Responses to the Comments by Reviewers

We thank Professor Neuman and an anonymous reviewer for their constructive comments. The manuscript has been significantly improved by addressing the comments. The following are our point-to-point responses to their comments.

Responses to the Comments from Reviewer #1

General comments
In this manuscript, the authors develop the model for the interpretation of pumping test in an aquifer with variable saturation for both horizontal as well as partially inclined wells. The model is derived using a semi-analytical solution of the coupled saturated-unsaturated flow processes. To facilitate an analytical treatment of the nonlinear Richards equation, the authors linearize the equations by assuming low pumping rates. Both the saturated and unsaturated systems is coupled by assuming continuity of pressure and fluxes at the interface. The semi-analytical solution of this coupled system is eventually used to infer the hydraulic parameters of the subsurface.

The manuscript itself is well structured but poorly written. A significant revision of the English is needed. The introduction gives an adequate overview on the relevant questions and properly motivates the study. The methods section provides the reader with the necessary information on the mathematical background with more information being provided in the Supplementary Information. The results are presented twofold. The analytical solutions to the coupled systems are first derived for a number of special cases. Numerical solutions for these cases are then presented and discussed in Section 4; Results and discussion. These numerical results are given in a way that it easy to follow and understand. The data given through figures clear and sufficient to support the conclusions drawn by the authors. The presented conclusions may be relevant for the Scientific Community interested in horizontal well drilling. However, the authors fail to properly motivate the need for their study and to present results that are relevant to practitioners. In conclusion, I think the manuscript needs major revisions before being eligible for publication in HESS.

Response: Thank you for the positive comment. We have improved the English of the revised manuscript as possible as we can. Two co-authors of the manuscript, Drs. Zhan and Zhang both have more than 20 years teaching & research experiences in US universities (Texas A&M Univ. and Univ. of Iowa), and they have carefully checked the English of the manuscript. In terms of the practical relevance, this revised manuscript includes a new section that provides a robust and accurate method for simultaneous determination of parameters of both saturated zone (hydraulic conductivity and specific storage) and unsaturated zone (specific yield and the constitutive exponent of the Gardner exponential model). For details, please refer to subsection 4.3 and Figure 8. We believe this revised manuscript meets the requirement of HESS and is now ready for publication.
Major Concerns

1. The used geometry and the considered processes were chosen to be very simple in order to facilitate the use of analytical tools for the investigation. For example, the geometry is considered to be spatially uniform and exhibits no anisotropy which is unusual for a three-dimensional medium. Such simple models aren’t bad if the insight derived from them can be properly transferred to real-world problems. At this point, the authors need to explain why they think these simplifications are possible and critically assess their impact on their results.

Response: Actually our model (Eqs. (1) and (2)) have considered the anisotropy of the aquifer. For the purpose of mathematical convenience, the analytical solutions of Eqs. (5) and (7) are written as dimensionless form in which the K_x, K_y and K_z terms are lumped into dimensionless variables x_D, y_D and z_D. One can easily see the impacts of anisotropy by converting the final results from dimensionless formats into dimensional formats.

In this study, we assume that the aquifer is homogenous and spatially uniform, an assumption that is almost universally adopted in previous studies about the analytical models of well hydraulics. Despite of its idealization, such analytical models are still indispensable and relevant to real-world problems, probably because of the following reasons.

Firstly, analytical models with idealized homogenous and spatially uniform assumption provide benchmark solutions which are required to test any numerical models before their usage for simulating a heterogeneous, non-uniform real-world aquifer. Without such benchmark solutions, there is almost no-way to tell if the numerical models are valid or not.

Secondly, despite that a complex numerical model can deal with a heterogeneous, non-uniform real-world aquifer, it usually needs more parameters which are often not available or not known to sufficient accuracy. Under such a circumstance, a simple analytical model may be an alternative for providing a baseline assessment of the flow system.

Thirdly, although a real-world aquifer is likely to be heterogeneous and/or non-uniform, there are evidences that a moderately heterogeneous aquifer may sometimes behave as an averaged “homogeneous” system for pumping-induced groundwater flow problems. This interesting phenomena may be due to the diffusive nature of groundwater flow which can somewhat smooth out the effect of the heterogeneity to a certain degree (Pechstein et al., 2016; Zech and Attinger, 2016). Please see lines 122-128 of the revised text.

2. In my opinion, the authors fail to properly put their results into context. Instead the authors should better demonstrate why and when the difference between their model and two older models for pumping in coupled saturated-unsaturated systems matter. I am not doubting that their approach has not been done before, but this does not automatically make it relevant and interesting. To show that, the authors should begin by explaining some problems of the two older models, and subsequently demonstrate how their newer approach can remedy these problems. In particular, they should be able to discuss how these observed differences relate to actual real-world features.
Response: Implemented. We adopted this comment and added subsection 4.3 and Figure 8 to demonstrate the problems of two older models (ZWP and ZZ models) on explaining the drawdown curves in the saturated-unsaturated system. A major disadvantage of the two older models (ZWP and ZZ models) is that they did not consider the unsaturated flow process, thus they cannot be used to characterize the parameters of the unsaturated zone. The newer model developed in this study, however, is capable of characterizing parameters of both the saturated and unsaturated zones. As far as we know, this represents a significant improvement over the older models. Furthermore, as the older models did not consider the unsaturated flow process that was proven to be important for producing the drawdown-time curves in the saturated zone, they often cannot satisfactorily reproduce the observed drawdown-time curves in the saturated zone in actual real-world aquifer pumping tests. The newer model has resolved this issue successfully. Please see lines 441-450 of the revised text for addressing this point.

To further demonstrate the difference of the older and newer models, we have conducted a numerical simulation using the finite-element model COMSOL for a synthetic case that considers the unsaturated flow process for a slant well pumping test in an unconfined aquifer.

The results show that our solution nicely reproduces the drawdown curves in both the saturated and unsaturated zones; while the ZWP and ZZ solutions fail to fit the drawdown curves and they either underestimate or overestimate horizontal hydraulic conductivity, specific storage and specific yields due to its lack of consideration of the effect of unsaturated zone. Please see the details in the subsection 4.3 and Figure 8.

Minor Concerns
• There are consistently no captions for the Figures.

Response: Implemented. In the previous version, we included the figure captions at the end of the text. Now we added the proper caption below each Figure in the revised manuscript.

• Furthermore, the quality of the figures is generally bad. The authors may want to use another compression format or a lower compression rate.

Response: Implemented. We have reproduced all figures using higher resolution (600 dpi). All figures are more clear now.

• Line 197: I think the authors mean that the linearity of the system allows to superimpose the solutions of Equations (5) and (7).

Response: Implemented. We added this statement on lines 215-216.

• Line 202: The authors mention turbulent flow. How is this possible for a linear system?
Response: The point to mention turbulent flow is to justify the use of a uniform flux distribution along the screened section of the pumping well. This assumption may not hold for a very long horizontal well in which complex well-aquifer flow may be a concern. When dealing with pumping using a very long horizontal well, flow inside the wellbore may not be neglected. Such in-well flow (called pipe flow by some investigators) could be considerably different from Darcian flow in the aquifer as it may experience various flow schemes such as laminar and/or turbulent flow, depending on the Reynolds number and friction coefficient inside the wellbore.

Such complex well-aquifer flow is beyond the scope of this manuscript and one may consult some recent studies of Wang and Zhan (2016) and Blumenthal and Zhan (2016) for more details. Nevertheless, we may incorporate such coupled well-aquifer flow into the model of this manuscript in a future study. For more details, please see lines 223-225.

• Line 207: The authors use a uniform flux rate for the spatially extended wells. Can the approach also used with arbitrary flux rates?

Response: Implemented. The present solutions (Eqs. (9) and (10)) used a uniform flux rate for the spatially extended well. These solutions can be straightforwardly extended to situations of arbitrary flux rates as long as the flux rate distribution along the wellbore is known a priori. To do so, one simply modifies Eqs. (9) and (10) using a location-dependent flux function inside the integration there. Please see lines 240-244 of the revised text for addressing this point.

• Line 238: Here the authors say that the Stehfest algorithm was sufficiently accurate for the flow problem. That is just an assertion and should be backed up by at least some evidence.

