2000) guideline of 0.6 m (CH3, AX3). Many of the upland rivers (7/33) had very high water clarity (> 5 m), including one of the clearest non-lake-fed rivers in the world – Motueka River (NN2) with a median $CLAR$ of 9.8 m. The lowland rivers, in contrast, had a mean $CLAR$ of 1.2 m, with 17
(39%) below the ANZECC guideline of 0.8 m. Note that these ANZECC (2000) guidelines, which are statistical derivations (i.e. 20th-percentile of the first decade of the NRWQN record for ‘reference’ sites), are merely ‘trigger values’ that when exceeded trigger a management response to protect ecosystem health (Hart et al., 1999). Although these ‘trigger values’ are not effects-based standards (which would be difficult to define for the wide variety of NZ ecosystems), they do provide a useful reference for comparing water quality states and trends. Save for a few borderline exceptions, the same sites that were below visual clarity guidelines also exceeded the turbidity trigger values of 4.1 and 5.6 NTU for upland and lowland rivers, respectively.

Nutrient concentrations in NZ rivers also varied widely (Table 5), again with high concentrations typically in lowland catchments and low concentrations in upland catchments. Nine of the ten catchments with the highest TN (>740 mg/m³) were lowland catchments. In all, 13 lowland catchments exceeded the ANZECC \(\text{TN} \) guideline of 614 mg/m³ and 8 upland catchments exceeded the guideline of 295 mg/m³. Almost three quarters of these catchments (15/21) also exceeded the \(\text{NO}_x \) guideline of 444 mg/m³ (lowland) and 167 mg/m³ (upland). There were a similar number of sites exceeding guidelines for \(\text{TP} \) (33/26 mg/m³ for lowland/upland) and \(\text{DRP} \) (10/9 mg/m³ for lowland/upland), each with at least 20 and most of these were corresponding. Our results on the state and trends of the 77 NRWQN catchments generally accord with earlier NRWQN studies (e.g. Ballantine and Davies-Colley, 2014) and a recent publication by Larned et al. (2016), which analyzed water quality states and trends for 461 NZ river sites for the period 2004-2013.

Based on ANZECC (2000) trigger values, we have organized the catchments into four classes (Fig. 5): I. clean river with high visual water clarity (\(\text{CLAR} \)) and low dissolved inorganic nutrients (DIN); II. sediment-impacted river with low \(\text{CLAR} \) and low DIN; III. nutrient-impacted
river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low CLAR and high DIN. Note that the term ‘sediment-impacted’ is a connotation for total suspended solids (TSS), which includes organic matter as well. In agriculture-dominated catchments, both mineral sediment and particulate organic matter can greatly increase TSS (Julian et al., 2008).

We use CLAR as a preferred metric for suspended matter because TSS is not routinely measured in the NRWQN (or other monitoring networks) while CLAR correlates strongly to TSS ($r = -0.92$), and better than TURB ($r = 0.87$) (Ballantine et al., 2014). Further, CDOM in NZ rivers is low with minimal impact on CLAR. We use NOx as our preferred metric for DIN because it is least affected by suspended sediment and soil properties (compared to DRP). However, catchments that exceed ANZECC guidelines for DRP are indicated in Fig. 5 by grey-filled markers.

When this classification is combined with the SKSE trend analyses (Table 6), we obtain a clear picture of the current and potential state of NZ rivers (Fig. 5). Before individual rivers are discussed (next section), we first point out key differences between the upland and lowland catchments, which will later be placed within the context of physiography and land use. Most obvious, and consistent with the findings of Larned et al. (2004), was that lowland rivers were much more degraded, particularly by sediment. More than a third of the lowland catchments were either Class II or IV (17/44); whereas, only two upland catchments were Class II. None of the upland catchments were Class IV, and more than two-thirds were clean rivers (Class I). Both types had a similar number of nutrient-impacted rivers (Class III). Another major difference is that all but three of the upland catchments are far from class boundaries, meaning that they are relatively stable in terms of water quality. Further, almost all of the upland catchments that have had significant increases in NOx were already nutrient-impacted. Conversely, many of the
lowland catchments are very close to class boundaries, with most of these having recently changed classes or likely crossing over in the near future. Particularly concerning is that almost half of the lowland rivers (19/44) are currently experiencing ‘meaningful’ increases (>1% per year) in NO₃, DRP, or both. The other striking trend is that many of the lowland rivers are becoming clearer, with 18/44 experiencing ‘meaningful’ increases (>1% per year) in CLAR—which, plausibly, has been attributed to increasing riparian fencing to exclude cattle from channels (Davies-Colley, 2013; Ballantine and Davies-Colley, 2014; Larned et al., 2016).

While clearer rivers are seen as an improvement in water quality; when combined with increasing nutrients, warmer water, and lower flows, the perfect recipe for toxic algae blooms is created. Only recently has the widespread problem of toxic algae blooms in NZ rivers been evidenced (Wood et al., 2015; McAllister et al., 2016), and our results indicate that this problem could worsen given the increasing trends we found in water temperatures, DIN, and most influential in our opinion, water clarity. Eutrophication and global warming receive the most attention when it comes to degraded water quality, but rivers have increasingly become light-limited (Hilton et al., 2006; Julian et al., 2013) such that when clarity improves in warm, nutrient-rich rivers, algae can proliferate. Particularly problematic for NZ is that its lowland catchments, which are warmer (mean median T_w of 13.6 v 10.8 °C for upland rivers), have much greater DIN, and have longer water residence times, are the ones becoming appreciably clearer (Fig. 5). If droughts become more frequent and intense in NZ, toxic algae blooms are also likely to become more frequent, more widespread, and more problematic. However, this algae response is complex and depends on a number of interacting factors such that the apparent potential for increasing algal nuisance might not necessarily be realized in some rivers.
5.2 The role of physiography in dictating land use across NZ

While physiography did not emerge as a significant independent variable in the multivariate analyses (except TN with SC%), physiography is important because it largely controls the location and intensity of agricultural land uses. The greatest coverages of high-producing grasslands \((HG)\) and the highest densities of cattle \((SUD_{cattle})\), the two primary explanatory variables for all five major water quality variables (Table 8), were both found predominantly in flat areas with deep soils located in warm, sunny, and relatively dry climates.

Livestock in NZ depend almost exclusively on pasture grasses and thus their productivity is maximized when pasture productivity is maximized. The very large cattle are not well suited for steep slopes, particularly dairy cattle which can weigh more than 500 kg. Deep soils are important because they absorb and hold more water for plant uptake, and are not as susceptible to waterlogging, especially in wetter climates. Year-round and intense grazing is best supported by warm and sunny climates where pasture grasses are highly productive and recover quickly following intense grazing such as strip/rotational grazing which is common in NZ dairy farms.

