Satellite-Derived Light Extinction Coefficient and its Impact on Thermal Structure Simulations in a 1-D Lake Model

Kiana Zolfaghari¹, Claude R. Duguay¹, Homa Kheyrollah Pour¹

¹Interdisciplinary Centre on Climate Change and Department of Geography & Environmental Management, University of Waterloo, Waterloo, Canada

Correspondence to: Kiana Zolfaghari (kzolfagh@uwaterloo.ca)

Abstract. A global constant value of the extinction coefficient (K₀) is usually specified in lake models to parameterize water clarity. One essential optical parameter to specify in lake models is water clarity, which is parameterized based on the light extinction coefficient (K₀). A global constant value of K₀ is usually specified in lake models. One-dimensional (1-D) lake models are most often used as lake parameterization schemes in numerical weather prediction and regional climate models. This study aimed to improve the performance of the 1-D Freshwater Lake (FLake) model using satellite-derived K₀ for Lake Erie. The CoastColour algorithm was applied to MERIS satellite imagery to estimate K₀ and evaluated against K₀ derived from Secchi disk depth (SDD) field-based measurements collected during Lake Erie cruises. A good agreement is found between field and satellite-derived K₀ (RMSE = 0.63 m⁻¹, MBE = 0.09 m⁻¹, I_a = 0.65) [in situ data was collected in 2004, 2005, 2008, 2011, 2012]. The constant (0.2 m⁻¹) and satellite-derived K₀ values as well as radiation fluxes and meteorological station observations were then used to run FLake for a meteorological station on Lake Erie at the location of a buoy where lake surface water temperature (LSWT) was measured in 2008. Results improved compared to using a constant K₀ value (0.2 m⁻¹). The specific yearly average K₀ value: RMSE = 1.51 ºC, MBE = 0.08 ºC, constant K₀ value: RMSE = 1.76 ºC, MBE = -1.26 ºC. No significant improvement was found in FLake simulated lake surface water temperature (LSWT) when K₀ variations in time were considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-derived K₀ value can reproduce LSWT with sufficient accuracy for the Lake Erie NDBC station. A sensitivity analysis was also performed to assess the impact of various K₀ values on the simulation outputs, of LSWT, mean water column temperature (MWCT), lake bottom water temperature (LBWT), mixed layer depth (MLD), water temperature isotherms as well as ice dates and thickness. Results show that FLake is sensitive to variations in K₀ to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring and colder fall temperatures compared to clear waters. Dark waters always produce warmer, colder mean water column temperature (MWCT) and lake bottom water temperature (LBWT), shallower mixed layer depth (MLD), longer ice cover duration, and thicker ice. The sensitivity of FLake to K₀ variations was more pronounced in the simulation of MWCT, LBWT, and MLD. The model was particularly sensitive to K₀ values below 0.5 m⁻¹. This is the first study to assess the value of integrating K₀ from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived K₀ is found to be a useful input parameter for simulations with FLake and possibly other lake models, and with potential for applicability to other lakes where K₀ is not commonly measured.
Keywords: Water clarity, extinction coefficient, MERIS, CoastColour, FLake, Lake Erie, lake water temperature

1 Introduction

There has been significant progress made in recent years in the representation of lakes in regional climate models (RCM) and numerical weather prediction (NWP) models. Lakes are known to be an important continental surface component affecting weather and climate, especially in lake-rich regions of the northern hemisphere (Eerola et al., 2010; Martynov et al., 2012; Samuelsson et al., 2010). They can influence the atmospheric boundary layer by modifying the air temperature, wind and precipitation. Therefore, consideration of lakes in NWP/RCM is essential (Kheyrollah Pour et al., 2012, 2014b; Martynov et al., 2010). In order to account for lakes in NWP/RCM, a description of energy exchanges between lakes and the atmosphere is required (Eerola et al., 2010). Lake surface water temperature (LSWT) is one of the key variables when investigating lake-atmosphere energy exchanges (Kheyrollah Pour et al., 2012). There are various approaches to obtaining LSWT and integrating it in NWP models, such as through climatic observations, assimilation and/or lake parameterization schemes (Eerola et al., 2010; Kheyrollah Pour et al., 2014a). Currently, LSWT is broadly modelled in NWP models using one-dimensional (1-D) lake models as lake parameterization schemes (Martynov et al., 2012). For instance, the 1-D Freshwater Lake (FLake) model performs adequately for various lake sizes, shallow to relatively deep (artificially limited to 40-60 m depth (Kourzeneva et al., 2012a), located in both temperate and warm climate regions (Kourzeneva, 2010; Martynov et al., 2010, 2012; Mironov, 2008; Mironov et al., 2010, 2012; Samuelsson et al., 2010; Kourzeneva et al., 2012a; Kourzeneva et al., 2012b).

One of the optical parameters required as input in the FLake model is water clarity. This variable is considered as an apparent optical property and is parameterized using the light extinction coefficient (K_d) to describe the absorption of shortwave radiation within the water body as a function of depth (Heiskanen et al., 2015). A global constant value of K_d is usually used to run lake models, including FLake. For example, Martynov et al. (2012) coupled FLake in the Canadian Regional Climate Model (CRCM) by specifying a K_d value equal to 0.2 m$^{-1}$ (Martynov, pers. comm., 2015) for all North American Lakes, including Lake Erie for years 2005-2007. Heiskanen et al. (2015) evaluated the sensitivity of two 1-D lake models, LAKE and FLake, to seasonal variations and the general level of K_d for simulating water temperature profiles and turbulent fluxes of heat and momentum in a small boreal Finnish lake. Modelled values were compared to those measured for the lake during the ice-free period of 2013. The study found a critical threshold for K_d (0.5 m$^{-1}$) in 1-D lake models. Heiskanen et al. (2015) concluded that for too clear waters ($K_d < 0.5$ m$^{-1}$), the model is much more sensitive to K_d. The study recommends a global mapping of K_d to run the FLake model for regions with clear waters ($K_d < 0.5$ m$^{-1}$) for future use in NWP models. The authors also suggest that this global mapping can be time-independent (i.e. with a constant value per lake) (Heiskanen et al., 2015).
The global mapping of K_d and this can be derived from satellite imagery. Potes et al. (2012) used empirically derived water clarity from space-borne Medium Resolution Imaging Spectrometer (MERIS) measurements to test the sensitivity of FLake to this parameter. The sensitivity analysis was conducted using two K_d values, representing the expected extreme water clarity cases for their study (1.0 m$^{-1}$ for clear water and 6.1 m$^{-1}$ for dark water). The importance of lake optical properties was evaluated based on the evolution of LSWT and heat fluxes. Their results showed that water clarity is an essential parameter affecting the simulated LSWT. The daily mean LSWT range increased from 1.2 ºC in clear water to 2.4 ºC in dark water (Potes et al., 2012).

Water clarity measurements are included in water quality monitoring programs; however, global measurements of clarity are not yet available. Satellite remote sensing can provide water clarity observations to the modelling communities at higher spatial and temporal resolutions, to fill the gap of field measurements.

In recent years, a number of algorithms have been devised to retrieve different water optical parameters, including water clarity, from satellite observations for coastal (ocean) and lake waters (Attila et al., 2013; Binding et al., 2007, 2015; Olmanson et al., 2013; Potes et al., 2012; Wu et al., 2009; Zhao et al., 2011). Turbid inland and coastal waters are optically more complex compared to open ocean, and large optical gradients exist. There is more than only one component (phytoplankton species, various dissolved and suspended matters with non-covarying concentrations) in coastal waters and lakes that determines the variability of water-leaving reflectance. Considering this complexity, the development of algorithms for coastal waters and lakes is more challenging. MERIS, which operated from March 2002 to April 2012, collected data from the European Space Agency’s (ESA) Envisat satellite. The spatial resolution and spectral bands settings were carefully selected in order to meet the primary objectives of the mission; addressing coastal monitoring from space. The best possible signal-to-noise ratio, additional channels to measure optical signatures as well as the relatively high spatial resolution of 300 m are some of the specific instrument characteristics (Ruescas et al., 2014). In 2010, ESA launched the CoastColour project to fully exploit the potential of MERIS instrument for remote sensing of coastal zone waters. CoastColour (CC) is providing a global dataset of MERIS full resolution data of coastal zones that are processed with the best possible regional algorithms to produce water-leaving reflectance and optical properties (Ruescas et al., 2014).