Response: Implemented. We deleted the ‘the Stehfest algorithm was sufficiently accurate for the flow problem’ as it appears to be too assertive. However, the Stehfest method was successfully employed by many researchers to solve the problems very similar (but not exactly) to this study, e.g., Chen (1985), Zhan et al. (2009a;2009b), and Wang and Zhan (2013). Thus we are confident that the results are robust and accurate. Another piece of evidence of the reliability of the solution is that it matches very well with a high-resolution numerical simulation using a finite-element method of COMSOL. Please see lines 416-429 for details.

• Line 242: The use of the word ‘real-time solutions’ is confusing here. I first thought the authors would derive the solution on the fly. Maybe they should say ‘solution in the time domain’.

Response: Implemented. We replaced ‘real-time solutions’ with ‘solution in the time domain’ on lines 271 and 272.

• Line 242-244: This sentence is confusion. Please reformulate.
Response: Implemented. We replaced this sentence with “In order to ensure the accuracy of the Stehfest method, several numerical exercises have been performed by comparing with the benchmark solutions for several special cases of the investigated problem” on lines 275-277.

• Line 248: What is the kinematic equation? I am not familiar with this approach.

Response: Implemented. It is free surface equation of the unconfined aquifer. We revised it as “linearized free surface (kinematic) equation” on line 281.

• Line 256: For most of the time the authors use the passive voice in the manuscript. Here they suddenly switch into the active voice. Although I like the active voice much better, the authors should be consistent.

Response: This is a valuable comment. However, after a careful consideration, we prefer to keep the use of passive and active voices as is, and our reasons are as follows. When discussing the results and conclusions, we prefer to use active voices, emphasizing that those are our interpretation. For the rest parts of the paper, we prefer to use passive voice, emphasizing that those are objective statements of facts.

• Line 266: The gray line mentioned here is actually hard to see, due to the aforementioned bad quality of the figures.

Response: Implemented. We revised the quality of the figures.

• Line 270-273: This sentence is long and confusing. Please consider to reformulate this statement.

Response: Implemented. We revised this sentence on lines 297-306.

• Line 280: The authors use the passive voice with respect to a figure. This is confusion and, to the best of my knowledge, not proper English.

Response: It was the active voice.

• Line 318: This is not a proper sentence. Please reformulate.

Response: Implemented.

Typos
As mentioned above, the manuscript suffers from poor spelling, grammar and several typos. In the following, I will provide a short list of examples.

Response: Implemented. We improved the writing of the revision manuscript as possible as we can. Please also see our reply to the general comment of this reviewer.
• Line 69: of an unsaturated

Response: Implemented.

• Line 105: with a slightly

Response: Implemented.

• Line 153: much shorter periods

Response: Implemented.

• Line 155: where the influence of plant transpiration is

Response: Implemented.

• Line 176: with respect to

Response: Implemented.

• Line 176: overbar denotes

Response: Implemented.

• Line 232: and thus a numerical

Response: Implemented.

• Line 254: the manner how the

Response: Implemented.

• Line 259: For convenience

Response: Implemented.

• Line 259 well screen to be situated along

Response: Implemented.

• Line 285: at later times

Response: Implemented.
• Line 297: For large
Response: Implemented.

• Line 314: to a smaller
Response: Implemented.

• Line 325: closer to
Response: Implemented.

• Line 326: across the water
Response: Implemented.

• Line 329: the impact of
Response: Implemented.

• Line 335: For early times
Response: Implemented.

• Line 338: This results
Response: Implemented.

• Line 365: of the unsaturated
Response: Implemented.

Responses to the Comments from Professor Neuman (Reviewer #2)

General comments
In this brief manuscript, the authors (LZZL) present a new semi-analytical solution for flow to a slanted well (including horizontal and vertical) of zero radius in a uniform anisotropic unconfined aquifer considering unsaturated flow above the water table. Details of the solution are included in supplementary material and appear to be correct. The underlying conceptual-mathematical model is similar to that of Tartakovsky and Neuman (2007) for a vertical well, with the exception that LZZL take the unsaturated zone to be finite (TN took it to be infinite). Their method of solution is somewhat different from that of TN. The authors evaluate their solution numerically and present it in the forms of time-drawdown curves in
the saturated zone, synoptic profiles of dimensionless drawdown in both the saturated and the unsaturated zones, and flow rate across the water table, for a range of dimensionless parameters, concluding that the unsaturated zone has a significant effect on system behavior in all cases.

I find the paper to be clearly written and the mathematics well explained. I do, however, have a few fundamental questions to the authors:

Response: Thank you for the positive comment.

1. LZZL are aware that the conceptual-mathematical model of TN has been superseded by a more general model due to Mishra and Neuman (2010, 2011). In addition to having rendered the unsaturated zone finite (as do LZZL), the most important extensions introduced by MN are representations of unsaturated material properties by 4 (instead of 2) parameters, in a manner similar to that of Mathias and Butler (2006); accounting for storage in the pumping well (rather than treating this well as a line sink); and accounting for delayed response of piezometers and observation wells due to storage in these devices. TN have demonstrated that the four-parameter representation leads to more realistic estimates of aquifer parameters, based on observed drawdowns, than does the two-parameter model. They also demonstrated that storage of water in pumping and observation wells have significant impacts on drawdowns below and above the water table. My question to LZZL: Why have you not worked with a four-parameter model, and why have you not accounted for pumping and observation well storage?

Response: The four-parameter model considering well storages may be more close to the realistic situation, and a model with more parameters naturally leads to better agreement between the model and observed data due to more flexible parameter fitting. This is the advantage of the four-parameter model considering well storages. However, a model with more parameters has its disadvantage as well. Firstly, it is more difficult to determine the values of those parameters precisely from a practical standpoint. Secondly, the predictive capability of a model with more parameters may not be better than that of a model with less parameters. For the discussion of this issue, one may consult the editorial messages of Voss (2011a, 2011b) and an interesting paper by Bredehoeft (2005).

This manuscript adopts a two-parameter approach because of the following reason.

In this study, we focus on the following questions: does the conclusions drawn for vertical wells also applicable for horizontal and slant wells when coupled unsaturated-saturated flow is of concern? Specifically, how important is the wellbore orientation on groundwater flow to a horizontal or slant well considering the coupled unsaturated-saturated flow process? To focus on answering these questions, we prefer to use a simpler model with the balance that keeping the most important physical process in the model but at the same time ignoring the secondly effects (such as wellbore effects of the pumping and observation wells). Indeed, the wellbore effects of the pumping and observation wells have introduced additional complexity to the solutions which are already substantially more complex than the solutions excluding the unsaturated zone process.
To avoid the influence of wellbore storage effects, we make the following proposal that could be implemented in the future investigations of coupled saturated-unsaturated flow process: using a pack system to insulate the screens of pumping and the observation wells, thus wellbore storage will not be a concern. Please see lines 154-165 and 251-257 of the revised text.

As far as we know, the two-parameter model can approximately represent unsaturated material properties to meet the need of this investigation. With all these being saying, we will certainly explore a four-parameter model in the future on the basis of this study, for the purpose of completion. However, such an effort deems to be a separate investigation that will be reported elsewhere.

2. MN have demonstrated that the unsaturated zone may or may not have a significant impact on drawdown below the water table depending on the choice of system parameters and mode of observation. My question to LZZL: What justifies your blanket statement that the unsaturated zone has a significant effect on system behavior, without any qualifications?

Response: Implemented. We revised our statements about the impacts of the unsaturated zone on drawdown in the revised manuscript.

1) The unsaturated flow has significant impact on drawdown curves in the saturated zone when \(\kappa_D \) is less than 10 (the unsaturated-saturated system has a large retention capacity, a small initial saturated thickness, and/or a relatively small vertical hydraulic conductivity). The impact of unsaturated flow decreases as \(\kappa_D \) increases, becoming small or insignificant when \(\kappa_D \) close to \(1 \times 10^3 \). Please see lines 300-306 of the revised text.

2) The impact of unsaturated flow increases as dimensionless unsaturated thickness \(b_D \) decreases. For the small \(b_D (= 0.001) \), the drawdown curves approach the ZWP solution. For the large \(b_D (= 100) \), the drawdown curves do not approach the ZZ solution because the impact of the unsaturated flow becomes significant at a fixed \(\kappa_D \) of 0.1. Please see lines 327-333 of the revised text.