Another soil property we found to be positively correlated to \(SUD_{cattle}\) was phosphate retention \((P_{ret})\). The highest dairy cow densities were found on Allophanic volcanic soils with high \(P_{ret}\), likely because these soils respond favorably to P-fertilizer and thus can be managed more intensively. However, soils with high \(P_{ret}\) require more P-fertilizer, and thus generally have higher export of \(DRP\) to rivers. Our finding of a significant positive correlation between these two variables is consistent with this interpretation. Further, we found that high-producing pastures with high \(P_{ret}\) had the lowest disturbance \((D_{HG})\), indicating that these intensively managed pastures recover quickly following grazing. In a more comprehensive study of land disturbance across the North Island of NZ, de Beurs et al. (2016) also found that Allophanic soils
had the least disturbance among all soil orders. Where high livestock densities occur in less than ideal conditions, land disturbance is likely. Our catchment-scale analyses limit our interpretation of specific situations, but based on our results, field observations and previous remote sensing analyses, pasture disturbance in NZ will likely be highest during droughts on steep, south-facing slopes with thin soils being heavily grazed by sheep. Under these conditions, grasses will be grazed down to bare soil and recover very slowly.

Plantation forests (PF) in NZ also correlated with thick soils with relatively high P_{ret} on flat areas, particularly the pumice soils of the central North Island. The porous nature of the pumice soils allows them to efficiently hold and regulate nutrients, water, and air; while being well-draining and resistant to compaction and flooding. Under these conditions, radiata pine (the dominant PF species in NZ) grows rapidly (mean harvest cycle of 28 y) and can be harvested year-round. Since 1990 however, many of the PF additions have occurred on steeper slopes in response to carbon credit incentives, greater economic demand for wood products (PCE, 2013), and the need for soil erosion control on steep pasture susceptible to land-sliding (Parkyn et al., 2006).

5.3 Land use and water quality in New Zealand rivers

5.3.1 Land use diversity and effectiveness

Water quality in NZ rivers has been related to regional differences in climate and source-of-flow (Larned et al., 2016); however, we focus here on the role of land use because (1) the vast majority of our catchments were large (only five less than 100 km²) and thus their surface water quality was likely dominated by catchment characteristics (Julian and Gardner, 2014); (2) the changes we observed in water quality have been linked to land use globally (Foley et al., 2005;
Vitousek et al., 1997a; Bennett et al., 2001; Walling, 2006); and (3) our results indicate that land use was the dominant source of diffuse pollutants, and thus influence on spatial and temporal patterns in river water quality across NZ. Before describing relationships, we would like to first point out that the 77 NRWQN catchments captured the diversity of land use in NZ, with NF, SG, and HG (the three dominant land uses of NZ) accounting for 84% of both the 77 catchments and NZ as a whole. Our empirical study was also an excellent natural experiment in which to assess the effects of land use on water quality because we had an assortment of dominant land uses (>50% area) among our catchments (Fig. 1): 24 HG, 13 SG, 13 NF, 2 PF, and 25 mixed (i.e. no single dominant land use).

5.3.2 High-producing pastures and livestock densities

High-producing grassland coverage (HG) was the primary explanatory variable for visual clarity (CLAR; Table 8, Fig. 4). CLAR in NZ rivers is mostly influenced by mineral and organic particulates (Davies-Colley et al., 2014). Livestock reduce visual clarity in multiple ways, especially in NZ where high densities of multiple types of livestock tread year-round on relatively steep slopes with highly erodible soils vegetated by shallow-root introduced grasses which are susceptible to destabilization (McDowell et al., 2008). The year-round treading is particularly important because most NZ regions during winter are very wet with short days, which increases soil disturbance (pugging and compaction) and slows recovery times. Where livestock have direct access to rivers, their trampling of riverbanks and instream disturbance is often the main contributor to reduced CLAR (Trimble and Mendel, 1995; McDowell et al., 2008).

The lowland flatter areas in NZ have high HG coverage and high cattle stock densities (SUD\textsubscript{cattle}). These lowlands also have high drainage densities – often increased by artificial...
drainage. The influence of HG on CLAR is exacerbated by this interaction of high SUD\textsubscript{cattle} and artificial drainage, which explains the high negative correlation between HG and CLAR (-0.45).

Interestingly, SUD\textsubscript{cattle} was not an explanatory variable for CLAR in the stepwise regression, which is likely a result of two factors. First, HG and SUD\textsubscript{cattle} are highly correlated, and stepwise regression does not include secondary variables that are explaining the same proportion of variance as the primary independent variable. Second, we found that CLAR has actually improved in catchments where SUD\textsubscript{cattle} is high and/or has increased (Fig. 5), which we attribute to the promotion of riparian fencing across NZ since 2003, when the Dairying and Clean Streams Accord was implemented (Bewsell et al., 2007; Howard-Williams et al., 2010). By excluding (dairy) cattle from channels and riparian zones, the contribution of riverbank and bed erosion to degraded CLAR has been mitigated and reduced over time. Indeed, CLAR has been significantly and meaningfully improving in many of NZ’s rivers (Table 6), even those with increasing SUD\textsubscript{cattle}, albeit from a fairly degraded condition. Of the 34 catchments with significant increases in CLAR, all but 5 had increases in SUD\textsubscript{cattle} from 1990 to 2012.

Another potential explanation for improved water clarity at numerous sites is the considerable decrease in sheep density across the NZ landscape. NZ had 57.65 million sheep in 1990. By 2012, that number had been reduced by almost half, to 31.19 million (StatsNZ, 2015). Although cattle are larger and have a greater treading impact per animal, the much greater number of sheep means that stock unit density (SUD) may be broadly comparable as regards environmental impact. Another difference is that sheep are generally placed on steeper, less stable slopes in NZ, where headwater stream channels are located. Where there are breaks in slope (even small ones), sheep create tracks of bare soil with their hooves and hillside scars with their bodies (for scratching and shelter), both of which can enhance soil erosion (Evans, 1997).
Further, cattle (using their tongues) leave approximately half the grass height on the pasture after grazing; whereas sheep (using their teeth) graze approximately 80% of grass height (down to bare soil in dire conditions), leaving it exposed to erosion (Woodward, 1998). Considering all these factors, sheep can have a greater impact on sediment runoff into rivers, and consequently visual clarity, than suggested by their aversion to water versus cattle’s attraction to water. Although not isolated in our analyses, the particulate fractions of TN and TP have likely been affected by similar processes as CLAR and may follow the same temporal trends (Ballantine and Davies-Colley, 2014).

While HG was also strongly correlated to river nutrient concentrations (Table 7), the primary explanatory variable for all four major nutrient metrics (Table 8, Fig. 4) was the livestock density of beef and dairy cattle (SUD\textsubscript{cattle}). The difference between these two explanatory variables may seem trivial, however the distinction is important if we want to understand future trends and effectiveness of water quality management strategies. As we demonstrated, the area of land used for high-producing grasslands (HG) has not changed much since 1990. In fact, it has decreased or stayed virtually the same in all but two of the 77 catchments. Yet, nutrient concentrations have been increasing in many of the rivers (Table 6), which we attribute to (1) increasing numbers of cattle (mostly dairy) on both HG and SG, and (2) legacy nutrients being slowly delivered to the rivers in groundwater. From 1990 to 2012, NZ approximately doubled its number of dairy cattle, exceeding 6.4 million. (StatsNZ, 2015). This enormous addition to a country that is only 268,000 km2 in area, has been accompanied by more than 1.426 million tonnes of P-based fertilizers and 335,000 tonnes of N-based fertilizers annually (1990-2012 mean; StatsNZ, 2015). Of the nutrients consumed by lactating dairy cows, approximately 79% of N and 66% of P are returned to the landscape in the form of urine and
feces (Monaghan et al., 2007). This results, potentially, in about 260,000 tonnes of N-based and
940,000 tonnes of P-based diffuse pollution. Some of these nutrients will be transported to rivers
during subsequent storms, but a majority will remain (building up) in the landscape to be slowly
added to rivers over decadal time-scales (Howard-Williams et al., 2010).