The objectives of this study were to: 1) evaluate satellite-derived K_d values for a large lake in the Great Lakes region; 2) apply the evaluated satellite-derived K_d in FLake model to investigate the improvement of model performance to reproduce LSWTs, compared to previous studies using a constant K_d value of 0.2 m$^{-1}$. Therefore, three different values of K_d were used in the simulations: yearly average, monthly average, and a constant value of 0.2 m$^{-1}$ to demonstrate evaluate the impact of a time-independent, lake-specific K_d value in simulating LSWT; and 3) understand the sensitivity of the FLake model to variations in K_d based on the analysis of simulated LSWT, mean water column temperature (MWCT), lake bottom water temperature (LBWT), mixed layer depth (MLD), and water temperature isotherms during the ice-free season on Lake Erie (from April to November). The impact of K_d variations on ice dates (freeze-up, break-up, and duration) and ice thickness was also evaluated.
2 Data and Methods

2.1 Study Site and Station Observations

Lake Erie (42° 11′ N, 81° 15′ W; Fig. 1) is a large shallow temperate freshwater lake covering a surface area of 25,700 km². The lake is characterized by three basins: shallow western, central, and deep eastern basins with maximum depths of 19 m, 25 m, and 64 m, respectively. Lake Erie is monomictic with occasional dimictic years (Bootsma & Hecky, 2003). It is the shallowest and smallest by volume of the Laurentian Great Lakes (Daher, 1999). These characteristics make Lake Erie unique from the other Great Lakes.

The meteorological forcing variables required for FLake model runs include solar (shortwave) and longwave irradiance, air temperature, air humidity, wind speed, and cloudiness. These data were collected from different stations shown in Fig. 1. Mean daily air temperature, wind speed and water temperature measurements were obtained for years 2003–2012, from the National Data Buoy Center (NDBC) of NOAA, station 45005 (41°40′ N, 82°23′ W, and depth: 12.6 m). The station location is shown in Fig. 1 (41°40′ N, 82°23′ W, and depth: 12.6 m). Air temperature is measured 4 m above the water surface and anemometer height is 5 m above the water surface to measure the wind speed, whereas the water surface is at 173.9 m above mean sea level. Water temperature is also measured at 0.6 m below the water line.

Incoming radiation fluxes data was supplied by the National Water Research Institute (NWRI), Environment Canada (EC), from a station located in the western basin of Lake Erie (see Fig. 1). Daily shortwave irradiance measurements were available only for 2004 and 2008. Therefore, a daily time series of solar irradiance for the entire study period (2003–2012) was completed for the NDBC station using solar irradiance model data (see Sect. 2.2). Longwave irradiance was measured only in 2008 at the NWRI-EC station. An empirical equation (see Sect. 2.2) was therefore employed to obtain longwave irradiance for the full period of study (2003–2012).

FLake requires information on water transparency (downward light K_d) as input for model runs. MERIS satellite imagery was used to derive K_d for the NDBC station during the study period. The method is described in details in Sect. 2.3. Available Secchi disk depth (SDD) field measurements were collected by EC research cruises on board the Canadian Coast Guard Ship Limnos and utilized in this study to evaluate the satellite-derived water clarity. The cruise visited Lake Erie at a total of 89 distributed stations in five different years (September 2004; May, July, and September 2005; May and June 2008; July and September 2011; and February 2012).
2.2 Shortwave and Longwave Irradiance

The SUNY model, a satellite solar irradiance model, has been developed to exploit Geostationary Operational Environmental Satellites (GOES) for deriving solar irradiance using cloud, albedo, elevation, temperature, and wind speed observations (Kleissl et al., 2013). The basic principles of solar-irradiance modelling based on inputs from geostationary satellites and atmospheric models are described in Kleissl et al. (2013). Data from these sources are used to generate site and time specific high-resolution maps of solar irradiance with the SUNY model. The daily mean solar irradiance data for the present study was obtained from the second version of the SUNY model (Version 2.4), available in SolarAnywhere® (https://www.solaranywhere.com). The model provides a gridded data set with a spatial resolution of one tenth of a degree (ca. 10 km). The solar irradiance data was extracted from a tile corresponding to the NWRI station (see Fig. 1) for 2004 and 2008, when observations were available for evaluation, and also for FLake model run on Lake Erie for the full study period (2003-2012). There is a strong agreement ($R^2 = 0.93$) between model-derived and measured solar irradiance at the NWRI station. The SUNY model slightly underestimates observations by 2.18 Wm$^{-2}$ ($N = 362$, RMSE = 21.58 Wm$^{-2}$, MBE = -2.18 Wm$^{-2}$, $I_a = 0.88$; see Sect. 2.5 for details).

Longwave irradiance was computed on a daily basis using the equation of Maykut and Church (1973), as implemented in the Canadian Lake Ice Model (CLIMo) (Duguay et al., 2003):

$$E = \sigma T^4 (0.7855 + 0.000312 G^{2.75})$$ \hspace{1cm} \text{Eq. (1)}$$

where T is the air temperature at screen height (°K) and G is the cloudiness in tenth from meteorological stations.

Longwave irradiance calculated from Eq. 1 was evaluated against observations from the NWRI-EC station, only available in 2008. The two datasets are highly correlated ($R^2 = 0.74$) with the equation underestimating measured irradiance by 0.86 Wm$^{-2}$ ($N = 194$, RMSE = 17.74 Wm$^{-2}$, MBE = -0.86 Wm$^{-2}$, $I_a = 0.76$). Model-derived incoming shortwave and longwave fluxes were used as input in FLake model simulations for subsequent analyses in NDBC station over the 2003-2012 period.

2.3 Satellite-Derived Extinction Coefficient

MERIS operated on-board the ESA Envisat polar-orbiting satellite until April 2012. The sensor was a push-broom imaging spectrometer which measured solar radiation reflected from the Earth’s surface at high spectral and radiometric resolutions with a dual spatial resolution (300 m and 1200 m). Measurements were obtained in the visible and near-infrared part of the electromagnetic spectrum (across the 390 nm to 1040 nm range) in 15 spectral bands during daytime, whenever illumination conditions were suitable, and with a full spatial resolution of 300 m at nadir, with a 68.5° field-of-view. MERIS scanned the Earth with a global coverage of every 2-3 days.
In this study, a total of 326 full resolution archived MERIS images encompassing the NDBC station in Lake Erie (see Fig. 1) were acquired from CC (Version 2) products through the Calvalus on-demand processing service for the period of 2003-2012. The level 2 products are generally geolocated geophysical products and CC Level2W products are the result of in-water processing algorithms to derive optical parameters from the water leaving reflectance. These parameters include inherent optical properties (IOPs), concentrations of some water constituents, and other optical water parameters such as spectral vertical K_d. The IOP parameters are first derived applying two different inversion algorithms: neural network (NN) and Quasi Analytical Algorithm (QAA). The derived IOPs are then converted to estimate constituents’ concentrations and apparent optical properties (AOP), including diffuse K_d for different spectral bands applying Hydrolight simulations (Ruescas et al., 2014).

The diffuse K_d product (the average value between visible spectral bands) in CC MERIS Level2W data was extracted for the pixel at the geographic location of the NDBC station. The satellite-derived K_d values were also extracted for pixels on the same day and location as the Limnos cruise stations to evaluate the CC-derived diffuse K_d values against SDD in situ data collected during Limnos cruises. A valid pixel expression was defined in all pixel extraction steps that excluded pixels with properties listed in Table 1.

