Interactive comment on “Estimating sediment thickness by using horizontal distance to outcrop as secondary information” by Nils-Otto Kitterød

NOK Kitterød
nils-otto.kitterod@nmbu.no

Received and published: 29 March 2017

Thanks a lot for constructive questions and comments! I have worked through all of them, and I have revised the manuscript according to the reply below.

On C1. The purpose of the paper was to explore possible cross-correlations between the thickness of sediments, D(u), and horizontal distance to exposed bedrock, L(u). Cross-correlations might be capitalized later to improve estimates of D(u). This question was tested by using ordinary kriging and co-kriging. Thus, the paper was not intended to describe "the value of kriging and co-kriging", as indicated by Dr. Farmer. Nevertheless, I appreciate this general comment very much.

The typographical error (P2, L5) is corrected, and the term "significant" is substituted with other synonyms as for example "large".

C1
I agree that scientific writing should be as precise as possible. This is a motivations for using mathematics! At the same time there is a lot of useful (common) words that also has a distinct mathematical or statistical meaning. "Expectation, variance, and correlation" are all examples of such words, they have a specific mathematical definition, but they might also be used in another context to express something "significant".

On C2. P3, L5: My intention was not to be amusing, therefore "Zoo" is substituted with "number" in the manuscript. However, a competition is going on out there and the fittest method will survive ("jungle" might therefore be a more adequate metaphor than "Zoo"!). My point is simply that the current study is not a part of the on going competition, I just want to investigate whether the secondary variable (L) might be used to improve the estimates or not.

P5, L14: I do not agree. There are two populations of wells, those located on exposed bedrock, L(u)=0, and those not located on exposed bedrock, L(u)>0. The 750 wells belongs to the second population and should therefore not be described in the previous paragraph. Even though L(u)>0, there are 750 where D(u)=0. These wells are removed in the current study to keep the analysis as simple as possible. It is interesting to notice that number of wells (750) is only a minor fraction (3.7%) of the wells with L(u)>0 (20432). One reason is that the soil cover is very patchy some places, but there is no serious inconsistency between the mapping (and definitions) of D and L.

P5, L16: I've made a (sloppy) normality plot, which indicate that log10(D) and log10(L) did not belong to a Gaussian pdf (c.f. enclosed figure). The main reason for not using a lognormal variable, however, is the (large) estimation error associated to the log-transform. The estimation error of a lognormal variable becomes usually very large
in some (extreme) locations because (by definition) the error of a lognormal variable includes the expected value. This is the main reason why the lognormal transformation has fallen into disuse in science.

P5, L22: No, it is not the same searching window as mentioned on P7, L10. To avoid any confusion I have rewritten the paragraph to: "Mean and standard deviation of D and L as a function of separation distance h, is given in Fig. 3 for $\Delta h = 20$ m and $\Delta h = 150$ m."

P6, L24: I would prefer "origo" (location of point zero), which I find more specific than "origin", but both terms may work equally well.

P7, L20: I tried both a computer approximation and a analytical expression of the Gaussian pdf, and according to my experience, the analytical expression was more precise especially for the extreme parts of the distribution.

P7, L27: The paragraph ("The back transformation, however, does not reproduce the censored part of the pdf.") is deleted in the revised manuscript. The normal-score transform is done on declustered data, which removed (smoothed) the censored character of the raw data. This is not related to the problem of over-estimation of low D and under-estimation of large D.

P9, L12: The first order exponential model ($\alpha = 1$ in eq. 14 and 16) is usually referred as the "the exponential semivariogram model". Even though α is close to one, this is not the "chosen" model. The alpha parameter in eq. (14) and (16) may vary between 1 (exponential model) and 2 ("gaussian" model). Cross-validation is also done with $C_0 \sim C_1$, which is similar to a "constant" model (c.f. Tab. 3, case A).

P13, L28: Thanks a lot for your humble reference to Farmer and Vogel, 2016! Quantification of uncertainties is a part of the estimation problem, I totally agree! Over-estimation of (extreme) small values and under-estimation of (extreme) large values is a well known problem for Gaussian least square methods. The purpose of the paper is
not to improve ordinary kriging or co-kriging, but to demonstrate the effect of including a secondary variable (L). Of that reason, I do not intend to elaborate this subject any more in the current manuscript. There are however, made significant progress on the problem of Gaussian and non-Gaussian estimation, and I therefore include references to: Omre and Haldorsen, 1989; Rue et al., 2009; Lindgren and Linström, 2011; Leblois and Creutin, 2013; Ingebrigtsen et al., 2014; 2015.

P14, L1: The paragraph is rewritten to: "In cases with minor difference in absolute error, the estimation results might be ranked according to criteria for estimation accuracy (28) and precision (31)."

P16, L32: Yes, I agree, and the paragraph is rewritten! However, I think the value of public databases on hydrology and environmental databases in general, should be more honored by the scientific society. Of that reason I suggest to include the paragraph: "Hence, in this context, the present study is a call to explore public data to obtain important estimates for science and society."

Figure 10 and 11: I decided to include a simple map of Scandinavia, which also indicate the three subsections: Southern Norway; Northern Norway; and the Oslo region. If possible, I would suggest to merge Fig. 10 and Fig. 11.

Table 3 and 4: From my point of view, the presentation of Tab. 3 and 4 does not belong to the method section. Both tables are results of the applied methods. I think the results should be presented as clear as possible without any comments, and interpretation and explanations therefore belongs to the discussion section. Thus, I suggest to keep the text on this point as it is.

With respect to grammar, style and typographical errors, I appreciate all help and corrections! Thanks a lot!

Nils-Otto Kitterød <nils-otto.kitterod@nmbu.no>

Fig. 1. Standard normalized log10(D) and log10(L) plotted against a Gaussian variable, N(0,1).