3) The effects of the unsaturated zone on the drawdown exist in any angle of inclination of a slant well, and this impact is more significant for the case of the horizontal well. The effects of the unsaturated zone on the drawdown are insensitive to the length of the horizontal well screen. The impact of the unsaturated zone decreases when the observation point moves downward, becoming further away from the unsaturated zone, as expected. Please see lines 351-355 of the revised text.

3. MN have shown time-drawdown curves for the unsaturated zone; why have LZZL not done likewise? New developments in unsaturated zone sensor technology will likely make it practical, in the not too distant future, to observe unsaturated zone behavior at depth and use the MN (or LZZL) solution to interpret such observations quantitatively.

Response: Implemented. We added Figs. 2c, 2d and 8b to illustrate time-drawdown behavior in the unsaturated zone. These graphs show that both the larger \(\kappa_D \) and the larger
unsaturated thickness b_D lead to the smaller drawdown in the unsaturated zone. We added these statements on lines 334-342.

4. MN have used their solution to analyze published pumping test results, demonstrating (as already noted) that their new model provides more realistic parameter estimates than did earlier models, including that of TN (and hence, I conclude, LZZL). Why have LZZL not done the same?

Response: Implemented. The application of our solution on a realistic pumping test is the best way to demonstrate the advantages of our solution. To the best of our knowledge, however, there are no field pumping tests specifically designed to test our model yet (slant or horizontal pumping well pumping test in an unconfined aquifer), which certainly can be an interesting research subject to explore in the future.

In order to demonstrate the parameter estimation advantage using our solution versus previous solutions (ZWP and ZZ solutions), we adopted Reviewer#1 and your suggestions and conducted a numerical simulation using the finite-element model COMSOL to generate synthetic drawdowns in saturated and unsaturated zones. After that, we used ZWP, ZZ and our solutions to fit these synthetic drawdowns and to assess the performance of these solutions. Please refer to our responses to the major comments 2 of Reviewer#1.

5. MN have shown that their solution allows estimating unsaturated zone properties based on observed drawdowns in the saturated zone. Why have LZZL not attempted to do the same?

Response: Implemented. Please refer to our responses to the major comment 2 of Reviewer#1 and your comment 4.

In summary, the LZZL solution is interesting in that it is the first to consider slanted wells in the unconfined aquifer context. It however rests on a somewhat limited and outdated conceptual-mathematical model of the system; would it be possible for the authors to remedy this? In any case, the authors should show graphically how the unsaturated zone responds to pumping and, if at all possible, use their model to analyze real (or at the least synthetically generated) pumping test data.

Response: Implemented. Please refer to our responses to your above comments.
References
On Coupled Unsaturated-Saturated Flow Process Induced by Vertical, Horizontal and Slant Wells in Unconfined Aquifers

Xiuyu Liang*, Hongbin Zhan*, You-Kuan Zhang*, Jin Liu*

*aSchool of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210093, P.R. China (xyliang@nju.edu.cn)

bDepartment of Geology & Geophysics, Texas A&M University, College Station, TX 77843-3115, USA. (zhan@geos.tamu.edu)

cSchool of Environment Sciences and Engineering, South University of Sciences and Technology of China, Shenzhen, Guangdong 518055, P.R. China

*Co-corresponding authors

Revised version Submitted to Hydrology and Earth System Sciences

JanuarySeptember, 2017
Abstract

Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation, and a linearized three-dimensional Richards’ equation in the unsaturated zone. A solution in Laplace domain is derived by the Laplace-finite Fourier transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is well verified by a finite-element numerical model. It is found that the effects of the unsaturated zone have significant effects on the drawdown of pumping test consistent in with any angle of inclination of the pumping well, and this impact is more significant for the case of a horizontal well. The effects of unsaturated zone on the drawdown are independent of the length of the horizontal well screen. For the early time of pumping, the water volume drained from the unsaturated zone \(W \) increases with time, and gradually approaches an asymptotic value with time progress. The vertical well leads to the largest water volume drained from the unsaturated zone \(W \) value during the early time, and the effects of the well orientation on \(W \) values become insignificant at the later time. The screen length of the horizontal well does not affect \(W \) for the whole pumping period. The proposed solutions are useful for parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.
Keywords: Horizontal well; Slant well; Coupled unsaturated-saturated flow; Drainage from the unsaturated zone.
1. Introduction

In addition to conventional vertical wells, horizontal and slant pumping wells are broadly used in the petroleum industry, environmental and hydrological applications in recent decades. Horizontal and slant pumping wells are commonly installed in shallow aquifers to yield a large amount of groundwater (Bear, 1979) or to remove a large amount of contaminant (Sawyer and Lieuallen-Dulam, 1998). Horizontal and slant wells have some advantages over vertical wells (Yeh and Chang, 2013; Zhan and Zlotnik, 2002), e.g., horizontal and slant wells yield smaller drawdowns than the vertical wells with the same pumping rate per screen length. Horizontal and slant wells have long screen sections which can extract a great volume of water in shallow or low permeability aquifers without generating significant drawdowns there.

Hantush and Papadopulos (1962) firstly investigated the problem of fluid flow to a horizontal well in hydrologic sciences. Since then, this problem was not of great concern in the hydrological science community because of the limitation of directional drilling techniques and high drilling costs. With significant advances of the directional drilling technology over the last 20 years, the interest on horizontal and/or slant wells was reignited. Until now flow to horizontal and/or slant wells have been investigated in various aspects, including flow in confined aquifers (Cleveland, 1994; Zhan, 1999; Zhan et al., 2001; Kompani-Zare et al., 2005), unconfined aquifers (Huang et al., 2016; Rushton and Brassington, 2013; Zhan and Zlotnik, 2002; Huang et al., 2011; Mohamed and Rushton, 2006; Kawecki and Al-Subaikh, 2005), leaky confined aquifers (Zhan and Park, 2003; Sun and Zhan, 2006; Hunt, 2005), and fractured aquifers (Nie et al., 2012; Park and Zhan, 2003; Zhao et al., 2016). The readers can consult Yeh and Chang (2013) for a recent review of well hydraulics on various well types, including horizontal and slant wells.
As demonstrated in previous studies, horizontal and slant wells had significant advantages over vertical wells in unconfined aquifers, thus they were largely used in unconfined aquifers for pumping or drainage purposes. However, none of above-mentioned studies considered the effects of unsaturated processes on groundwater flow to horizontal and slant wells in unconfined aquifers. For the case of flow to vertical wells in saturated zones, the effects of above unsaturated processes were investigated by several researchers (Kroszynski and Dagan, 1975; Mathias and Butler, 2006; Tartakovsky and Neuman, 2007; Mishra and Neuman, 2010, 2011). For example, Tartakovsky and Neuman (2007) considered axisymmetric saturated-unsaturated-saturated flow for a pumping test in an unconfined aquifer and employed one parameter that characterized both the water content and the hydraulic conductivity as functions of pressure head, assuming an infinite thickness unsaturated zone. Mishra and Neuman (2010, 2011) extended the solution of Tartakovsky and Neuman (2007) using four parameters to represent the unsaturated zone properties and considering a finite thickness for the unsaturated zone (Mishra and Neuman, 2010), and considered the wellbore storage as well (Mishra and Neuman, 2011). The main results from the studies concerning vertical wells indicated that the unsaturated zone often had a major impact on the S-shaped drawdown type curves.

A following question to ask is that are these conclusions drawn for vertical wells also applicable for horizontal and slant wells when coupled unsaturated-saturated flow is of concern? Specifically, how important is the wellbore orientation on groundwater flow to a horizontal or slant well considering the coupled unsaturated-saturated flow process?

In order to answer these questions, we establish a mathematical model for groundwater flow to a general well orientation (vertical, horizontal, and slant wells) considering the coupled unsaturated-saturated flow process. We incorporate a three-dimensional linearized Richards'
equation into a governing equation of groundwater flow in an unconfined aquifer. We employ the Laplace-finite Fourier transform and the method of separation of variables to solve the coupled unsaturated-saturated flow governing equations. This paper is organized as follows, we first present the mathematical model and solution in sections 2 and 3, respectively, then describe the results and discussion in section 4, and summarize this study and draw conclusions in section 5.