2.4 FLake Model and Configuration

The FLake model is a self-similar parametric representation (assumed shape) of the temperature structure in the four media of the lake including water column, bottom sediments, and in the ice and snow. The water column temperature profile is assumed to have two layers: a mixed layer with constant temperature and a thermocline that extends from the base of mixed layer to the lake depth. The shape of thermocline temperature is parameterized using a fourth-order polynomial function of depth that also depends on a shape coefficient C_T. The value of C_T lies between 0.5 and 0.8 so that the thermocline can neither be very concave nor very convex. FLake has an optional scheme for the representation of bottom sediments layer, which is based on the same parametric concept (De Bruijn et al., 2014; Martynov et al., 2012). The system of prognostic equations for parameters is described in Mironov (2008).

The prognostics ordinary differential equations are solved to estimate the thermocline shape coefficient, the mixed layer depth, bottom, mean and surface water column temperatures, and also parameters related to the bottom sediment layers (Martynov et al., 2012; Mironov, 2008; Mironov et al., 2010). The same parametric concept is applied for the ice and snow layers, using linear shape functions (Martynov et al., 2012). The mixed layer depth is calculated considering the effects of both convective and mechanical mixing, also accounting for volumetric heating which is through the absorption of net shortwave radiation (Thiery et al., 2014). The non-reflected shortwave radiation is absorbed after penetrating the water column in accordance with the Beer-Lambert law (Gordon, 1989; Martynov et al., 2012; Mironov, 2008; Mironov et al., 2010). The same parametric concept is applied for the ice and snow layers, using linear shape functions (Martynov et al., 2012). The mixed layer depth is calculated considering the effects of both convective and mechanical mixing, also accounting for volumetric heating which is through the absorption of net shortwave radiation (Thiery et al., 2014). The non-reflected shortwave radiation is absorbed after penetrating the water column in accordance with the Beer-Lambert law (Gordon, 1989; Martynov et al., 2012; Mironov, 2008; Mironov et al., 2010).

Stand-alone FLake simulations were conducted for the NDBC station. The setup condition of NDBC buoy station, such as height of wind measurement (5 m), height of air temperature sensor (4 m), and the geographic location and depth of this site (41°40’N, 82°23’W, and depth: 12.6 m) were used to configure the model. The measured meteorological parameters and
model-derived irradiance were also used to force the FLake model. A fetch value of 100 km was used to run all simulations. It was found that there is only little sensitivity to modifications in this parameter for Lake Erie. The same result was found for Lake Kivu in Thiery et al. (2014). The bottom sediments module was switched off in all simulations and the zero bottom heat flux condition is adopted. The initial temperature value for the upper mixed layer and the lake bottom were 4°C. Mixed layer thickness had the initial value of 3 m. The simulations were run in a daily time step (using daily forcing data) for 2003-2012.

The ability of FLake to reproduce the observed temperature variations using different K_d values was tested by comparing the simulated LSWT to the corresponding in situ observations in the NDBC station. Also, the model sensitivity to variations in water clarity was assessed studying the LSWT, MWCT, LBWT, MLD, isotherms, ice phenology, and ice thickness.

2.5 Accuracy Assessment

To assess the model outputs, three statistical indices were calculated: the root mean square error (RMSE), the mean bias error (MBE), and the index-of-agreement (I_a). RMSE is a comprehensive metric that combines the mean and variance of model errors into a single statistic (Moore et al., 2014). The MBE is calculated as the mean of the modelled values minus the in situ observations. Therefore, a positive (negative) value of this error shows an overestimation (underestimation) of the parameter of interest. I_a is a descriptive measure of model performance. It is used to compare different models and also modelled against observed parameters. I_a was originally developed by Willmott in the 1980s (Willmott, 1981) and a refined version of it was presented by Willmott et al. (2012). The refined version, which was adopted in this study, is dimensionless and bounded by -1.0 (worst performance) and 1.0 (the best possible performance). These statistical indices are considered as robust measures of model performance (e.g. Hinzman et al., 1998; Kheyrollah Pour et al., 2012; Willmott and Wicks, 1980).

3 Results and Discussion

3.1 Satellite-Derived K_d

3.1.1 Variations of K_d at NDBC Station

Fig. 2 shows the variations of CC-derived K_d for the NDBC station during the full study period (2003-2012). Lake Erie (specifically its shallow regions) is more prone to re-suspension of bottom sediments compared to the other Great Lakes, which is the most important factor that leads to lower water clarity (Binding et al., 2010). The results from applying the CC algorithm on MERIS satellite imagery show that the highest K_d values in the NDBC station are related to the turnover times in spring and fall. The results from applying the CC algorithm on MERIS satellite imagery show that the maximum value of K_d was 3.54 m\(^{-1}\), estimated in April 2003. A minimum value of 0.58 m\(^{-1}\) was estimated in June 2007. The average value of K_d during the study period was 0.90 m\(^{-1}\) with a standard deviation of 0.38 m\(^{-1}\). Hence, these values, identified as the average, the lower, and the upper limits of clarity at the NDBC station were used to carry out a sensitivity analysis with FLake (see Sect. 3.2.2).
3.1.2 Evaluation of CoastColour \(K_d \)

The validation of satellite observations against in situ data is important, because the in situ data are still considered as the most accurate measurement of water clarity. The assessment of the satellite-derived \(K_d \) retrieval reliability highly depends on the comparison with independent in situ SDD measurements. The general form of the relationship between \(K_d \) and SDD was established by the pioneer study of Poole and Atkins (1929):

\[
SDD \times K_d = K \quad \text{Eq. (2)}
\]

where \(K \) is a constant value of 1.7 (Poole and Atkins, 1929). Following this important work, there were other studies that derived an empirical relationship between the two parameters. Studies have found a high variability of the constant value \(K \) depending on the type of the lake considered (Koenings and Edmundson, 1991). Armengol et al. (2003) also showed that \(K_d \) and SDD are negatively correlated and they developed an empirical power relation between these two parameters using Eq. (2).

In this study, applying a cross validation approach, an empirical relation was developed between in situ measured SDD and CC-derived \(K_d \). SDD measurements were conducted 117 times during cruises on Lake Erie from 2004 to 2012. These spatially-distributed measurements have had minimum, maximum, mean, and standard deviation values of 0.2, 11, 3.69, and 2.68 m, respectively. CC Level2W satellite products were acquired on the same day as the in situ measurements. Applying defined flags produced 49 data pairs (matchup dataset) of CC observations of \(K_d \) and SDD in situ data that were collected on the same day and location.

The matchup dataset was divided into training and testing data in 100 iterations. In each iteration, the data used for the equation’s training and evaluation were kept independent, where 70% of the sample was used for equation calibration and 30% for evaluation. Ordinary least square regression was used in the calibration step of each iteration to relate the in situ measurements of SDD to the CC-derived \(K_d \). Locally tuned equations were derived from this step and applied on SDD observations to predict \(K_d \) in testing matchup data. The statistical parameters of the model performance were derived between the estimated \(K_d \) from SDD observations and the paired CC-derived values. These steps were repeated for 100 iterations; and the final statistical indices, slope and power of the locally tuned equation was reported as the average of the ones derived over all iterations.

Results from the above procedure show that \(K_d \) can be derived from SDD, using the equation \(K_d = 1.64 \times SDD^{-0.76} \), with a strong determination of coefficient value \((R^2 = 0.78) \). Arst et al. (2008) obtained a similar regression formula between SDD and \(K_d \) for the boreal lakes in Finland and Estonia representing different types of water, expanding from oligotrophic to hypertrophic. Because there is a good agreement between \(K_d \) and the corresponding ones estimated from in situ measured SDD (\(N = 49 \), RMSE = 0.63 m\(^{-1}\), MBE = -0.09 m\(^{-1}\), \(I_a = 0.65 \); Fig. 3), the satellite-derived water clarity were considered to be representative of \(K_d \) and were deemed to be correct and were used in the modelling for this study.