5.3.3 Plantation forests

All water quality variables were significantly correlated to plantation forest coverage
(PF; Table 7), with a negative relationship with CLAR (i.e. CLAR was lower for higher PF) but
positive for all other variables (i.e. nutrients increased with PF). From the stepwise regression,
PF emerged as an explanatory variable for all major water quality variables except NOx (Table
8), suggesting that its dominant impact on river water quality was from surface runoff. Plantation
forestry activities can add a considerable amount of sediment and nutrient pollution to rivers,
especially during and immediately following harvesting (Fahey et al., 2003; Croke and Hairsine,
2006; Davis, 2005). This harvesting period of maximum soil disturbance usually lasts about two
years (Fahey et al., 2003), but the land cover may remain sparsely vegetated and susceptible to
erosion for several years (but usually not more than 5 y; de Beurs et al., 2016). The greatest PF
impact on sediment runoff, and thus potentially CLAR, is usually from road sidecast/runoff,
shallow landslides, and channel scouring/gullyling (Fahey et al., 2003; Motha et al., 2003;
Fransen et al., 2001).

Rivers receive a pulse of nutrients during the forest harvest, but fertilizers are also
applied at time of re-planting and sometimes routinely to enhance growth (Davis, 2005). Radiata
pine in the pumice soils of the central North Island, the dominant area of PF in NZ, are
particularly responsive to both N- and P-fertilizers and thus likely receive ample supplements.
Like pasture fertilizers, some of these nutrients may be delivered to rivers during intense precipitation, but there is also a legacy of nutrients left behind. Fertilizers have been applied to plantation forests in NZ since the 1950s, with an intense period of application in the 1970s (Davis, 2005). While fertilization rates (tonnes/ha/y) have decreased since 1980, the amount of NO_x leaving catchments mostly covered in PF has significantly and ‘meaningfully’ increased since 1989: RO3 (69.8% PF, 3.0%/y RSKSE), RO5 (53.3% PF, 1.7%/y RSKSE), and RO2 (42.5% PF, 1.2%/y RSKSE). None of these catchments had more than 17.7% HG, none had major increases in HG (< 0.3%), none had major increases in SUD_{cattle} (< 0.7 SU/ha), and none had a significant increase in DPF. What the catchments did have in common were all had gravelly/sandy pumice soils (< 4.5 $SC\%$) and all were intensively managed as reported by Davis (2005) and as indicated by high DC (> 6.8%). The extended periods of nonvegetated land due to weed control also increases the amount of nutrients delivered to rivers over the long term (Davis, 2005).

5.3.4 Other land uses

Open water (OW) in the form of lakes can remove sediment, nutrients, and $CDOM$ by a range of processes (Schallenberg et al., 2013; Wetzel, 2001). Consistent with this concept, our bivariate comparisons showed that catchments with more OW had lower $CDOM$, TN, NO_x, and DRP (Table 7). Our multivariate analyses found OW to be an explanatory variable for $CLAR$ (Table 8, Fig. 4), which we attribute to several of the stations with high $CLAR$ being located downstream of large lakes (AX1, DN10, RO1, RO6). If these 4 catchments are removed, the relationship between OW and $CLAR$ is not significant. While lakes can improve downstream water quality, many lakes in NZ, particularly shallow lakes, are experiencing eutrophication and
other water quality issues (Larned et al., 2016; Abell et al., 2011), which can cause regime shifts (Schallenburg and Sorrell, 2009) and degrade downstream river water quality.

An important land use for nutrient/sediment fluxes that was missing from our analyses was vegetated wetlands (VW), which was a consequence of exceptionally low VW coverage in NRWQN catchments (0.1% on average and a maximum of 2.2%). With such a miniscule coverage, these residual wetlands do not provide a detectable water quality improvement function at the catchment-scale (Mitsch and Gosselink, 2000). Historically, wetlands covered approximately 10% of mainland NZ (Ausseil et al., 2011). This considerable loss (> 90% of pre-European extent) of wetlands has deprived NZ rivers of many valuable ecosystem services, especially the filtration/processing of sediment and nutrients (Clarkson et al., 2013; Verhoeven et al., 2006). If some of these wetlands could be restored, some of the alarming eutrophication trends we have documented here (Table 6, Fig. 5) could be mitigated. For example, Mitsch et al. (2001) found that just adding 10% of wetland coverage can reduce up to 40% of the nitrogen entering receiving waters.

The other important land use missing from our analyses was urban (UR), also because very little of NZ’s land area is urban (Table 3), accounting on average for only 0.35% of our catchment areas (maximum 5.8%). However, urban water management did have major effects on three of our catchments by reducing DRP point sources. The ‘meaningful’ decrease of DRP (RSKSE = -4.6%/y) in the Manawatu River below Palmerston North (WA9) was due to progressive improvements in the city’s wastewater treatment, particularly after 2008 when a new main wastewater treatment plant (incorporating P-removal) became fully operational. DRP was also ‘meaningfully’ reduced (RSKSE = -5.3%/y) for the Ohinemuri River below Waihi (HM6) when P-removal was added to the Waihi wastewater treatment plant in 2005. And DRP for Hutt
River at Boulcott (WN1) was ‘meaningfully’ reduced (RSKSE = -3.1%/y) with progressive improvements to the Hutt Valley wastewater treatment, which were completed in 2002. It is important to note that these point discharge-affected sites were the only ones with meaningful reductions in DRP.

5.3.5 Land disturbance and water quality

So far, we have discussed how land use affects water quality, with a focus on sediment and nutrient runoff from high-producing grasslands (HG) and plantation forests (PF). When land is disturbed (i.e. bare soil), sediment/nutrient mobilization can be enhanced. The most intense and longest lasting disturbances occurred during plantation forest harvests. Following harvest, we found that the land remained disturbed for 1-6 years, with a mean of 1.5 years. The overall mean and median DPF among all catchments was 10%, which means that plantation forestry leaves large areas of disturbed land at any one time. When this bare land is exposed to intense precipitation, large quantities of sediment and nutrients can be mobilized into the rivers. This happened in the Motueka Catchment (NN1) in 2005 when a 50-y storm fell on some recently-harvested plantation forests. For one of NN1’s sub-catchments, the post-harvest disturbed land caused a five-fold increase in sediment yield compared to pre-harvest events. Following this event, sediment yields at NN1 were elevated by a factor of 2-3 over the next 3 years (Basher et al., 2011). Similar sediment erosion events for plantation forests during the post-harvest disturbance have been documented for other catchments across NZ (Hicks et al., 2000; Phillips et al., 2005). Because these disturbances only last a few years, they typically do not show up as temporal trends (via SKSE); however it is possible that they produce enough readily available sediment to impact water quality for longer periods.
The coincidence of rainstorms on disturbed pasture could have the same effect on sediment/nutrient runoff if the pasture is connected to the stream network via steep slopes or adjacent channels/canals (Dymond et al., 2010). Pastures become disturbed from overgrazing, strip grazing, pugging/soil compaction, tilling/reseeding, cropping/harvesting, or landsliding on steep slopes. Given the high intensity of grazing management in NZ, all of these are common.