2. Mathematical Model

The schematic diagrams of flow to horizontal and slant wells in an unsaturated-saturated system are represented in Fig. 1a and 1b, respectively. Similar to the conceptual model used by Zhan and Zlotnik (2002), the origin of the Cartesian coordinate is located at the bottom of the saturated zone with the z axis along the upward vertical direction and the x and y axes along the principal horizontal hydraulic conductivity directions. The horizontal and slant wells screens are located in the saturated zone with a distance z_w from the center point of the screen $(0, 0, z_w)$ to the bottom of the saturated zone. The slant well has three inclined angles γ_x, γ_y, and γ_z with the x, y, and z axes, respectively, and such three angles satisfying $\cos^2(\gamma_x) + \cos^2(\gamma_y) + \cos^2(\gamma_z) = 1$. The horizontal well is a specific case of the slant well when $\gamma_z = \pi/2$. The saturated zone is assumed as an infinite lateral extent unconfined aquifer with a slight compressibility, and is spatially uniform and anisotropic (Tartakovsky and Neuman, 2007). The saturated zone is below an initially horizontal water table at $z = d$, and the unsaturated zone is above $z = d$ with an initial thickness b.

In order to solve the problem of groundwater flow to a horizontal or slant well, we first solve the governing equation of groundwater flow to a point sink. The mathematical model for
groundwater flow to a point sink \((x_0, y_0, z_0)\) in a homogeneously anisotropic saturated zone is given by

\[
K_x \frac{\partial^2 s}{\partial x^2} + K_y \frac{\partial^2 s}{\partial y^2} + K_z \frac{\partial^2 s}{\partial z^2} + Q \delta(x - x_0) \delta(y - y_0) \delta(z - z_0) = S_s \frac{\partial s}{\partial t}, \quad 0 \leq z < d, \quad (1a)
\]

\[
s(x, y, z, 0) = 0, \quad (1b)
\]

\[
\frac{\partial s}{\partial x}(x, y, z, t)|_{x=0} = 0, \quad (1c)
\]

\[
\lim_{x \to \pm \infty} s(x, y, z, t) = 0, \quad \lim_{y \to \pm \infty} s(x, y, z, t) = 0, \quad (1d)
\]

where \(s\) is the drawdown (the change in hydraulic head from the initial level) in the saturated zone [L]; \(K_x, K_y\) and \(K_z\) are the saturated principal hydraulic conductivities in the \(x\), \(y\) and \(z\) directions, respectively [LT\(^{-1}\)]; \(Q\) is the pumping rate (positive for pumping and negative for injecting) [L\(^3\)T\(^{-1}\)]; \(\delta(\cdot)\) is the Dirac delta function [L\(^{-1}\)]; \(S_s\) is the specific storage [L\(^{-1}\)]; \(d\) is the saturated zone thickness [L]; \(t\) is time since start of pumping [T]. It is noteworthy that in this study we assumed the aquifer axis assumed to be homogenous and spatially uniform in this study. Despite the fact that a real-world aquifer is likely to be heterogeneous and/or non-uniform, there are strong evidences which show that such a moderately heterogeneous aquifer may sometimes behave as an averaged “homogeneous” system for pumping-induced groundwater flow problems. This interesting phenomena may be due to the diffusive nature of groundwater flow which can somewhat smooth out the effect of the heterogeneity to a certain degree (Pechstein et al., 2016; Zech and Attinger, 2016).

Flow in the unsaturated zone induced by pumping in the unconfined aquifer is governed by the Richards’ equation. Due to the nonlinear nature of the Richards’ equation, it is difficult to analytically solve this equation except for some specific cases. Kroszynski and Dagan (1975) proposed a first-order linearized unsaturated flow equation by expanding the dependent variable in the Richards’ equation as a power-function series when the pumping rate was less than \(K d^2\), where \(K\) is the saturated hydraulic conductivity of a homogeneous medium. The readers can
find the details of the linearized equation derivation in previous studies (Kroszynski and Dagan, 1975; Tartakovsky and Neuman, 2007). With such a linearized treatment, it becomes possible to analytically solve the equation of flow in the unsaturated zone. The linearized three-dimensional unsaturated flow equation is adopted in this study as follows,

\[k_0(z)K_x \frac{\partial^2 u}{\partial x^2} + k_0(z)K_y \frac{\partial^2 u}{\partial y^2} + K_z \frac{\partial}{\partial z} \left(k_0(z) \frac{\partial u}{\partial z}\right) = C_0(z) \frac{\partial u}{\partial t}, \quad d \leq z < d + b, \quad (2a) \]

\[u(x, y, z, 0) = 0, \quad (2b) \]

\[\frac{\partial u}{\partial z}(x, y, t)|_{z=d+b} = 0, \quad (2c) \]

\[\lim_{x \to \pm \infty} u(x, y, z, t) = \lim_{y \to \pm \infty} u(x, y, z, t) = 0, \quad (2d) \]

\[k_0(z) = k(\theta_0), \quad C_0(z) = C(\theta_0), \quad (2e) \]

where \(u \) is the drawdown in the unsaturated zone [L]; the functions \(k_0(z) \) and \(C_0(z) \) are the zero-order approximation of the relative hydraulic conductivity [dimensionless] and the soil moisture capacity [L\(^{-1}\)] at the initial water content of \(\theta_0 \), respectively; \(k \) is the relative hydraulic conductivity and \(0 \leq k \leq 1 \); \(C(\geq 0) \) is the specific moisture capacity [L\(^{-1}\)], and \(C = d\theta/d\psi, \theta \) is the volumetric water content [dimensionless], and \(\psi \) is the pressure head [L]; \(b \) is the thickness of the unsaturated zone [L]. Similar to Tartakovsky and Neuman (2007), the unsaturated medium properties are described with the two-parameter Gardner (1958) exponential constitutive relationships,

\[k_0(z) = \alpha e^{\kappa(d-z)}, \quad (3a) \]

\[C_0(z) = S_y \kappa e^{\kappa(d-z)}, \quad (3b) \]

where \(\kappa > 0 \) is the constitutive exponent [L\(^{-1}\)], \(S_y \) is the specific yield [dimensionless]. As previously mentioned in the introduction that this two-parameters model was extended to the four-parameters model by Mishra and Neuman (2010, 2011). The four-parameters model may be more closer to the realistic situation. However, a model with more parameters has its
disadvantage as well. Firstly, it is more difficult to determine the values of those parameters precisely from a practical standpoint. Secondly, the predictive capability of a model with more parameters may not be better than that of a model with less parameters. For the discussion of this issue, one may consult the editorial messages of Voss (2011a, 2011b) and discussion by Bredehoeft (2005). However, a model with more parameters are commonly difficult to apply in real-case problems because it is often difficult to determine the values of those parameters. In this study, we focus on a question that how important is the wellbore orientation on groundwater flow to a horizontal or slant well considering the coupled unsaturated-saturated flow process? To focus on answering these questions, we prefer to use a simpler model with the balance that keeping the most important physical processes in the model but at the same time ignoring the secondary effects.

It shows in Eq. (3b) that at the water table ($z=d$) a smaller κ leads to a smaller $C_a(z)$ and a larger retention capacity (Kroszynski and Dagan, 1975; Tartakovsky and Neuman, 2007), i.e., water in the unsaturated zone becomes more difficult to drain. In this study, we assume the upper boundary of the unsaturated zone as a no-flow boundary condition in Eq. (2c) by neglecting the effects of both infiltration and evaporation during the pumping. Because typical pumping tests usually last over much shorter periods of time relative to the time durations of infiltration and evaporation processes, this assumption can hold for most field conditions, particularly for lands with sparse vegetation where the influence of plant transpiration effect is limited as well.

The saturated and unsaturated flows are coupled at their interface by continuities of pressure and vertical flux across the water table which, following linearization, take the form

\[s - u = 0, \quad z = b, \]
\[\frac{\partial s}{\partial z} - \frac{\partial u}{\partial x} = 0, \quad z = b. \]
Above linearized equations of (4a) and (4b) assume that the variation of water table is minor in respect to the total saturated thickness. This assumption works better for horizontal wells and slant wells as for vertical wells, provided that the same pumping rate is used. This is because horizontal wells and slant wells will generate much less drawdowns over laterally broader regions; while vertical wells tend to generate laterally more concentrated and much greater drawdown near the pumping wells (Zhan and Zlotnik, 2002).