However, SDD is not always describing \(K_d \) values. SDD is a suitable characteristic to describe water transparency for small values of \(K_d \). For high values of \(K_d \) (ranging above 4 m\(^{-1}\)), Arst et al. (2008) and Heiskanen et al. (2015) suggested that SDD
is unable to describe any changes in K_d. Fig. 3 also shows that SDD cannot describe the scatter of K_d for values above 4 m$^{-1}$. Therefore, the estimation of K_d from in situ measurements of SDD should be used with caution. Direct measurements of K_d in the field is not widely available. These limitations motivate the investigation on the potential of integrating satellite-based estimations of K_d into lake models.

5 3.2 FLake Model Results

3.2.1 Improvement of LSWT Simulations with Satellite-Derived K_d

Martynov et al. (2012) focused on 2005 to 2007 to run FLake at the NDBC station using a constant value of 0.2 m$^{-1}$ for K_d. They simulated the lake properties using both realistic and excessive depths of 20 and 60 m, respectively, for a grid tile corresponding to the NDBC station. They showed that applying a more realistic lake depth parameterization improved the performance of the model to reproduce the observed surface temperature. In this section, K_d values were derived from the CC algorithm for different months during the same years (2005-2007) as in Martynov et al. (2012).

Table 2 displays the average K_d values for each month of these years. The monthly averaged values are only focused on the months of the year when both LSWT observations and CC-derived K_d values were available. The average value of K_d in these months in each year is considered as the average value of K_d for that year.

Fig. 4 compares the results of different LSWT FLake simulations with observations at the NDBC station. LSWT observations have maximum values of 27.53 °C, 26.48 °C, and 25.46 °C in August during 2005, 2006 and 2007. The minimum values of 2.71 °C, 7.3 °C, and 3.42 °C were observed in December 2005, and April in 2006 and 2007. The average LSWT observations in 2005, 2006, and 2007 have values of 18.45 °C, 17.12 °C, and 17.75 °C, respectively. Four different simulation schemes were made which were then compared to the observed LSWT. The simulated LSWT values in Fig. 4 were produced by first applying $K_d=0.2$ m$^{-1}$ from Martynov et al. (2012) using both the real lake depth at the station (12.6 m: CRCM-12.6) and also a tile depth corresponding to the station in their study (20 m: CRCM-20). Then, simulations using the yearly average CC-derived K_d for each year of study were plotted (Avg). The K_d values derived from the monthly average of each year were used to simulate the surface water temperature and produce a merged LSWT product (Merged). Both Avg and Merged simulations used the real lake depth at NDBC station (12.6 m).

Comparing LSWT in situ observations (Obs) with the modelled values in Fig. 4 demonstrated that in Avg and Merged simulations for 2005-2007, surface temperature in spring (April-June) was modelled warmer in spring (April-June) and colder in summer (July-September) and fall (October-November) than in situ observations (spring: $\text{MBE}_{\text{Avg}}=1.31$ °C, $\text{MBE}_{\text{Merged}}=1.25$ °C; summer: $\text{MBE}_{\text{Avg}}=-0.72$ °C; $\text{MBE}_{\text{Merged}}=-0.75$ °C; fall: $\text{MBE}_{\text{Avg}}=-1.82$ °C, $\text{MBE}_{\text{Merged}}=-1.99$ °C; see Fig. 5 for seasonal-based performance of simulations). CRCM-12.6 and CRCM-20 were reproducing a colder LSWT in average with maximum under-prediction in July-August (for 2005-2007: \(-2.93^\circ C < \text{MBE}_{\text{July-Aug}} < -0.99^\circ C\)). Simulation with a larger depth (CRCM-20) tended to more slowly gain (lose) heat more slowly in spring (fall), compared to all other simulations.
The **overall** performance of each simulation is summarized in Table 3 during the period of data availability. For all years, the average and merged simulations perform better than simulations using K_d (0.2 m$^{-1}$) as in Martynov et al. (2012), with improvement in RMSE and MBE for both real depth and tile depth. In all three years, LSWT simulated from the K_d value employed in Martynov et al. (2012) resulted in an underestimation (CRCM-12.6: MBE= -1.52 °C, -0.98 °C, -1.08 °C; CRCM-20: MBE=-1.54 °C, -1.09 °C, -1.35 °C; during years 2005, 2006, and 2007, respectively). In 2005, the average of K_d for the year demonstrates a better performance compared to the merged results; contrary to the results of 2007. However, for the merged results in 2006, the MBE was improved compared to the simulation using the average K_d whereas its performance decreased in terms of RMSE. The extent of K_d variations in each month might not be captured by the available MERIS images due to cloud coverage in MERIS images or the absence of any satellite overpass. Therefore, a yearly-average K_d can be potentially closer to the actual value of K_d. For this reason, the merged results cannot always perform better than average simulations.

Fig. 5 illustrates the scatterplots of simulated LSWT for all four different runs including three years of data (2005-2007), in comparison with the corresponding in situ observations. All simulated results are in a high agreement with in situ measurements. CRCM simulations (both depths of 12.6 and 20 m) under-predict LSWT with MBE values of -1.26 °C and -1.37 °C, respectively. The under-prediction of these model runs is stronger, particularly for LSWT above 12°C, which can be explained by the K_d value used. This is because, no matter what depth is used in simulations (either actual or tile depth), both CRCM runs have larger MBE compared to Ave and Merged simulations. However, the CRCM-20 simulation tends to produce the coldest LSWT (the most under-prediction; MBE = -1.37 °C). This is due to the lake depth value considered for the model run which corresponds to the tile depth as opposed to the other simulations that were based on using the actual depth at station.

Fig. 5-a and -b show that the resulting LSWT from yearly average (Ave) and monthly average (Merged) K_d are not significantly different, whereas simulations with yearly average K_d reproduced LSWT with improved RMSE and MBE values compared to monthly average (Avg: RMSE=1.54 °C, MBE=-0.08 °C; Merged: RMSE=1.57 °C, MBE=-0.14 °C). It is possible that the actual K_d value is best represented by the yearly average value. Therefore, using a constant annual open water season value for K_d could be potentially sufficient to simulate LSWT in 1-D lake models with relatively high accuracy (the range of K_d variations that brings the most sensitivity for the modelling is discussed in Sect. 3.2.2). Both CRCM simulations (Fig. 5-c: both depths of 12.6 and Fig. 5-d: depth of 20 m) under-predict LSWT (for LSWT values larger than ca. 7°C), with MBE values of -1.26 °C and -1.37 °C, respectively. The under-prediction of these model runs was stronger, particularly for LSWT above 12°C, which can be explained by the K_d value used. This is because, no matter what depth is used in simulations (either actual or tile depth), both CRCM runs have larger MBE compared to Ave and Merged simulations.

However, the CRCM-20 simulation tended to produce the coldest LSWT (the most under-prediction; MBE = -1.37 °C). This is due to the lake depth value considered for the model run which corresponds to the tile depth as opposed to the other simulations that were based on using the actual depth at station.

The time-dependent (monthly average) K_d did not improve simulation results for Lake Erie (K_d ranging from 0.58 to 3.54 m$^{-1}$ with average value of 0.90 m$^{-1}$ during open water seasons of 2003-2012). However, comparing results from Fig. 5-a and –
e showed improvement in LSWT simulations when a lake-specific value of K_d is used (Avg: $\text{RMSE}=1.54 ^\circ \text{C}$, $\text{MBE}=-0.08 ^\circ \text{C}$; CRCM-12.6: $\text{RMSE}=1.76 ^\circ \text{C}$, $\text{MBE}=-1.26 ^\circ \text{C}$). Under-prediction of LSWT decreased when the yearly-average CC-derived K_d values were used, rather than a generic constant value (0.2 m$^{-1}$). Heiskanen et al. (2015) suggested that the effect of K_d seasonal variations on LSWT simulations are not significant for lakes with K_d values higher than 0.5 m$^{-1}$ (e.g. Lake Erie). Therefore, in the absence of reliable values of the temporal evolution of K_d, a lake-specific, time-independent, and constant value of K_d can be used in 1-D lake models when the K_d values are higher than 0.5 m$^{-1}$.