While D_{HG} was lower than D_{PF} on average, D_{HG} had a higher maximum (Table 4).

Spatiotemporal patterns in disturbance between these two land uses were also different (de Beurs et al., 2016). D_{PF} covered large areas and lasted years at a time; whereas D_{HG} had two patterns: (1) one related to dairy cattle strip grazing, which were short-lived due to quick recovery times of grasses in fertilized soils; and (2) more widespread and longer continuous disturbances occurring on steeper slopes grazed by sheep and beef cattle, particularly following drought periods. Because our disturbance analyses had a spatial resolution of 463 m, we likely missed some paddock-scale disturbances. Future work could use Landsat imagery (30-m resolution) to assess disturbance (sensu de Beurs et al., 2016).

All six catchments with ‘meaningful’ increases in D_{HG} had large increases in dairy cattle density 1990-2012 (mean of 1.0 SU/ha across the catchment). Not surprisingly, all six catchments suffered impacts to water quality. Five of the six had ‘meaningful’ increases in DRP and three had meaningful increases in NO_x and TN. One had a ‘meaningful’ increase in $TURB$ and three had significant reductions in DO. One of these catchments, in particular, may provide a glimpse into NZ’s future if agricultural intensification continues. The Waingongoro River catchment (WA3) is covered almost entirely by HG (91.2%), with practically all of this land being used for intensive strip grazing. The SUD_{da} was 15.0 SU/ha in 1990 and increased to 15.4 SU/ha by 2012. The D_{HG} from 2000-2013 had a strong increasing trend of 9.8%/y RSKSE,
associated with the intensification of dairy operations (Wilcock et al., 2009). The result of all this intensification was that WA3 had ‘meaningful’ increases in TP, DRP, and TN. The only reason NOx did not display a significant trend is because the catchment was already overloaded with a median river concentration of 1,852 mg/m³. Noteworthy is that these significant trends of increasing SUD_{da}, D_{HG}, and nutrients are occurring not only in lowland catchments on the North Island (WA3, HV2), but also in upland catchments of the North Island (RO6), as well as both lowland (TK1) and upland (CH3, TK2) catchments on the South Island.

While disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use-water quality relationships. For example, streams with high DRP (> 20 mg/m³; 10th percentile) had one of two dominant land uses, either plantation forest, PF (RO2, RO3) or high-producing grassland, HG (HM5, WA3, WA9, HM4, HM2). The one exception was RO4, which had relatively low coverage of PF (11.2%) and HG (2.9%). In fact, RO4 is dominated by NF (79.1%). Upon closer examination, we found that the small areas of PF and HG in RO4 were disturbed frequently. Further, most of the disturbed forestry occurred on steep slopes and most of the disturbed pastures (practically all sheep and beef) occurred on hilly terrain adjacent to stream channels. Our high temporal-resolution analyses of disturbance showed that even though this catchment is mostly indigenous forest, intense disturbances on small proportions of developed land can have a considerable impact on water quality. RO4 is also experiencing significant increases in TURB and TP, as well as a significant decrease in Q.

Another outlier example was RO3, which was the only non-HG-dominated catchment with extremely high NOx (634 mg/m³). RO3 was dominated by PF (69.8%), but it had the highest median disturbance (10.5%) of all catchments. As discussed previously, disturbance in plantation forests is correlated with harvest frequency and management intensity. In addition to
the many pulses of NO\textsubscript{x} from the forest harvests and post-harvest storms over a vegetation-cleared soil surface, all of the replantings in the N-deficient pumice soils would have been accompanied by routine N-fertilizer applications (Davis, 2005). And the catchment’s well-drained sandy/gravelly soils meant that this dissolved N was transported to streams without much attenuation. This catchment also exceeds ANZECC guidelines for DRP and has experienced meaningful increases in TURB, TN, and NO\textsubscript{x}.

We believe that land disturbance and consequently river eutrophication and reduced visual clarity will continue to worsen in some NZ catchments based on the following. More plantation forests were planted 1993-1997 (3,810 km2) than any other 5-y period in NZ history (NZFFA, 2014). With a 28-y mean age of harvest, NZ will experience its greatest coverage and intensity of forest disturbance around 2025, less than 10 years from now. When combined with drought and intense storms, the potential for nutrient and sediment mobilization from these lands into NZ’s rivers is high, especially given that approximately 45% of these plantings occurred on high-producing grasslands (NZFFA, 2014) where many of the legacy nutrients will be exported to rivers during forest harvest (Davis, 2014). Many of these plantings also occurred on steep slopes, which exacerbates sediment runoff. If carbon prices continue to stay low, there will be a high likelihood that many of the harvested forests will be converted to pasture, adding even more nutrients to NZ rivers (PCE, 2013). Given that the Central Government created a national policy goal of nearly doubling the export to GDP ratio by the year 2025 (MBIE, 2015), NZ is likely to see continued increases in livestock density, fertilizer usage, and supplemental feed to support these extra livestock, all of which will add even more pressure and risks of eutrophication on NZ’s rivers.
Conclusions

This study had the overall goal of describing how changes in land use and land disturbance impact river water quality across broad scales and over long periods. To address this goal we used a combination of ‘brute force’ statistical analyses (in terms of hundreds of analyses using a suite of physiographic, land use, and water quality data for 77 catchments over 26 years) and careful examination (using multi-resolution data to find patterns and relationships among these variables). This goal was ambitious and we likely missed some relationships and details of water quality changes. However, we found empirical evidence for several key relationships among land use, land disturbance, and water quality, which we now place into a broader perspective.

The greatest negative impact on river water quality in New Zealand (NZ) in recent decades has been high-producing pastures that require large amounts of fertilizer to support high densities of livestock. While this claim has been previously published (Davies-Colley, 2013; Howard-Williams et al., 2010; and references within), our results and supporting information show that the relationship between high-producing pastures and water quality is complicated, being dependent on physiography (particularly soil type), livestock type/density, and disturbance regime. Dairy cattle receive much of the blame for degraded water quality because of their high nutrient requirements (Howard-Williams et al., 2010), but beef cattle can also strongly degrade water quality due to comparable required inputs and grazing on steeper land with a higher potential for runoff (McDowell et al., 2008). Further, pasture designations/boundaries are becoming increasingly blurred by modern cattle management, with greater movements of dairy and beef cattle among pastures, greater use of high-producing pastures for beef, over-wintering of dairy cattle on beef pastures, and cross-breeding (Morris, 2013). While riparian fencing has no
doubt improved the clarity of NZ rivers, the removal of millions of sheep from steep slopes has also likely played a role that should be investigated further.