3. Solutions

3.1 Solution for a point sink

The solution to Eq. (1a) is obtained by the Laplace and finite cosine Fourier transform. The Laplace domain solution of Eq. (1a) subject to initial condition Eq. (1b) and boundary conditions Eqs. (1c) and (1d) is given as (Zhan and Zlotnik, 2002)

\[
\tilde{s}_D(r_D, z_D, p) = \sum_{n=0}^{\infty} \frac{\beta \cos(\omega_n r_{0D}) \cos(\omega_n z_D)}{p \Psi(\omega_n)} K_0(\Omega_n |r_D - r_{0D}|),
\]

where

\[
\Omega_n = \sqrt{\omega_n^2 + p}, \quad \Psi(\omega_n) = 2\alpha_2 + \sin(2\omega_n \alpha_2) / \omega_n,
\]

where the subscript D denotes the dimensionless terms, the definition of all dimensionless variables are presented in the supplementary material (S1); \(p \) is the Laplace transform parameter with respect to the dimensionless time, and the overbar denotes a variable in the Laplace domain; \(\omega_n \) is the \(n \)-th eigenvalue of the Fourier transform, and it will be determined later; \(K_0 \) is the modified second-kind Bessel function of zero-order; \(r_D = (x_D, y_D) \) and \(r_{0D} = (x_{0D}, y_{0D}) \) are the dimensionless radial vectors of the observation point and the sink point, respectively.

The solution to Eq. (2a) is obtained by the Laplace transform and the method of separation of variables (supplementary material, S2) and is given as
\[\vec{u}_D(r_0, x_0, p) = \sum_{n=0}^{N_{\text{max}}} \frac{\cos(\omega_n x_0)}{p \mathbb{P}(\omega_n)} K_0(\Omega_n | r_0 - r_{D0} |) \mathcal{H}_n(x_0, p), \]

(7)

where

\[\mathcal{H}_n = \begin{cases}
\cos(\omega_n x_0) \cos(M x_0 - M_2) [N_1 \tan(N_1 \alpha_2 + b_2) - M \sin(N_1 \alpha_2)] + N_1 \cos(N_1 \alpha_2), & \text{if } \Delta > 0 \\
\cos(\omega_n x_0) \exp(M x_0 - M_2) \left[\frac{M \tan(N_1 \alpha_2 + b_2) - N_1 \alpha_2}{M \sin(N_1 \alpha_2)} \right], & \text{if } 0 < \Delta < \kappa^2 \beta / 4 + \Omega_{\text{zt}}^2 \end{cases} \]

(8)

where \(M = \kappa_D / 2 \), \(N = \sqrt{\Delta} \) if \(\Delta \geq 0 \); \(N_1 = \sqrt{-\Delta} \) if \(\Delta < 0 \); \(\Delta = \kappa^2 \beta / 4 + \Omega_{\text{zt}}^2 \).

The eigenvalues of the finite cosine Fourier transform \(\omega_n \) can be obtained by substituting Eqs. (5) and (7) into the continuities of normal (vertical) flux equation (Eq. (S6b)). The detail can be found in supplementary material (S3). On the basis of the method illustrated above, it is straightforward to obtain the Laplace domain solutions \(\tilde{s}_D \) for the case of the unconfined aquifer with a free water table boundary and without the unsaturated zone influence (Zhan and Zlotnik, 2002) (abbreviated as the ZZ solution hereinafter), and the case of the groundwater flow to a horizontal well in an unconfined aquifer (Zhan et al., 2001) (abbreviated as the ZWP solution hereinafter). The solutions \(\tilde{s}_D \) for these two special cases require different \(\omega_n \) values. For the free water table condition the \(\omega_n \) is the root of \(\omega_n \tan(\omega_n) = p / \sigma \) (Zhan and Zlotnik, 2002). For the confined aquifer case the \(\omega_n = n \pi / \alpha_x, n = 0, 1, 2, \ldots \) (Zhan et al., 2001).

3.2 Solution for a slant pumping well

Due to the linearity of the mathematical models Eqs. (1) and (2), the principle of superposition can be employed to extend the basic solutions of Eqs. (5) and (7). Thus, one of the basis of the principle of superposition, the drawdown induced by a line sink in the saturated zone can be obtained by integrating the solution Eqs. (5) and (7) along the well axis, provided that the pumping strength distribution along the well screen is known. Precise determination of the pumping strength distribution along a horizontal or slant well involves complex, coupled aquifer-pipe flow (Chen et al., 2003) in which the flow inside the wellbore (pipe flow) can experience...
different stages of flow schemes from laminar, transitional turbulent, to fully developed turbulent flow (Chen et al., 2003). Such complex coupled well-aquifer flow is beyond the scope of this study and one may consult some recent studies of Blumenthal and Zhan (2016), Wang and Zhan (2016) and Wang and Zhan (2016) for more details. However, often time one may adopt a first-order approximation of using a uniform flux distribution to treat the horizontal or slant wells, particularly when the well screen lengths are not extremely long (like kilometers). Such an approximation has been justified by Zhan and Zlotnik (2002). In this study, a uniform flux distribution will be utilized for horizontal or slant wells hereinafter to obtain the solutions.

The drawdown in saturated and unsaturated zones due to a slant pumping well can be written as:

\[s_{ID}(p) = \sum_{n=0}^{\infty} \frac{\sin(\omega_n z_D)}{l_D P_{F}(\omega_n)} \int_{0}^{l_D} \cos \left[\omega_n (z_{WD} + l \frac{a_s}{a_{\Omega_s}} \cos y_s) \right] K_0[\Omega_n F(l)] dl, \quad (9) \]

and

\[\bar{u}_{ID}(p) = \sum_{n=0}^{\infty} \frac{\sin(\omega_n z_D)}{l_D P_{F}(\omega_n)} \int_{0}^{l_D} \cos \left[\omega_n (z_{WD} + l \frac{a_s}{a_{\Omega_s}} \cos y_s) \right] K_0[\Omega_n F(l)] dl, \quad (10) \]

respectively, where \(s_{ID} \) and \(\bar{u}_{ID} \) are the Laplace transforms of \(s_D \) and \(u_D \), respectively, and they are defined in the same way as \(s_D \) and \(u_D \) in Eqs. (5) and (7), respectively; \(L_D = \alpha_x L/d \) is the dimensionless length of the slant well screen (\(L \)); \(z_{WD} = \alpha_z z_{WD} / d \) is the dimensionless elevation of the center of the pumping well screen; \(l \) is a dummy variable; \(F(l) = \sqrt{ \left(x_D - l \sin y_s \cos y_s \right)^2 + \left(y_D - l \frac{a_s}{a_{\Omega_s}} \cos y_s \right)^2 } \). \(s_{ID} \) and \(\bar{u}_{ID} \) will respectively reduce to drawdowns in the saturated and unsaturated zones due to a horizontal well when \(y_s = \pi / 2 \). It is noteworthy that these solutions can be straightforwardly extended to situations of location-dependent pumping rates as long as the flux rate distribution along the wellbore is known \emph{a priori}.

To do so, one simply modifies Eqs. (9) and (10) using a location-dependent flux function inside...
the integration.

The drawdown in an observation (vertical) well located in the saturated zone that is screened from \(z_I \) to \(z_u \) \((z_u > z_I)\) can be calculated using the average of the point drawdown Eq. (9) along the observation well screen (Zhan and Zlotnik, 2002):

\[
\bar{s}_{oD}(p) = \sum_{n=0}^{\infty} \frac{\sin(\omega_n z_u) - \sin(\omega_n z_I)}{\omega_n z_u - \omega_n z_I} \int_0^{L_D} \cos \left(\omega_n \left(z_{oD} + l \frac{\alpha z}{\alpha x} \cos \gamma_z \right) \right) K_0[\Omega_n F(l)] dl, \quad (11)
\]

where \(\bar{s}_{oD} \) is the Laplace transform of \(s_{oD} \), and \(s_{oD} \) is defined in the same way as \(s_D \) in Eq. (5):

\[
z_{oD} = \alpha x z_u / d, \quad z_{oD} = \alpha x z_I / d.
\]

It should be noted that our solutions do not accounting for the wellbore effects of the pumping and observation wells. Indeed, the wellbore effects have introduced additional complexity to the solutions which are already substantially more complex than the solutions excluding the unsaturated zone flow process. To avoid the influence of wellbore storage effects, we make the following proposal that could be implemented in the future investigations of coupled saturated-unsaturated flow process: using a pack system to insulate the screens of pumping and the observation wells, thus wellbore storage will not be a concern.