Martynov et al. (2012) concluded that applying a more realistic lake depth parameterization improves the FLake model performance. Using the realistic lake depth (12.6 m) at the NDBC station slightly improves the model performance in reproducing LSWT compared to simulation employing the corresponding tile depth (20 m) (CRCM-12.6: $\text{RMSE}=1.76 ^\circ \text{C}$, MBE = -1.26 °C; CRCM-20: $\text{RMSE}=1.88 ^\circ \text{C}$, MBE = -1.37 °C) (Fig. 5-c and -d).

3.2.2 Sensitivity of FLake to K_d Variations

The sensitivity of FLake to different values of K_d to reproduce LSWT, MWCT, LBWT, MLD, isotherm, ice phenology and thickness was investigated in this section for year 2008. As indicated previously (Sect. 2.1), shortwave irradiance measurements were available in that year and longwave irradiance was also measured from May to October 2008. Therefore, longwave irradiance for the other months of 2008 was modelled as described in Sect. 2.2 to fill the temporal gaps. Fig. 6 presents simulation results for LSWT, MWCT, and LBWT using the real lake depth at NDBC station, and the lowest, average, and highest values of K_d observed in the study period (minimum K_d=0.58 m$^{-1}$, average K_d=0.90 m$^{-1}$, maximum K_d=3.54 m$^{-1}$). The water temperature simulation from CRCM-12.6 (using $K_d=0.2$ and realistic depth at station) simulation was also plotted.

In the case of extreme clear water (CRCM-12.6), LSWT showed smoother variations during the open water season in 2008 as opposed to the darkest water simulation (maximum or Max) which displayed more abrupt LSWT variations (Fig. 6). This is because solar radiation is absorbed more in dark waters with low clarity due to existing particles in water. It penetrates less deeply and warms up only the shallow surface layer (which shows in lower LBWT; see Fig. 6-c) causing thinner mixing depth (Fig. 6-d and Fig. 8). The high temperature of this shallow layer causes an increase in latent and sensible heat fluxes. Therefore, the shallow mixed layer exchanges heat faster with the atmosphere, resulting in sudden surface water temperature variations as opposed to clear waters. The fast heat exchange with atmosphere resulted in warmer LSWT during spring (start of heating season) and colder LSWT in fall for dark water as opposed to clear one. On average, the darkest water simulation (Max) resulted in 0.09 °C higher LSWT compared to the average (Avg) simulation, whereas the clear water (minimum or Min) simulation produced on average 0.02 °C colder LSWT during 2008. CRCM-12.6 simulation with K_d value of 0.2 resulted in a larger difference compared to Avg simulation, 0.55 °C colder LSWT. The comparison of the simulated LSWT results showed that FLake simulated LSWT was not significantly sensitive to K_d values when this value was varied in the range of our Min to Max K_d. However, the sensitivity increased rapidly for K_d values less than our Min (0.58 m$^{-1}$). This result supports the study of Rinke et al. (2010) that the thermal structure of lakes is particularly sensitive...
to changes in K_d when its value is below 0.5 m$^{-1}$. More recently, Heiskanen et al. (2015) confirmed the critical threshold of K_d (ca. 0.5 m$^{-1}$). They suggested that the response of 1-D lake models to K_d variations is nonlinear. The models are much more sensitive if the water is estimated to be too clear. Heiskanen et al. (2015) recommended to use a value of K_d that is too high rather than too low in lake simulations, if the clarity of lake is not known exactly.

The MWCT and LBWT in the darkest condition (Max) were less than for all other clear water simulations. This is because the lower layers in dark waters accumulate less heat during the heating season as opposed to clear waters which results in less heat storage and lower water column temperature in dark waters (Heiskanen et al., 2015; Potes et al., 2012). The MWCT decreases by 0.94 °C (increases by 0.63 °C) when maximum (minimum) K_d value was used instead of its average value during the study period. The MWCT increases by 2.25 °C when using K_d value of 0.2 m$^{-1}$ rather than the average value. Changes in K_d value from its maximum (minimum) to its average value also causes a decrease (increase) of -0.67 °C (0.67 °C) in the LBWT. The increase in LWBT was even larger when K_d value of 0.2 m$^{-1}$ was used instead of its average value (6.96 °C). Therefore, K_d variations have had a larger impact on MWCT and LBWT than on LSWT, and the largest difference was when K_d is estimated to be extremely clear.

Fig. 7 displays the simulated isotherms derived from using different K_d values. It shows that the mixed layer in dark waters is warmer in spring and summer and colder in fall. There are a number of factors determining the mixed layer temperature in lakes, including the radiation fluxes (sensible heat, latent heat, and longwave radiation), and cooling effects from the water below. Persson and Jones (2008) concluded that for dark waters, the combination of these heating and cooling effects leads to a warmer epilimnion initially. The radiation is used to warm up a thinner layer in dark waters leading to higher (lower) temperatures in spring and summer (fall). However, a lower temperature in the mixed layer is followed due to the gradual decrease in radiative forcing and increased effect of cooling from the layers below. Fig. 7 also supports observations by Persson and Jones (2008) and Heiskanen et al. (2015) that the depth of the thermocline layer is always deeper in clear waters due to the faster heat distribution between different underneath layers. The deepening of the thermocline layer in clear waters is faster compared to dark waters. The reason is that the heat transfer in dark waters is slower between water layers due to the sharp density gradient between layers which forms an effective barrier for the mixing to deepen the thermocline.

Fig. 6 is derived from isotherm to only focusing on the variations of the MLD in 2008, using different values of K_d (Min, Ave, and Max K_d, and CRCM-12.6) in simulations. All simulations showed two turnover (complete mixing) events, spring and fall. Full mixing in spring was at the same time for all simulations; however, fall full mixing occurred at different dates for each simulation. Fall turnover in CRCM-12.6 was at the end of summer (August 28), while the other three runs show that the fall turnover took place in late fall, before ice forms. Full mixing in the Min simulation was in early November (November 3), earlier than the Avg and Max simulations (November 21).

In the darkest water simulation (Max), the MLD was shallower than the other simulations (an average difference of 4.94 m in 2008 between two simulations of Max and CRCM-12.6, with extreme K_d values). Clear waters have a deeper mixed layer when the solar radiation can penetrate further and distribute to a larger volume in the water column. Also, due to the weak...
density gradient in clear waters, wind-induced turbulent kinetic energy can destroy the density stratification to a deeper layer and form the mixed layer. This layer is shallower in dark waters, even with the same wind forcing. CRCM-12.6 produced a MLD of 3.47 m deeper compared to Avg simulation, whereas the Min (Max) simulations resulted in MLD of 1.15 m (1.47 m) deeper (shallower) compared to the Avg simulation. Hence, clear water simulateds deeper MLD; and the effect of Kd on the MLD was larger when the Kd value was estimated to be too clear.

Fig. 8 shows the impact of Kd variations on lake ice phenology and thickness in winter 2008 (January-March). Freeze-up corresponds to the earliest date that the NDBC station is completely covered by ice, and the earliest date the station is completely free of floating ice is defined as break-up. The Avg simulation reproduced similar ice phenology as the Max simulation, whereas Min and CRCM-12.6 resulted in the similar break-up/freeze-up dates. The break-up in CRCM-12.6 and Min simulations were on March 23, one day earlier than Max and Avg simulations and freeze-up occurred on January 24, two days after Max and Avg simulations. CRCM-12.6 and Min simulations reproduced 1.28 and 1.27 cm thinner ice than Avg simulation in 2008, respectively. The darkest water (Max) reproduced 0.21 cm thicker ice in 2008 compared to the Avg simulation. The ice sheet formed later in clear waters (CRCM-12.6 and Min) and disappeared earlier compared to dark waters (Max and Avg), resulting in a shorter ice cover duration (3 days) and hence thinner ice in clear water simulations.