New Zealand is the global leading exporter of whole milk powder, butter, and sheep products; and NZ’s prominence in these industries is likely to continue over the next decade (OECD/FAO, 2015). Because NZ’s economy is heavily dependent on agricultural production, the agricultural intensification that we have documented since 1990 may be expected to continue, with greater livestock densities being supported by supplemental feed and fertilizers. Even if best management practices are adopted to reduce nutrient export to rivers, there is already a half-century legacy of nutrients distributed across the NZ landscape that will continue to leak to the rivers. Having an extensive national network like the NRWQN to document and study these water quality changes is important, but unfortunately the NRWQN is being down-sized at the time of writing. Less than half of the 77 sites are to be retained by NIWA in a ‘benchmark’ network, with ‘excess’ sites being transferred to regional operation or closed. Although regional management agencies in NZ conduct much water quality monitoring (e.g. Larned et al., 2016), the quality (of some) and consistency of their datasets falls short of the NRWQN – which was also longer-running than all but a very few regional sites.

In response to public concerns on water quality, New Zealand released its National Policy Statement on Freshwater Management in 2011. Data and evidence-based science is now needed to support and facilitate limit settings for water quality standards, especially for diffuse pollution (Duncan, 2014). In their most recent environmental review by the Organisation for Economic Co-operation and Development (2015), NZ had the highest percent increase (1990-2005) in agricultural production out of 29 OECD countries, the highest percent increase in N-fertilizer use, and the 2nd highest increase in P-fertilizer use. This massive application of nutrients to the
NZ landscape over our study period is reflected in overall nutrient enrichment of NZ rivers (Fig. 5; Table 6). However due to legacy/lag effects, notably the slow delivery of nutrients to rivers from land and groundwaters (Larned et al., 2016), the full impact on river water quality will not be fully appreciated for another several decades (Howard-Williams et al., 2010; Vant and Smith, 2004).

Author contribution
J. Julian designed the study and performed most of the analyses. K. de Beurs developed the disturbance dataset and performed all trend analyses, both with assistance from B. Owsley. R. Davies-Colley provided water quality dataset and guidance on its use. A.-G. Ausseil developed the stock unit density dataset and provided guidance on land use analyses. J. Julian prepared the manuscript with contributions from all co-authors.

Acknowledgments
The impetus for this research was J.P. Julian’s Fulbright Senior Scholar Fellowship, which was hosted by the National Institute of Water & Atmospheric Research (NIWA) in Hamilton, NZ in 2012. This work was funded by NASA LCLUC grant NNX14AB77G and NSF Geography grants #1359970 and #1359948 (Co-PIs Julian and de Beurs). Andrew Tait (Climate Principal Scientist at NIWA) provided climate data. Agricultural production and other data essential to this manuscript was collected by William Wright (Landcare Research; LCR). Many other people in New Zealand provided expert advice, including Suzie Greenhalgh (LCR), Sandy Elliot (NIWA), Andrew Hughes (NIWA), Deborah Ballantine (then of NIWA), Graham McBride (NIWA), Murray Hicks (NIWA), David Hamilton (University of Waikato), Les Basher
(LCR), Ian Fuller (Massey University), Roger Young (Cawthron Institute), Rien Visser (University of Canterbury), and David Lee-Jones (USDA FAS). Support for this project was also provided by numerous Regional Councils/Districts, including Auckland, Canterbury, Horizons, Tasman, and Waikato.

References

Davies-Colley, R. J., Ballantine, D. J., Elliott, A. H., Swales, A., Hughes, A. O., and Gall, M. P.: Light attenuation – a more effective basis for the management of fine suspended

New Zealand Farm Forestry Association (NZFFA): National Exotic Forest Description: as at 1 April 2014, Ministry for Primary Industries, Wellington, 77 pp., 2014.

Table 1. Water quality variables measured by the National River Water Quality Network (NRWQN) obtained from monthly samples from 1989 to 2014 for 77 catchments.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Water discharge (m3/s)</td>
</tr>
<tr>
<td>T_w</td>
<td>Water temperature (°C)</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen (%)</td>
</tr>
<tr>
<td>$COND$</td>
<td>Water conductivity (µS/cm)</td>
</tr>
<tr>
<td>pH_w</td>
<td>Water pH (-log$_{10}$[H$^+$])</td>
</tr>
<tr>
<td>$CLAR$</td>
<td>Horizontal visual water clarity from black disc sighting range (m)</td>
</tr>
<tr>
<td>$TURB$</td>
<td>Water turbidity (NTU)</td>
</tr>
<tr>
<td>$CDOM$</td>
<td>Colored dissolved organic matter, measured as spectrophotometric absorbance of a membrane filtrate at 440 nm (m$^{-1}$)</td>
</tr>
<tr>
<td>TN</td>
<td>Total nitrogen (mg/m3)</td>
</tr>
<tr>
<td>NO_x</td>
<td>Oxidized nitrogen in nitrate and nitrite forms (mg/m3)</td>
</tr>
<tr>
<td>TP</td>
<td>Total phosphorus (mg/m3)</td>
</tr>
<tr>
<td>DRP</td>
<td>Dissolved reactive phosphorus (mg/m3)</td>
</tr>
</tbody>
</table>
Table 2. Landscape variables characterizing the 77 catchments of the National River Water Quality Network (NRWQN). More details on sources for these data can be found in Methods section.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition (units)</th>
<th>Source (resolution/scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphometric variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (A)</td>
<td>Total catchment area above monitoring site (km2)</td>
<td>National Elevation Dataset (30 m)</td>
</tr>
<tr>
<td>Drainage density (D_d)</td>
<td>Total length of streams per catchment area (km/km2)</td>
<td>River Environment Classification, v2 (1:24,000)</td>
</tr>
<tr>
<td>Catchment slope (S_c)</td>
<td>Mean slope across entire catchment (degrees)</td>
<td>National Elevation Dataset (30 m)</td>
</tr>
<tr>
<td>Ruggedness (R_r)</td>
<td>Standard deviation of catchment slope (degrees)</td>
<td>National Elevation Dataset (30 m)</td>
</tr>
<tr>
<td>Soil variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt-clay percentage ($SC%$)</td>
<td>Percentage of catchment surface soils dominated by clayey or silty soils (%)</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Soil depth (Z_s)</td>
<td>Mean maximum potential rooting depth across catchment (m)</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Soil pH (pH_S)</td>
<td>Mean pH at 0.2-0.6 m depth across catchment (-log$_{10}$[H$^+$])</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Cation exchange capacity (CEC)</td>
<td>Weighted mean CEC at 0-0.6 m depth across catchment (cmoles [+]/kg)</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Organic matter percentage ($OM%$)</td>
<td>Weighted mean of total carbon at 0-0.2 m depth across catchment (%)</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Phosphate retention (P_{ret})</td>
<td>Weighted mean of phosphate retention at 0-0.2 m depth across catchment (%)</td>
<td>Fundamental Soil Layers (1:63,360)</td>
</tr>
<tr>
<td>Hydro-climatological variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median annual precipitation (MAP)</td>
<td>Median annual precipitation averaged across catchment (mm/y)</td>
<td>NIWA National Climate Database (5 km)</td>
</tr>
<tr>
<td>Median annual temperature (MAT)</td>
<td>Median annual temperature averaged across catchment ($^\circ$C)</td>
<td>NIWA National Climate Database (5 km)</td>
</tr>
<tr>
<td>Median annual sunshine (MAS)</td>
<td>Median annual sunshine hours averaged across catchment (hours/y)</td>
<td>NIWA National Climate Database (5 km)</td>
</tr>
<tr>
<td>Median discharge (Q_{50})</td>
<td>Median discharge from NRWQN samples during 1989-2014 (m3/s)</td>
<td>NRWQN (catchment)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Source</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Relative water storage</td>
<td>Proportion of annual Q_{50} stored in reservoirs/lakes (m3/m3)</td>
<td>Freshwater Environments New Zealand (1:50,000)</td>
</tr>
<tr>
<td>Land Use and Land Disturbance</td>
<td></td>
<td>Land Cover Database (LCDB, v 4.1), 2001 (1 ha)</td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td>see Table 3 for land uses</td>
</tr>
<tr>
<td>High-producing pasture disturbance</td>
<td>Percent of high-producing grasslands within catchment that is disturbed (%)</td>
<td>de Beurs et al., 2016 (463 m; 8-day)</td>
</tr>
<tr>
<td>Plantation forestry disturbance</td>
<td>Percent of plantation forestry within catchment that is disturbed (%)</td>
<td>de Beurs et al., 2016 (463 m; 8-day)</td>
</tr>
<tr>
<td>Catchment disturbance</td>
<td></td>
<td>de Beurs et al., 2016 (463 m; 8-day)</td>
</tr>
<tr>
<td>Stock unit density</td>
<td></td>
<td>Ausseil et al., 2013 (1 ha)</td>
</tr>
<tr>
<td>Change in stock unit density</td>
<td></td>
<td>Statistics NZ (territorial authority)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Land use classification used in this study, aggregated from the LUCAS (v11) and LCDB (v4.1) land use/cover datasets.