3.3 Total volume drained from the unsaturated zone for a slant well

The dimensionless total volume drained from the unsaturated zone to the saturated zone (water flux across the water table) can be obtained by

\[
\bar{W}_D(p) = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \bar{W}}{\partial z} \, dx \, dy \, d\Phi = \sum_{n=0}^{\infty} \frac{16\pi \sin(\omega_n z_u) \cos(\omega_n x_u) \sin(\omega_n \Phi)}{p \Psi(\omega_n) \Omega_n^2 \Phi}, \quad (12)
\]

where \(\bar{W}_D \) is the Laplace transform of \(W_D \), and \(W_D = \frac{4\pi a_z^2}{Q} \). \(a_z \) is the total volume drained from the unsaturated zone; \(\Phi = L_D \alpha z \cos(\gamma_z) / (2\alpha x) \).

It is difficult to obtain closed-form solutions by analytically inverting the Laplace transforms of Eqs. (5), (7), (9), (10) and (12) and thus a numerical inverse Laplace method is employed in
this study. There are several numerical inverse Laplace methods, such as Stehfest method (Stehfest, 1970), Zakian method (Zakian, 1969), Fourier series method (Dubner and Abate, 1968), Talbot algorithm (Talbot, 1979), Crump technique (Crump, 1976), and de Hoog algorithm (de Hoog et al., 1982), with each method best fitted for a particular type of problem (Hassanzadeh and Pooladi-Darvish, 2007). The Stehfest algorithm is sufficiently accurate for the flow problem studied here. Chen (1985), Zhan et al. (2009a; 2009b), and Wang and Zhan (2013) have successfully employed the Stehfest algorithm to obtain the solution in the time domain real-time domain solution for the similar problems to this study. For references to different inverse Laplace methods, one can consult the review of Kuhlman (2013) and Wang and Zhan (2015). In this study we use the Stehfest method to invert the Laplace solutions into the solutions in the time domain real-time solutions. In order to ensure the accuracy of the Stehfest method, extensive several numerical exercises have been performed to by against the benchmark solutions for several special cases of the investigated problem of the investigated problem to ensure the degree of accuracy of the Stehfest method.

4. Results and Discussion

4.1 Effect of unsaturated zone parameters

The main difference between the ZZ solution and present solution is the upper boundary condition of the saturated zone. The ZZ solution considered linearized free surface (kinematic) equation as the water table boundary that employed one parameter, i.e., specific yield (S_y) to account for the gravity drainage after water table declining. The present solution represents coupled water flow through both the unsaturated and saturated zones. The water table boundary is replaced by coupled interface conditions between the unsaturated and the saturated zones.
Thus the behavior of the drawdown in the saturated zone induced by the pumping wells will be affected by the unsaturated zone. To investigate the manner in which the dimensionless constitutive exponent κ_D and the dimensionless unsaturated thickness b_D impact the drawdown in the saturated zone induced by a horizontal pumping well, we plot the log-log graph of s_{ID} versus the dimensionless time t_D/r_D^2 (the type curves) for different κ_D and b_D in Figures 2a and 2b, respectively. We also compare our solution to the ZZ solution (unconfined aquifer) and the ZWP solution (confined aquifer). For the convenience we assume the horizontal well screen to be situated along the x-direction, i.e., $\gamma_x=0$ and $\gamma_y = \gamma_z = \pi/2$. The parameter values in Eq. (9) are $\sigma=1\times10^{-3}$, $L_D=1$, $\gamma=0$, $\alpha_z=1$, $x_D=0.5$, $y_D=0.05$, $z_D=0.8$, and $z_{wd}=0.5$.

Figure 2a presents the drawdown curves in the saturated zone for different values of κ_D (1×10^{-5}, 1×10^{-3}, 1×10^{-1}, and 1×10^3) with a fixed dimensionless thickness of the unsaturated zone b_D of 0.5. The dimensionless constitutive exponent $\kappa_D = \kappa d/\alpha_z = \kappa d K_D^{1/3}$, where K_D is the anisotropic ratio between the vertical hydraulic conductivity (K_z) and the horizontal hydraulic conductivity ($K_{r/z}$).

The unsaturated flow has significant impact on drawdown curves in the saturated zone when κ_D is less than 10 (the unsaturated-saturated system has a large retention capacity, small initial saturated thickness, and/or a relatively small vertical hydraulic conductivity). The impact of unsaturated flow decreases as κ_D increases, becoming small or insignificant when κ_D close to 1×10^3. It shows that the unsaturated zone has significant impact on drawdown curves. Our curve is almost the same as the curve of the ZZ solution when $\kappa_D=1\times10^3$ (gray solid curve), and gradually deviates from the ZZ solution but approaches the ZWP solution as κ_D decreases to 1×10^{-5} (black solid curve). The dimensionless constitutive exponent $\kappa_D = \kappa d/\alpha_z = \kappa d K_D^{1/3}$.

where K_D is the anisotropic rate between the vertical hydraulic conductivity (K_z) and the horizontal hydraulic conductivity (K_r).

For smaller K_D, the unsaturated zone has larger retention capacity, the saturated zone has smaller initial saturated thickness, and/or both the unsaturated and saturated zones have relatively smaller vertical hydraulic conductivity, leading to less impacts on the drawdown in the saturated zone. Such effect increases as K_D increases, and becomes significant at K_D greater than 10^{-4}. Our curve is almost the same as the curve of the ZZ solution when $K_D = 1 \times 10^1$ (gray solid curve), and gradually deviates from the ZZ solution but approaches the ZWP solution as K_D decreases to 1×10^{-5} (black solid curve). For a fixed initial saturated thickness, when K_D is smaller, i.e., the unsaturated zone has larger retention capacity and/or both the unsaturated and saturated zones have relatively smaller vertical hydraulic conductivity, water drainage from the unsaturated zone is impeded, forcing more water to be released from compressible storage of the saturated zone, leading to larger drawdown in the saturated zone. The opposite is true when K_D is larger. It is consistent with the findings in the vertical pumping well case (Tartakovsky and Neuman, 2007).

It also shows in Figure 2a that the drawdowns have typical “S” pattern curves while $K_D \geq 0.1$. At early times, all curves are approximately identical due to response of the confined storage and little minor effects of the upper boundary of the saturated zone; at intermediate times, the drawdowns of the ZZ solution and our solutions increase slower than that of the ZWP solution due to response of additional storage (water table boundaries and unsaturated zone) of the upper boundary of the saturated zone; at later times, the drawdown increasing rates of the ZZ solution and our solutions are nearly the same as that of the ZWP solution due to the combined effects of both storage mechanisms.
The unsaturated zone controls the effects of additional storage and upper boundary of the saturated zone on drawdown curves. There are physical differences between the ZZ solution and our solution. The ZZ solution uses the storage factor S_y (specific yield) at upper boundary of the saturated zone. Such a storage factor at the upper boundary is greater than the actual storage capacity of the unsaturated zone when the unsaturated parameter $\kappa_D \leq 10$, leading to a slower water level decline for the ZZ solution, and such effect will become insignificant for a long pumping time. Similar to κ_D, the dimensionless unsaturated thickness b_D also has a significant effect on the drawdown behavior of the saturated zone, as shown in Figure 2b for different values of b_D (0.001, 0.01, 1, 10 and 100) with a fixed $\kappa_D=0.1$ and the same parameters used as Figure 2a. Figure 2b shows that the impact of unsaturated flow increases as b_D decreases. The drawdown behavior of our solution approaches the ZWP solution when $bL_D=0.001$. For the large $b_D (=100)$, however, our solution is significantly different from the ZZ solution at intermediate times because the impact of unsaturated flow becomes significant at a fixed κ_D of 0.1.

In order to further investigate the effects of the unsaturated zone, we present the behaviors of the unsaturated flow responses to the pumping in the saturated zone. Figures 2c displays the drawdown curves in the unsaturated zone (u_ID) for different values of κ_D (1×10^{-3}, 1×10^{-1}, 1×10^{1} and 1×10^{3}) at $z_D=1.5$ where the other parameters are the same as in Figure 2a. As κ_D increases, the retention capacity of the unsaturated zone decreases, and thus the more water amount is released from the unsaturated storage. It leads to smaller drawdown both in both the unsaturated and saturated zones. Figures 2db depicts the drawdown curves in the unsaturated zone for different values of the dimensionless unsaturated thickness b_D (0.5, 1, 2, 10 and 100). As expected, the drawdown in the unsaturated zone decreases with b_D increasing, due to the
fact that more amount of water is stored in the unsaturated zone for large b_D. These results are consistent with the results findings of Mishra and Neuman (2010, 2011).