Lake morphological properties determine ice cover as well as climatic factors. Among morphological aspects, lake depth is the most important factor that can impact the ice cover by influencing the amount of heat storage in the water and hence the time needed for the lake to cool and ultimately freeze (Brown and Duguay, 2010). For a given depth and climatic condition, however, the amount of heat storage is determined by water clarity. Dark waters store more heat in a shallower layer. Therefore, the heat can be transferred faster to the atmosphere through the lake surface, resulting in an earlier freeze-up as mentioned in Heiskanen et al (2015) that freeze-up occurs earlier in darker waters. However, as shown by simulations with 12.6 m, ice phenology in NDBC station was minimally affected by Kd value in FLake. It must be noted that these results could not be verified due to the lack of ice phenology observations. For a larger depth or in a different model, the impact of Kd values in ice onset should be investigated.

3.3 Spatial and Temporal Variations in Kd

As it was described in the previous section, variations in water clarity plays an important role in defining lake heat budget and thermal stratification and thus is a significant parameter for processes in the air-water interface. However, the long term spatial and temporal trends of water clarity cannot be achieved through discontinuous conventional point-wise in situ sampling. These observations can be provided from satellite measurements. This section demonstrates the strength of satellite observations to detect the spatial and temporal variations of Kd in Lake Erie. Spatial variations of Kd derived from the CC algorithm are shown in Fig. 9 for a selected day (3 September 2011). This particular day of 2011 was selected as the lake experienced its largest algal bloom in its recorded history in that year, before the new recent record of 2015 (Michalak et al., 2013; NOAA, 2015). The bloom was expanding from the western basin into the central basin. Algal bloom is one of the factors affecting the water clarity of Lake Erie (NOAA, 2015). Other parameters include the concentrations of suspended and dissolved matters in the
lake. The western basin is the shallowest region of the lake; and therefore is the most vulnerable to sediment re-suspension that also results in reducing water clarity. The map shows that Lake Erie experienced different levels of clarity in various locations with an average K_d value of 0.90 m$^{-1}$ (with standard deviation of ±0.80 m$^{-1}$, as shown as 0.90±0.80 m$^{-1}$ hereinafter) over the entire lake on this particular day. The NDBC station is also shown on the satellite-derived map as a reference (with K_d = 0.87 m$^{-1}$ on 3 September 2011).

Since fully cloud-free MERIS satellite images for consecutive months were only available in 2010, four months (May-August 2010) were selected to illustrate temporal variations in K_d on a monthly-basis for one selected year (Fig. 10). The spatial average of K_d over the full lake for the specific days in May, June, July, and August was 0.82±0.85 m$^{-1}$, 0.72±1.10 m$^{-1}$, 0.73±1.20 m$^{-1}$, 0.78±0.55 m$^{-1}$, respectively. The western basin was always experiencing the lowest levels of water clarity in comparison to other regions of the lake, with a maximum K_d in May. This can be the result of a spring algal bloom, and also wind-driven re-suspension of sediments. K_d at the NDBC station for these selected days varied between 0.68 m$^{-1}$, 0.62 m$^{-1}$, 0.66 m$^{-1}$, and 0.85 m$^{-1}$ from May to August 2010, respectively.

Two MERIS images with full coverage of Lake Erie were only available in the month of May for two selected consecutive years (2008 and 2009) to show the inter-annual changes in K_d value. Hence, the MERIS images of May 2008 and May 2009 were selected to show variations in K_d between the two years. Although the images are for the same month of the year, K_d still varied across the lake (Fig. 11). In the selected day of May 2008, a spatial average value of 0.77±0.49 m$^{-1}$ was estimated for the entire lake, while on 17 May 2009 the spatial average value was 0.90±0.93 m$^{-1}$. Comparing the estimated maps for the two years suggested that the spring bloom in 2009 was stronger than the one in 2008 for the western basin. However, algal bloom in all basins of Lake Erie for the complete year of 2008 was recorded as the third largest that the lake experienced before the occurrence of the breaking record blooms in 2011 and 2015 (Michalak et al., 2013; NOAA, 2015). K_d value estimated for the NDBC station was 0.69 and 0.62 m$^{-1}$ in 29 May 2008 and 17 May 2009, respectively.

Spatial variability of K_d in Lake Erie shows that the simulated thermal structure of the eastern basin would potentially differ significantly from the one simulated for the western basin. The spatial variations of K_d have to be considered in Lake Erie simulations, specifically for the eastern basin, which has K_d values in the critical threshold range (less than 0.5 m$^{-1}$). Therefore, in 3-D lake models, the spatial variations in K_d need to be taken into account. As well, a lake-specific constant value cannot be used for simulating the thermal structure of the full lake. Finally, the temporal variations of K_d did not significantly change the simulation results for the NDBC station. However, this needs to be confirmed for other locations of the lake, due to the importance of depth on the simulation results.

4 Summary and Conclusion

Spatial and temporal variations of K_d in Lake Erie were derived from the globally available satellite-based CC product during open water seasons 2002–2003–2012. The CC product was evaluated against SDD in situ measurements. CC-derived K_d values, modelled incoming radiation flux data, in addition to complementary meteorological observations during the study period,
were used to force the 1-D FLake model. The model was run for a selected site (NDBC buoy station) on Lake Erie, a large shallow temperate freshwater lake. FLake was run with the range of clarity values acquired from satellite observations. Results were compared to a previous study which assumed a constant K_d value due to the lack of data. Results clearly showed that applying satellite-derived K_d values improves FLake model simulations using a derived yearly average value as well as monthly averaged values of K_d. Although K_d varies in time, a time-invariant (constant) annual value is sufficient for obtaining reliable estimates of lake surface water temperature (LSWT) with FLake for Lake Erie NDBC station. It was also shown that the model is very sensitive to variations in K_d when the value is less than 0.5 m$^{-1}$. This finding is in agreement with the study of Rinke et al. (2010) and the recent study of Heiskanen et al. (2015) who determined that the impact of seasonal variations of K_d on the simulated thermal structure is small, for a lake with K_d values larger than 0.5 m$^{-1}$. The studies suggested that the response of 1-D lake models to K_d variations is nonlinear. The models are much more sensitive if the water is estimated to be too clear. Results of our study showed that the sensitivity to K_d variations was more pronounced in simulation results for mean water column temperature (MWCT), lake bottom water temperature (LBWT), and mixed layer depth (MLD) compared to LSWT. Results of this study have important implications for the lake modelling community, demonstrating that understanding the thermal regime of lakes and show that the transparency of lakes can impact physical processes by influencing changes in seasonal mixing regime. Integrating satellite-derived lake specific K_d values can improve the performance of 1-D lake models compared to using a “generic” constant K_d value. Although field measurements of K_d are not widely available, this study demonstrates the strength of satellite observations and introduces them as a reliable data source to provide lake models with global estimates of K_d with high spatial and temporal resolutions. However, the weakness of this method is that the availability of satellite-derived K_d product can be limited due to cloud coverage or satellite overpass. Also, the in situ measurements are still required for validating satellite observations, because the in situ data collection remains the most accurate solution for water clarity measurement. The accuracy of the satellite-derived K_d product has to be verified for the water body of interest, especially for the ones with complex optical properties. After validation, the on-demand globally available CC product can be simply used for the water body of interest, as a source to fill the gaps in K_d in situ observations, and improve the performance of parameterization schemes and, as a result, further improve the NWP and climate models. Although MERIS is no longer active, the Ocean and Land Colour Instrument (OLCI) to be operated on the ESA Sentinel-3 satellite (launched on February 16, 2016) will provide continuity of MERIS-like data. OLCI has MERIS heritages and improves upon it with an additional six spectral bands. Therefore, investigation of the Sentinel-3 potential to provide lake modelling community with the water clarity information is the next step of the current study. Also, the possible improvement in FLake output, when forcing the model with air humidity data collected directly at the station, can be examined in the future studies.
Author Contribution

The presented research is the direct result of a collaboration with the listed co-authors. All materials in composition of the research article is the sole production of the primary investigator listed as first author. Dr. Claude R. Duguay and Dr. Homa Kheyrollah Pour supported this research through comments and advice related to the FLake model. The manuscripts were edited for content and composition by the co-authors.