<table>
<thead>
<tr>
<th>Class (abbreviation)</th>
<th>Description</th>
<th>LUCAS classes</th>
<th>LCDB classes</th>
<th>2012 national coverage (%) LUCAS / LCDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-plantation forest (NF)</td>
<td>All non-plantation forests ≥ 5m; does not include Manuka/Kanuka</td>
<td>71</td>
<td>68, 69</td>
<td>29.2 / 23.9</td>
</tr>
<tr>
<td>Plantation forest (PF)</td>
<td>All forests that are planted for the purpose of harvesting</td>
<td>72, 73</td>
<td>64, 71</td>
<td>7.9 / 7.6</td>
</tr>
<tr>
<td>Shrub/Grassland (SG)</td>
<td>All shrubs < 5m and grasses that are not intensively managed</td>
<td>74, 76</td>
<td>41-44, 50-58</td>
<td>33.0 / 25.4</td>
</tr>
<tr>
<td>High-producing grassland (HG)</td>
<td>High-quality pasture grasses that are intensively managed</td>
<td>75</td>
<td>40</td>
<td>21.6 / 33.0</td>
</tr>
<tr>
<td>Perennial cropland (PC)</td>
<td>Orchards and vineyards</td>
<td>77</td>
<td>33</td>
<td>0.4 / 0.4</td>
</tr>
<tr>
<td>Annual cropland (AC)</td>
<td>All annual crops and cultivated bare ground</td>
<td>78</td>
<td>30</td>
<td>1.4 / 1.4</td>
</tr>
<tr>
<td>Open water (OW)</td>
<td>Rivers, lakes/reservoirs, ponds, and estuaries</td>
<td>79</td>
<td>20-22</td>
<td>1.9 / 2.0</td>
</tr>
<tr>
<td>Vegetated wetland (VW)</td>
<td>Herbaceous or woody vegetation periodically flooded; includes mangroves</td>
<td>80</td>
<td>45-47, 70</td>
<td>0.5 / 0.7</td>
</tr>
<tr>
<td>Urban (UR)</td>
<td>Built-up areas, infrastructure, transportation networks, and urban parks/open spaces</td>
<td>81</td>
<td>1-5</td>
<td>0.8 / 0.9</td>
</tr>
<tr>
<td>Barren/Other (BO)</td>
<td>Bare rock, sand, gravel and other areas not dominated by vegetation; includes mining and permanent ice/snow</td>
<td>82</td>
<td>6-16</td>
<td>3.3 / 4.8</td>
</tr>
</tbody>
</table>
Table 4. Statistical description of landscape variables for the 77 NRWQN catchments. Refer to Tables 2 and 3 for variable descriptions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphometric Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area ((A))</td>
<td>km(^2)</td>
<td>26</td>
<td>1126</td>
<td>20539</td>
<td>2639 ± 3714</td>
</tr>
<tr>
<td>Drainage density ((D_d))</td>
<td>km/km(^2)</td>
<td>1.30</td>
<td>1.59</td>
<td>2.61</td>
<td>1.60 ± 0.16</td>
</tr>
<tr>
<td>Catchment slope ((S_c))</td>
<td>degrees</td>
<td>3.4</td>
<td>15.9</td>
<td>30.3</td>
<td>16.3 ± 6.8</td>
</tr>
<tr>
<td>Ruggedness ((R_r))</td>
<td>degrees</td>
<td>3.4</td>
<td>10.8</td>
<td>15.8</td>
<td>10.6 ± 2.4</td>
</tr>
<tr>
<td>Soil Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt-clay percentage ((SC%))</td>
<td>%</td>
<td>0</td>
<td>47.3</td>
<td>98.7</td>
<td>44.0 ± 31.6</td>
</tr>
<tr>
<td>Soil depth ((Z_s))</td>
<td>m</td>
<td>0.55</td>
<td>0.96</td>
<td>1.50</td>
<td>1.02 ± 0.22</td>
</tr>
<tr>
<td>Soil pH ((pH)) (-\log_{10}[H^+])</td>
<td></td>
<td>4.8</td>
<td>5.6</td>
<td>6.5</td>
<td>5.6 ± 0.3</td>
</tr>
<tr>
<td>Cation exchange capacity ((CEC))</td>
<td>cmol/kg</td>
<td>11.6</td>
<td>18.7</td>
<td>33.5</td>
<td>18.8 ± 4.6</td>
</tr>
<tr>
<td>Organic matter percentage ((OM%))</td>
<td>%</td>
<td>2.8</td>
<td>6.7</td>
<td>23.2</td>
<td>7.2 ± 2.9</td>
</tr>
<tr>
<td>Phosphate retention ((P_{ret}))</td>
<td>%</td>
<td>19.9</td>
<td>39.0</td>
<td>77.8</td>
<td>41.5 ± 12.2</td>
</tr>
<tr>
<td>Hydro-climatological Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median annual precipitation ((MAP))</td>
<td>mm/y</td>
<td>533</td>
<td>1652</td>
<td>7044</td>
<td>1778 ± 873</td>
</tr>
<tr>
<td>Median annual temperature ((MAT))</td>
<td>°C</td>
<td>5.0</td>
<td>9.9</td>
<td>15.1</td>
<td>9.9 ± 2.4</td>
</tr>
<tr>
<td>Median annual sunshine ((MAS))</td>
<td>hours/y</td>
<td>1325</td>
<td>1856</td>
<td>2116</td>
<td>1841 ± 146</td>
</tr>
<tr>
<td>Median discharge ((Q_{50}))</td>
<td>m(^3)/s</td>
<td>0.4</td>
<td>26.0</td>
<td>515.0</td>
<td>69.6 ± 112.6</td>
</tr>
<tr>
<td>Relative water storage ((RWS))</td>
<td>m(^3)/m(^3)</td>
<td>0</td>
<td>0</td>
<td>29.2</td>
<td>1.1 ± 3.7</td>
</tr>
<tr>
<td>Land Use Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-plantation forest ((NF))</td>
<td>%</td>
<td>0.1</td>
<td>20.5</td>
<td>94.1</td>
<td>26.7 ± 23.3</td>
</tr>
<tr>
<td>Plantation forest ((PF))</td>
<td>%</td>
<td>0</td>
<td>3.3</td>
<td>69.8</td>
<td>8.2 ± 12.3</td>
</tr>
<tr>
<td>Shrub/Grassland ((SG))</td>
<td>%</td>
<td>0.4</td>
<td>21.7</td>
<td>82.3</td>
<td>26.6 ± 20.2</td>
</tr>
<tr>
<td>High-producing grassland ((HG))</td>
<td>%</td>
<td>0</td>
<td>21.6</td>
<td>91.2</td>
<td>30.9 ± 26.2</td>
</tr>
<tr>
<td>Perennial cropland ((PC))</td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0.1 ± 0.2</td>
</tr>
<tr>
<td>Annual cropland ((AC))</td>
<td>%</td>
<td>0</td>
<td>0.1</td>
<td>7.9</td>
<td>0.6 ± 1.4</td>
</tr>
<tr>
<td>Open water ((OW))</td>
<td>%</td>
<td>0</td>
<td>0.4</td>
<td>25.6</td>
<td>1.9 ± 4.3</td>
</tr>
<tr>
<td>Vegetated wetland (VW) %</td>
<td>Urban (UR) %</td>
<td>Barren/Other (BO) %</td>
<td>Catchment disturbance (D_C) %</td>
<td>HG disturbance (D_{HG}) %</td>
<td>PF disturbance (D_{PF}) %</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.3 ± 0.4</td>
<td>3.4 ± 10.5</td>
<td>27.8 ± 10.4</td>
</tr>
</tbody>
</table>