4.2 Effect of well orientation and well screen length

In this section, we first investigate the effect of the inclined angle of the slant well on the type curves. Figure 3 shows the comparison between the ZZ solution and our solution with $\kappa_D = 10$ for three different angles of a slant well ($\gamma_z = 0, \pi/4, \text{and } \pi/2$) at two observation points ($z_D = 0.9$ for Figure 3a and $z_D = 0.1$ for Figure 3b) where the other parameters are the same as in Figure 2. Obviously the smaller angle creates the larger drawdown at both observation points.

For the horizontal well ($\gamma_z = \pi/2$) the discrepancy between the ZZ solution and our solution is larger than that for the vertical well ($\gamma_z = 0$) at upper observation point (Figure 3a). Such a discrepancy is also found diminishes at the lower observation point (Figure 3b). It reveals that the effects of the unsaturated zone has significant effects on the drawdown exist in for any angle of inclination of a slant well for the upper part of the aquifer, and this impact is more significant for the case of the horizontal well. The impacts of the unsaturated zone decreases when the observation point moves downward, becoming further away from the unsaturated zone, as expected.

Here we investigate the effect of the horizontal well screen length on the drawdown. Figure 4 illustrates the comparison between the ZZ solution and our solution for three different lengths of well screen ($L_D = 0.1, 1, \text{and } 10$) at two observation points where the other parameters are the same as in Figure 3. It indicates that the longer well screen leads to the smaller drawdown at both upper and lower observation points. The discrepancy between the ZZ solutions and our solutions are identical for different well screen lengths. It reveals that the effects of the unsaturated zone on the drawdown are insensitive to the length of the horizontal well screen.
In order to more clearly illustrate the drawdown pattern in the unsaturated-saturated zone system, the profile of drawdown profiles—in vertical cross-sections for three different angles of a slant well ($\gamma_z = 0$, $\pi/4$, and $\pi/2$) at different dimensionless times ($t_D = 1 \times 10^3$, 1×10^4, and 1×10^5) are presented in Figure 5. The other parameter values in Eqs. (9) and (10) are $\sigma = 1 \times 10^{-4}$, $\kappa_D = 1 \times 10^3$, $L_D = 0.5$, $\alpha_x = 1$, $b_D = 1$, $y_D = 0.05$, $z_{wD} = 0.75$, $\gamma_x = 0$, and $\gamma_y = \pi/2$. As time increases, the effect of pumping gradually propagates into the unsaturated zone ($z_D > 1$). The vertical well leads to larger drawdown in the unsaturated zone than the slant and horizontal wells. The reason is that the vertical well screen is closer to the unsaturated zone. The water flux across the water table (Eq. (12)) is the volume drained from the unsaturated zone to the saturated zone. It is somewhat related to the concept of specific yield when the coupled unsaturated-saturated zone flow process is simplified into a saturated zone flow process with water table served as a free upper boundary. Thus, Eq. (12) reflects the impact of the unsaturated zone on the water flow in the saturated zone. Figure 6 shows the changes of the dimensionless water flux across water table, W_D, with t_D of the ZZ solution and our solution at three angles of a slant well screen ($\gamma_z = 0$, $\pi/4$, and $\pi/2$) (Figure 6a), and at three screen lengths of a horizontal well ($L_D = 0.1$, 1.0, and 10) (Figure 6b), where the other parameters are the same as in Figure 3. At the early times of pumping, W_D increases with time, and at the later time W_D approaches an asymptotic value that is dependent on the unsaturated parameter κ_D. W_D decreases with κ_D decreasing. The small κ_D reflects the large retention capacity of the unsaturated zone, and thus it impedes more water draining from the unsaturated zone during pumping. The ZZ solution overestimates W_D due to the fact that it neglects the results in more water releasing from the saturated zone storage and the larger drawdown in the saturated zone (Figure 2a). The ZZ solution overestimates W_D due to the fact that it neglects the
effects of above unsaturated flow (Figure 6a). The W_D-t_D curves deviate from each other considerably for different angles of a slant well, particularly at the early time. One can see from Figure 6a that W_D of the vertical well ($\gamma_z=0$) is the largest at early time, and the W_D-t_D curves of three angles eventually approach the same asymptotic value at late time. It means that the vertical well leads to the greatest water drainage from the unsaturated zone at early time, and the effects of the well orientation are insignificant with time increasing. Very different from the angle of a slant well, the screen length of a horizontal well appears to have almost no impact on W_D for the whole pumping period (Figure 6b). Similar with Figure 6a, the magnitude of W_D in Figure 6b is only dependent on the unsaturated parameter κ_D.

4.3 Synthetic pumping test

In order to further verify our solutions and to explore the capability of our solution for interpreting explanation of pumping test results curves in the unsaturated-saturated system, we have conducted a synthetic numerical simulation. The synthetic case considers a pumping test in an unconfined aquifer with a slant pumping well ($\gamma_z=\pi/4, \gamma_x=0$, and $\gamma_y=\pi/2$). The parameters aquifer parameter values are as follows: the unconfined aquifer thickness d is 10 m, the above unsaturated zone thickness b is 5 m, the horizontal conductivity $K_x = K_y = 0.06$ m/min, the vertical conductivity $K_z = 0.5 K_y$, the specific storage $S_s = 1 \times 10^{-4}$ m$^{-1}$, and the specific yield $S_y = 0.3$. The unsaturated flow is described by Eqs. (2) and (3) with the constitutive exponent $\kappa = 0.1$ m$^{-1}$. The discharge rate of the pumping well $Q = 1$ m3/min, the length of the pumping well screen L is 5 m, and the center of well screen locates at $(x=0, y=0, z=5$ m).

The coupling equations (1)-(4) of the unsaturated-saturated system are numerically solved by COMSOL Multiphysics, a robust Galerkin finite-element software package that includes a partial differential equation (PDE) packages solver for modeling the type of governing equations.
of this study. Fig. 7a shows the spatial discretization of our COMSOL model, in which the tetrahedrons are used as the elements for the three-dimensional 3D model, and the elements near both the pumping well and the unsaturated-saturated interface are refined. The number of tetrahedral elements is 328358. The time step increases exponentially, and the total number of time steps is 100, with a total simulation time of 220 min. Fig. 7b presents an example for the vertical profiles (the xz-plane) of the drawdown in the unsaturated-saturated system at t=210 min. Fig. 7b indicates that the COMSOL model well reproduces the drawdown in the unsaturated-saturated system induced by a slant pumping well.

Firstly, we verify our solutions by comparing the drawdowns both in both the saturated and unsaturated zones generating by our solutions with those generating by numerical solutions for the same aquifer parameter values, i.e., \(K_x = K_y = 0.06 \text{m/min}, K_z = 0.5K_x, S_s = 1 \times 10^{-4} \text{m}^{-1}, \) and \(S_y = 0.3 \). Figs. 8a and 8b show the drawdown curves in the saturated zone at an observation point of \((x=0, y=1 \text{ m}, z=9 \text{ m})\) in the saturated zone using the numerical solutions (triangles) and our solutions (solid curves), and the drawdown curves in the unsaturated zone at an observation point of \((x=0, y=1 \text{ m}, z=11 \text{ m})\), respectively, using the numerical solution (triangles) and our solution (solid curves). These figures indicate that in general our solutions satisfactorily generally well fits with the numerical solution in both the saturated and unsaturated zones, although the agreement becomes less good satisfactorily (but acceptable) at late times. The sizes of the tetrahedral elements will affect the accuracy of the numerical solutions, especially near the pumping well and the unsaturated-saturated interface. Although we refined the mesh at these places, the sizes of these elements may be insufficiently small to completely remove the numerical errors near those places for this model. Our numerical exercises show that the finer more refined element discretization for this model will lead to substantially greater
Computational cost, probably due to the three-dimensional nature of the model, is high. Computational burden is likely due to the three-dimensional nature of the model.