Acknowledgment

The authors would like to thank Dr. Caren Binding (Environment and Climate Change Canada) for providing the optical in situ data of Lake Erie, Dr. Ram Yerubandi (Environment and Climate Change Canada) for providing the meteorological station data for Lake Erie, and Dr. Andrey Martynov for providing advice related to running the FLake model. Financial assistance was provided through a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Claude Duguay. We also thank three anonymous reviewers for their valuable comments, which helped improve the manuscript.

References

Table 1 Flags of excluded pixels

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 1P</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glint_risk</td>
<td>Land</td>
<td>AOT560_OOR (Aerosol optical thickness at 550 nm out of the training range)</td>
</tr>
<tr>
<td>Suspect</td>
<td>Cloud</td>
<td>TOA_OOR (Top of atmosphere reflectance in band 13 out of the training range)</td>
</tr>
<tr>
<td>Land_ocean</td>
<td>Cloud_ambiguous</td>
<td>TOSA_OOR (Top of standard atmosphere reflectance in band 13 out of the training range)</td>
</tr>
<tr>
<td>Bright</td>
<td>Cloud_buffer</td>
<td>Solzen (Large solar zenith angle)</td>
</tr>
<tr>
<td>Coastline</td>
<td>Cloud_shadow</td>
<td>NN_WLR_OOR (Water leaving reflectance out of training range)</td>
</tr>
<tr>
<td>Invalid</td>
<td>Snow_ice</td>
<td>NN_CONC_OOR (Water constituents out of training range)</td>
</tr>
<tr>
<td></td>
<td>MixedPixel</td>
<td>NN_OOTR (Spectrum out of training range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2R_WHITECAPS (Risk of white caps)</td>
</tr>
</tbody>
</table>
Table 2 CC-derived average values of Kd for each month (2005-2007). The values correspond to the time of year when water LSWT observations, as well as the CC derived Kd values, are available.

<table>
<thead>
<tr>
<th>Year</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>--</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.79</td>
<td>1.07</td>
<td>0.92</td>
<td>0.97</td>
<td>0.81</td>
</tr>
<tr>
<td>2006</td>
<td>0.82</td>
<td>0.70</td>
<td>0.62</td>
<td>0.65</td>
<td>0.77</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.71</td>
</tr>
<tr>
<td>2007</td>
<td>0.86</td>
<td>0.72</td>
<td>0.64</td>
<td>0.65</td>
<td>0.76</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Table 3 Simulated LSWT compared to in situ observations (2005 – 2007). Period corresponds to the time of year when LSWT and K_d values were available.

<table>
<thead>
<tr>
<th>Period</th>
<th>K_d</th>
<th>RMSE</th>
<th>MBE</th>
<th>I_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 May-Nov</td>
<td>Avg2005</td>
<td>1.69</td>
<td>-0.86</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Merged</td>
<td>1.76</td>
<td>-0.95</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>CRCM-12.6</td>
<td>1.88</td>
<td>-1.52</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>CRCM-20</td>
<td>2.12</td>
<td>-1.54</td>
<td>0.83</td>
</tr>
<tr>
<td>2006 Apr-Aug</td>
<td>Avg2006</td>
<td>1.40</td>
<td>0.59</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>Merged</td>
<td>1.42</td>
<td>0.54</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>CRCM-12.6</td>
<td>1.50</td>
<td>-0.98</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>CRCM-20</td>
<td>1.47</td>
<td>-1.09</td>
<td>0.89</td>
</tr>
<tr>
<td>2007 Apr-Aug</td>
<td>Avg2007</td>
<td>1.37</td>
<td>0.62</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Merged</td>
<td>1.35</td>
<td>0.57</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>CRCM-12.6</td>
<td>1.78</td>
<td>-1.08</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>CRCM-20</td>
<td>1.80</td>
<td>-1.35</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Fig. 1 Maps showing Lake Erie in Laurentian Great Lakes and the location of stations where different parameters were measured. NDBC: National Data Buoy Center. NWRI: National Water Research Institute. OCC: Ontario Climate Center. CCGS: Canadian Coast Guard Ship. Vertical dashed lines separate different basins in the lake.
Fig. 2 Variations of CoastColour-derived K_d for the selected location during the study period (2003-2012).
Fig. 3 Relation between satellite-derived K_d and in situ SDD matchups.

$K_d = 1.64 \times \text{SDD}^{0.76}$

$R^2 = 0.78$

RMSE = 0.63

MBE = -0.09

$I_a = 0.65$

$N = 49$
Fig. 4 Daily LSWT simulation results in for 2005 (a), 2006 (b), 2007 (c)–2007. Avg simulation is the CoastColour-derived average value for K_d during selected months of each year (0.81, 0.71, and 0.73 m$^{-1}$, respectively) from CRCM-12.6, CRCM-20, CC-derived average for K_d during selected month of each year (0.81, 0.71, and 0.73 m$^{-1}$, respectively), and the merged simulations is based on merging simulation results for each-monthly average values of K_d. CRCM-12.6 and CRCM-20 used a constant value of K_d (0.2 m$^{-1}$) with depth values of 12.6 and 20 m, respectively. The corresponding observations for LSWT, and CC-derived K_d values are also plotted. Missing lines indicate no data.
Fig. 5 Modelled (y-axis) versus observed (x-axis) LSWT for yearly average, merged, CRCM-12.6, and CRCM-20 simulations during the ice-free seasons in 2005-2007. A linear fit (dashed line) and its coefficients are shown on the plot. The statistics related to the regression of parameters, and a 1:1 relationship (solid line) are also shown. The average LSWT values of Obs, Avg, Merged CRCM-12.6, and CRCM-20 simulations are 18.64 °C, 18.56 °C, 18.50 °C, 17.38 °C, 17.27 °C.

(a) Avg Simulations

(b) Merged Simulations

(c) CRCM-12.6 Simulations

(d) CRCM-20 Simulations

\[y = 0.8856x + 2.0546 \]

\[R^2 = 0.9445 \]

\[\text{RMSE} = 1.54 \]

\[\text{MBE} = -0.08 \]

\[I_a = 0.89 \]

\[N = 457 \]

\[y = 0.8853x + 1.9943 \]

\[R^2 = 0.9417 \]

\[\text{RMSE} = 1.57 \]

\[\text{MBE} = -0.14 \]

\[I_a = 0.88 \]

\[N = 457 \]

\[y = 0.865x + 1.2571 \]

\[R^2 = 0.9744 \]

\[\text{RMSE} = 1.76 \]

\[\text{MBE} = -1.26 \]

\[I_a = 0.86 \]

\[N = 457 \]

\[y = 0.8501x + 1.4231 \]

\[R^2 = 0.9742 \]

\[\text{RMSE} = 1.88 \]

\[\text{MBE} = -1.37 \]

\[I_a = 0.86 \]