Land Disturbance Variables

Vegetated wetland (VW) %: 0, 0.1, 2.2, 0.3 ± 0.4
Urban (UR) %: 0, 0.1, 5.8, 0.4 ± 0.7
Barren/Other (BO) %: 0, 1.3, 30.0, 4.4 ± 6.5
Catchment disturbance (D_C): 0, 3.4, 10.5, 3.6 ± 2.1
HG disturbance (D_{HG}): 0, 4.4, 34.9, 6.0 ± 6.4
PF disturbance (D_{PF}): 0, 9.9, 27.8, 10.4 ± 6.7
Stock unit density (SUD): 2.2 ± 3.1
Dairy SUD (SUD_{da}): 0.2 ± 15.4
Beef SUD (SUD_{be}): 0.5 ± 3.5
Sheep SUD (SUD_{sh}): 0.6 ± 4.5
Deer SUD (SUD_{de}): 0.2 ± 0

1229
1230
1231
Table 5. Statistical description of medians of water quality variables for the 77 NRWQN catchments. Note that the ratio of mean/median can be used as an index of data skewness.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_w</td>
<td>°C</td>
<td>7.2</td>
<td>12.2</td>
<td>16.9</td>
<td>12.4 ± 2.4</td>
</tr>
<tr>
<td>DO</td>
<td>%</td>
<td>75.5</td>
<td>100.8</td>
<td>113.1</td>
<td>100.0 ± 4.7</td>
</tr>
<tr>
<td>COND</td>
<td>µS/cm</td>
<td>39</td>
<td>92</td>
<td>528</td>
<td>113 ± 83</td>
</tr>
<tr>
<td>pH_w</td>
<td>-log$_{10}$[H$^+$]</td>
<td>6.9</td>
<td>7.7</td>
<td>8.5</td>
<td>7.7 ± 0.3</td>
</tr>
<tr>
<td>CLAR</td>
<td>m</td>
<td>0.1</td>
<td>1.5</td>
<td>9.8</td>
<td>2.1 ± 1.8</td>
</tr>
<tr>
<td>TURB</td>
<td>NTU</td>
<td>0.3</td>
<td>2.1</td>
<td>82</td>
<td>4.2 ± 9.4</td>
</tr>
<tr>
<td>CDOM</td>
<td>m$^{-1}$</td>
<td>0.1</td>
<td>0.7</td>
<td>4.6</td>
<td>0.9 ± 0.8</td>
</tr>
<tr>
<td>TN</td>
<td>mg/m3</td>
<td>40</td>
<td>259</td>
<td>2162</td>
<td>369 ± 361</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>mg/m3</td>
<td>1</td>
<td>107</td>
<td>1852</td>
<td>230 ± 302</td>
</tr>
<tr>
<td>TP</td>
<td>mg/m3</td>
<td>3</td>
<td>15</td>
<td>115</td>
<td>24 ± 24</td>
</tr>
<tr>
<td>DRP</td>
<td>mg/m3</td>
<td>0.5</td>
<td>5.0</td>
<td>66.2</td>
<td>8.6 ± 11.2</td>
</tr>
</tbody>
</table>
Table 6. River water quality trends from 1989-2014. The table reports numbers of sites (out of 77) in different categories of water quality time trend. All variables were flow-adjusted except flow and water temperature. Significant trends were taken to be those with a p-value < 0.05 in the Seasonal Kendall test. Meaningful trends were taken to be those which also had a magnitude (RSKSE) greater than 1% per year.

<table>
<thead>
<tr>
<th>Direction of trend</th>
<th>River Water Quality Variable (1989-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>Meaningful Increase</td>
<td>1</td>
</tr>
<tr>
<td>Significant Increase</td>
<td>1</td>
</tr>
<tr>
<td>No Significant Trend</td>
<td>67</td>
</tr>
<tr>
<td>Significant Decrease</td>
<td>3</td>
</tr>
<tr>
<td>Meaningful Decrease</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 7. Correlations of water quality (median values) vs. the major land uses, livestock densities, and median catchment disturbance of the 77 NRWQN catchments. All values represent Spearman correlation coefficients (r_s). Nonsignificant relationships ($p > 0.05$) are denoted by NS. T_w was not included because of its strong latitudinal trend. DO and pH_w were not included because they had no significant relationships with land use. SUD_{cattle} is the combination of dairy and beef cattle.