Secondly, we investigate the errors while using the ZWP and ZZ solutions to explain the drawdown curves in the unsaturated-saturated system induced by the slant pumping well. Fig. 8a shows a least squares fit of the ZWP (dashed curves) and ZZ (dotted curves) solutions to the numerical solution, yielding parameter estimates $K_x = K_y = 0.13 \text{ m/min}, S_s = 1.1 \times 10^{-2} \text{ m}^{-1}$ (for the ZWP solution), and $K_x = K_y = 0.03 \text{ m/min}, S_s = 2.3 \times 10^{-3} \text{ m}^{-1}$, and $S_y = 0.32$ (for the ZZ solution), respectively. Obviously, the ZWP solution fails to fit the numerical solution totally and significantly overestimates the horizontal hydraulic conductivity and the specific storage with one or two orders of magnitude due to the fact that it is the confined-aquifer solution of the confined aquifer. The ZZ solution dramatically deviates from the numerical solution in the early and intermediate times and it fine-agrees with the numerical solution at late time. The ZZ solution underestimates the horizontal hydraulic conductivity and overestimates the specific storage and the specific yield.

As has been noted that a major disadvantage of the two older models (the ZWP and ZZ models) is that they did not consider the unsaturated flow process (of course not for ZWP confined model), thus they cannot be used to characterize the parameters of the unsaturated zone. This newer model developed in this study by us, however, is capable of characterizing parameters of both the saturated and unsaturated zones. As far as we know, this represents a significant improvement over the older models. Furthermore, as the older models did not consider the unsaturated flow process that was proven to be important for producing the drawdown-time curves in the saturated zone, they often cannot satisfactorily reproduce the observed drawdown-time curves in the saturated zone in an actual real-world aquifer pumping.
tests. The newer model has resolved this issue successfully because the used conceptual model is closer to the physical reality of flow in an saturated-unsaturated-saturated unsaturated system.

5. Summary and Conclusions

The coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant pumping wells is investigated in this study. A mathematical model for such a coupled unsaturated-saturated flow process is presented. The flow in the saturated zone is described by a three-dimensional governing equation, and the flow in the unsaturated zone is described by a three-dimensional Richards’ equation. The unsaturated medium properties are represented by the Gardner (1958) exponential relationships. The Laplace domain solutions are derived using Laplace transform and the method of separation of variables, and the semi-analytical time domain solutions are obtained using the Stehfest method (Stehfest, 1970). The solution is compared with the solutions proposed by Zhan et al. (2001) (confined aquifer, the ZWP solution) and Zhan and Zlotnik (2002) (unconfined aquifer, the ZZ solution) and is verified using the finite-element numerical solution. The conclusions of this study can be summarized as follows:

1) The unsaturated flow has significant impact on drawdown in unconfined aquifers induced by the horizontal pumping well when dimensionless constitutive exponent κ_D is less than 10 (the large retention capacity of the unsaturated zone, the small initial saturated thickness, and/or the small vertical hydraulic conductivity). For the large $\kappa_D (\approx 1 \times 10^3)$, the drawdown curves approach the solution of the unconfined aquifer with the linearized free water table boundary (the ZZ solution). The drawdown curves obtained in this study deviate from the ZZ solution when considering the unsaturated flow effect. For the small dimensionless constitutive exponent $\kappa_D (\approx 1 \times 10^{-5})$ (the large retention capacity of unsaturated zone, the small initial
saturated thickness, and/or the relatively small vertical hydraulic conductivity), the drawdown curves approach the solution of the confined aquifer (the ZWP solution). For the large \(\kappa_D \) (\(\approx 1 \times 10^3 \)), the drawdown curves approach the solution of the unconfined aquifer with the linearized free water table boundary (the ZZ solution).

2) For the small dimensionless unsaturated thickness \(b_D (= 0.001) \), the drawdown curves approach the ZWP solution. For the large unsaturated thickness \(b_D (= 100) \), the drawdown curves do not approach the ZZ solution because the impact of the unsaturated flow becomes significant at a fixed \(\kappa_D \) of 0.1.

3) The effects of the unsaturated zone on the drawdown consist in any angle of inclination of a slant well. The unsaturated zone has significant effects on the drawdown of the pumping test with any angle of inclination of a slant well, and this impact is more significant for the case of the horizontal well. The effects of the unsaturated zone on the drawdown are insensitive to the length of the horizontal well screen.

4) For the early time of pumping, the water volume drained from the unsaturated zone \(W \) to the saturated zone increases with time, and with time progressing, \(W \) approaches an asymptotic value that is dependent on the unsaturated parameter \(k_D \). The vertical well leads to the largest \(W \) value during the early time of pumping, and the effects of the well orientation become insignificant at the late-time. The screen length of the horizontal well does not affect \(W \) for the whole pumping period.

5) By comparison with synthetic pumping test data generated by the finite-element numerical model of COMSOL, software shows one can see that our solution well reproduces the drawdown curves both in both the saturated and unsaturated zones while both the ZWP and ZZ solutions fail to fit the drawdown curves and they either underestimate and/or overestimate
the horizontal hydraulic conductivity, the specific storage, and the specific yield, due to its lack of consideration of the effect of unsaturated zone.

Acknowledgement

This study was partially supported with the research grants from the National Nature Science Foundation of China (NSFC-41330314, NSFC-41272260, NSFC-41302180, 41521001, 41372253), the National Key project “Water Pollution Control” of China (2015ZX07204-007), and the Natural Science Foundation of Jiangsu Province (BK20130571). We thank Dr. Shilomo P. Neuman and another anonymous reviewer for their constructive comments for us to revise the manuscript.
References

Figure 1 The schematic diagram of groundwater flow to a horizontal well (a) and a slant well (b) in an unsaturated-saturated system.
Figure 2. a) log-log plot of s_D against $t_D/\sqrt{r_D}$ for different values of the dimensionless unsaturated parameter α_D, the ZWP solution (confined aquifer) and the ZZ solution (unconfined aquifer), and b) log-log plot of s_D against $t_D/\sqrt{r_D}$ for different values of the dimensionless unsaturated thickness h_D, the ZWP solution (confined aquifer) and the ZZ solution (unconfined aquifer).
Figure 2 a) log-log plot of S_{IP} against t_D/r_D^2 for different values of the dimensionless unsaturated parameter κ_D, the ZWP solution (confined aquifer) and the ZZ solution (unconfined aquifer), and b) log-log plot of S_{IP} against t_D/r_D^2 for different values of the dimensionless unsaturated thickness b_D, the ZWP solution (confined aquifer) and the ZZ solution (unconfined aquifer). c) log-log plot of u_{IP} against t_D/r_D^2 for different values of the dimensionless unsaturated parameter κ_D, and d) log-log plot of \dot{u}_{IP} against t_D/r_D^2 for different values of the dimensionless unsaturated thickness b_D.
Figure 3. Log-log plot of s_{ID} against t_D/r_D^2 for different angles of well screen and comparison with the ZZ solution for a) dimensionless piezometer location $(0, 0.05, 0.9)$, and b) dimensionless piezometer location $(0, 0.05, 0.1)$.
Figure 4 log-log plot of s_{IP} against t_D/r_D^2 for different dimensionless lengths of horizontal well screen and comparison with the ZZ solution for a) dimensionless piezometer location $(0, 0.05, 0.9)$, and b) dimensionless piezometer location $(0, 0.05, 0.1)$.
Figure 5: Vertical profiles of s_D in saturated and u_D in unsaturated zones for different angles of well screen corresponding to various dimensionless times.
Figure 6 log-log plot of W_D against t_D for different values of the dimensionless unsaturated parameter κ_D and the ZZ solution with a) three angles of the slant well screen ($\gamma_z = 0, \pi/4, \text{ and } \pi/2$), and b) three dimensionless lengths of the horizontal well screen ($L_D = 0.1, 1.0, \text{ and } 10$).

Figure 7 a) The grid mesh of the unsaturated-saturated system used in the Galerkin finite element COMSOL Multiphase program, and b) the vertical profiles (xz-planes) of the drawdown in the unsaturated-saturated system on $t = 210$ min for the synthetic case.
Figure 8 a) Comparison of synthetic drawdown in saturated zone generating from numerical solution with fitted analytical solutions using ZZ solution, ZWP solution and our solution, and b) Comparison of synthetic drawdown in unsaturated zone generating from numerical solution with our solution.

Figure 6