<table>
<thead>
<tr>
<th></th>
<th>HG</th>
<th>SG</th>
<th>NF</th>
<th>PF</th>
<th>OW</th>
<th>SUD_d</th>
<th>SUD_b</th>
<th>SUD_cattle</th>
<th>SUD_de</th>
<th>D_c</th>
<th>D_HG</th>
<th>D_PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>0.57</td>
<td>-0.53</td>
<td>NS</td>
<td>0.53</td>
<td>NS</td>
<td>0.44</td>
<td>0.63</td>
<td>0.60</td>
<td>0.35</td>
<td>NS</td>
<td>NS</td>
<td>-0.25</td>
</tr>
<tr>
<td>CLAR</td>
<td>-0.45</td>
<td>NS</td>
<td>0.28</td>
<td>-0.31</td>
<td>NS</td>
<td>-0.41</td>
<td>-0.49</td>
<td>-0.49</td>
<td>-0.40</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>TURB</td>
<td>0.46</td>
<td>NS</td>
<td>-0.27</td>
<td>0.28</td>
<td>NS</td>
<td>0.38</td>
<td>0.50</td>
<td>0.48</td>
<td>0.40</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>CDOM</td>
<td>0.56</td>
<td>-0.55</td>
<td>NS</td>
<td>0.24</td>
<td>-0.29</td>
<td>0.48</td>
<td>0.53</td>
<td>0.57</td>
<td>0.24</td>
<td>NS</td>
<td>NS</td>
<td>-0.33</td>
</tr>
<tr>
<td>TN</td>
<td>0.82</td>
<td>-0.56</td>
<td>-0.37</td>
<td>0.46</td>
<td>-0.25</td>
<td>0.79</td>
<td>0.75</td>
<td>0.85</td>
<td>0.60</td>
<td>0.26</td>
<td>NS</td>
<td>-0.40</td>
</tr>
<tr>
<td>NO_x</td>
<td>0.70</td>
<td>-0.53</td>
<td>-0.25</td>
<td>0.44</td>
<td>-0.25</td>
<td>0.77</td>
<td>0.65</td>
<td>0.79</td>
<td>0.51</td>
<td>0.28</td>
<td>NS</td>
<td>-0.39</td>
</tr>
<tr>
<td>TP</td>
<td>0.66</td>
<td>-0.54</td>
<td>-0.32</td>
<td>0.48</td>
<td>NS</td>
<td>0.58</td>
<td>0.66</td>
<td>0.72</td>
<td>0.42</td>
<td>NS</td>
<td>NS</td>
<td>-0.24</td>
</tr>
<tr>
<td>DRP</td>
<td>0.59</td>
<td>-0.65</td>
<td>NS</td>
<td>0.50</td>
<td>-0.43</td>
<td>0.58</td>
<td>0.58</td>
<td>0.66</td>
<td>0.31</td>
<td>NS</td>
<td>NS</td>
<td>-0.32</td>
</tr>
</tbody>
</table>
Table 8. Stepwise regressions of water quality variables (median values) on landscape descriptors (forward selection, $p < 0.05$). Signs of coefficients indicate whether the relationship is proportional (+) or inverse (-). Int is model intercept.

<table>
<thead>
<tr>
<th>Water Quality Variable</th>
<th>Step</th>
<th>Landscape Variable</th>
<th>Model Estimate</th>
<th>Multivariate sequential r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAR</td>
<td>1</td>
<td>HG</td>
<td>-0.03</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>OW</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Q_{50}</td>
<td>-0.01</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PF</td>
<td>-0.03</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td></td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>1</td>
<td>SUD$_{cattle}$</td>
<td>77.05</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HG</td>
<td>4.26</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PF</td>
<td>5.16</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SC%</td>
<td>1.80</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td></td>
<td>-33.95</td>
<td></td>
</tr>
<tr>
<td>NO$_x$</td>
<td>1</td>
<td>SUD$_{cattle}$</td>
<td>86.15</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td></td>
<td>62.65</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>1</td>
<td>SUD$_{cattle}$</td>
<td>5.47</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>PF</td>
<td>0.64</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td></td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>DRP</td>
<td>1</td>
<td>SUD$_{cattle}$</td>
<td>2.23</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>PF</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Int</td>
<td></td>
<td>1.14</td>
<td></td>
</tr>
</tbody>
</table>
Figures

Figure 1. Land use and location of the 77 National River Water Quality Network (NRWQN) catchments. Catchment ID colors refer to dominant land use (>50%). Catchments with no dominant land use are black.

Figure 2. Disturbance frequency of North Island per 463-m pixel, based on interpretation of MODIS data 2000-2013.

Figure 3. Disturbance frequency of South Island per 463-m pixel, based on interpretation of MODIS data 2000-2013.

Figure 4. Multivariate relationships between major water quality variables (median value for each site) and land use variables. For each plot, the primary explanatory variable from the stepwise regression (Table 8) is the x-axis, with bubble color representing the secondary explanatory variable. Note that oxidized nitrogen (NO_x) did not have a secondary explanatory variable. Selected catchments discussed in the text are labeled.

Figure 5. River water quality classes for upland (A) and lowland (B) catchments in New Zealand: I. clean river with high visual water clarity (CLAR) and low dissolved inorganic nutrients (DIN); II. sediment-impacted river with low CLAR and low DIN; III. nutrient-impacted river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low CLAR and high DIN. Classes are organized by ANZECC (2000) trigger values. DIN trigger values can be discriminated for NO_x (y-axis) and DRP (grey-filled markers). Arrows indicate whether the trend from 1989-2014 was significant (dashed) or meaningful (solid). No arrow means the trend was not significant.
Figure 1. Land use and location of the 77 National River Water Quality Network (NRWQN) catchments. Catchment ID colors refer to dominant land use (>50%). Catchments with no dominant land use are black.
Figure 2. Disturbance frequency of North Island per 463-m pixel, based on MODIS data 2000-2013.
Figure 3. Disturbance frequency of South Island per 463-m pixel, based on MODIS data 2000-2013.
Figure 4. Multivariate relationships between major water quality variables (median value for each site) and land use variables. For each plot, the primary explanatory variable from the stepwise regression (Table 8) is the x-axis, with bubble color representing the secondary explanatory variable. Note that oxidized nitrogen (NO\textsubscript{x}) did not have a secondary explanatory variable. Selected catchments discussed in the text are labeled.
Figure 5. River water quality classes for upland (A) and lowland (B) catchments in New Zealand: I. clean river with high water clarity (CLAR) and low dissolved inorganic nutrients (DIN); II. sediment-impacted river with low CLAR and low DIN; III. nutrient-impacted river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low CLAR and high DIN. Classes are organized by ANZECC (2000) trigger values. DIN trigger values can be discriminated for NOx (y-axis) and DRP (grey-filled markers). Arrows indicate whether the trend from 1989-2014 was significant (dashed) or meaningful (solid). No arrow means the trend was not significant.