\[N = 457 \]
Fig. 6 LSWT (a), MWCT (b), and LBWT (c) and MLD (d) simulation results in 2008 for CRCM-12.6 (K_d=0.2 m^{-1}) simulation and the lowest (Min, K_d=0.58 m^{-1}), average (Avg, K_d=0.90 m^{-1}), and the highest (Max, K_d=3.54 m^{-1}) K_d values are shown.
Fig. 7 Isotherms in open water period 2008 for CRCM-12.6 ($K_d=0.2$ m$^{-1}$) simulation and the lowest (Min, $K_d=0.58$ m$^{-1}$), average (Avg, $K_d=0.90$ m$^{-1}$), and the highest (Max, $K_d=3.54$ m$^{-1}$) K_d values are shown.
Fig. 8 MLD simulation results in 2008 for CRCM-12.6 ($K_d=0.2 \text{ m}^{-1}$) simulation and the lowest (Min, $K_d=0.58 \text{ m}^{-1}$), average (Avg, $K_d=0.90 \text{ m}^{-1}$), and the highest (Max, $K_d=3.54 \text{ m}^{-1}$). K_d values are shown.
Fig. 8 Ice thickness during 2008 for CRCM-12.6 ($K_d=0.2$ m$^{-1}$) simulation and the lowest (Min, $K_d=0.58$ m$^{-1}$), average (Avg, $K_d=0.90$ m$^{-1}$), and the highest (Max, $K_d=3.54$ m$^{-1}$) K_d values are shown. CRCM-12.6 and Min (Avg and Max) simulations reproduce similar ice thicknesses, which explains the missing (hidden) lines of CRCM-12.6 and Max simulations in the plot.
Fig. 9 Spatial variation of satellite-derived K_d in Lake Erie, on 3 September 2011. Location of NDBC station is shown on the map as a solid dot.
Fig. 10 Temporal and spatial variation of satellite-derived K_d in Lake Erie for different months of a year: May- August 2010. Location of NDBC station is shown on the map as a solid dot.
Fig. 11 Temporal and spatial variation of K_d in Lake Erie during May of two consecutive years: 2008 and 2009. Location of NDBC station is shown on the map as a solid dot.
Authors’ replies to reviewer’s comments: Satellite-Derived Light Extinction Coefficient and its Impact on Thermal Structure Simulations in a 1-D Lake Model, Zolfaghari et al. 2016

We appreciate the reviewer's detailed and constructive comments, which helped improve the manuscript. Our replies to comments are covered below.

The authors have significantly improved the manuscript and replied adequately to most of the reviewers’ comments. The manuscript is now structurally sound and easy to follow. There are still several things that need clarifying and corrections, but these can be considered as minor comments.

General comments:

Abstract is long and occasionally overly detailed. It should be more compact. Acronyms should be used only when necessary. Now there are e.g. MBE and I_a, which are not commonly known. Since the abstract should be shortened, I suggest to leave out these statistical parameters.

Thank you for this comment. The abstract has been shortened in the new version. Lines 7-9, 11-14, 15-16, 16-17 and 21-23 of old version have been modified accordingly. “NDBC station” in line 20 of old manuscript is mentioned generally as “the Lake Erie station” in line 14 of the new version to avoid the acronym.

Sometimes present tense is used in the manuscript even though past tense is more appropriate.

Thank you for your comment. The use of the past tense has now been made whenever appropriate across the entire manuscript. We do not provide specific line numbers and pages here, since it was a long list.

Specific comments:

Page 1, lines 11-12. “…algorithm is applied to MERIS satellite imagery to estimate K_d and evaluated against K_d derived from Secchi disk depth…”. As written, it is not clear if the algorithm is evaluated against K_d from SDD or is it the estimated K_d that is evaluated against K_d from SDD. I suggest to change it to: “…to estimate K_d, which was evaluated against…”.

I’m not a native English speaker but think that more attention should be paid on sentence structure throughout the manuscript.

Thank you for your comment. This sentence has been removed in the new version to improve clarity and to shorten the abstract.
Page 1, line 24-25. “Dark waters always produce warmer MWCT”. Should it read ‘colder MWCT’? At least Fig. 6b implies so.

Thanks for catching this mistake. Correction is made on page 1 line 17.

Page 2, line 8. “Lake Surface Water Temperature…”, only the first word should have capital initial letter.

Thank you. Page 2 line 8 is now corrected.

Page 2, the second paragraph is really long and could be separated into two paragraphs. The second paragraph could start e.g. after “…derived from satellite imagery.” in line 28.

As suggested, the second paragraph on page 2 of the old manuscript is now separated into two paragraphs, starting at line 28 on page 2 of the revised manuscript.

Page 2, line 27. The reference Heiskanen et al., 2015 can be omitted because it is clear from the sentence that the authors refer to this study.

The reference has been removed from page 2 line 27.

Page 2, lines 32-33. “The daily mean LSWT range increased…”. It is not clear what is meant with the word ‘range’ because only one number (not range) is given for clear and dark waters.

You are correct. The word “range” has now been removed from the sentence on page 2 line 33 to avoid confusion.

Page 3, line 19. “… to investigate the improvement…”. If this is the first study to use satellite-derived Kd in FLake simulations, how can it be known from beforehand that the model performance is improved? Maybe the word ‘improvement’ could just be omitted: “… to investigate the model performance…”

Thank you for the comment. The improvement of the model is assessed versus previous studies that were using only a “generic” constant value in lake modeling. The value in Martynov et al. (2012) is not derived using satellite observations, but it is a constant value used to apply FLake on Lake Erie. Our study compares the results with the approach in Martynov et al. (2012) to show the improvement when satellite-derived Kd is used versus using a constant value which is not lake-specific. The sentence has been modified accordingly on page 3 line 19-20 to clearly make this point. It now reads: “The objectives of this study were to: 1) evaluate satellite-derived Kd values for a large lake in the Great Lakes region; 2) apply the evaluated satellite-derived Kd in FLake model to investigate the improvement of model performance to reproduce LSWTs, compared to previous studies using a constant Kd value of 0.2 m⁻¹.”
Page 3, line 20. “… and a constant value…”. Be more specific, a constant value throughout the study period, or constant value of 0.2 m⁻¹ or some other type of constant value.

The constant value is now specified on page 3 line 21: “…compared to previous studies using a constant K_d value of 0.2 m⁻¹.”

Page 3, line 20. I suggest to change the word ‘demonstrate’ to ‘evaluate’ for pretty much the same reason as in the comment about ‘improvement’.

Correction applied.

Page 3, line 23. “… to Kd values based on simulated LSWT,…”. Sentence structure should be changed because now it reads that the Kd values are based on simulated LSWT etc.

Thank you for the comment. The sentence has been changed. It now reads: “…3) understand the sensitivity of the FLake model to variations in K_d, based on the analysis of simulated LSWT,…”

Chapter 2.1. There are now many references to Fig. 1 (page 4, lines 3-4, 10-11, 13, 23) even though only one would be needed. I suggest to put a sentence in the beginning of the paragraph starting “The meteorological forcing…” that says e.g. “The data for this study was collected from different stations shown in Fig. 1.”. Then delete the other references to Fig. 1.

Thank you for your comment. Modifications have been made on page 4 lines 2, 3, 4, 10, 13, 22.

Page 4, line 4. Remove the coordinates and depth from here or from page 6, line 21.

The coordinates and depth are now removed from page 6 line 21 of the old version.

Page 4, line 6. “Water temperature is also measured at 0.6 m below the water line.”. It seems to me that water temperature is measured only at 0.6 m depth, and therefore the word ‘also’ should be deleted. I also suggest to use ‘water surface’ instead of ‘water line’.

“Also” has been removed, page 4 line 6.

Page 4, line 32. Does the “(see Fig. 1)” refer to the corresponding tile or only to the station? If only to the station, then this ref. can be omitted. If it refers to the tile, that should be specified in Fig. 1. Now there are vertical dashed lines in the figure but they are not defined in the caption.

Page 4 line 31 is modified (it refers to the station). Explanation of the dashed lines has been added in the caption of Fig. 1.
Page 5, line 10. At least to me it is unclear what the term ‘screen height’ means. If this is generally known
definition, then okay, but if not, it should be specified.
Thank you for your comment. The term is defined in the reference that is mentioned in the manuscript
(Duguay et al. (2003), page 5 line 5) and also the references therein.

Page 5, line 12. “NWRI-EC”, change to “NWRI” so that same terms would be used throughout the
manuscript.
Thank you for the comment. This is corrected on page 4 line 15 and page 5 line 11.

Page 5, line 18. “… Earth’s surface high spectral…”. Is there a word missing between ‘surface’ and
‘high’?
Thank you for catching this mistake. It is corrected on page 5 line 17. The word “at” was missing. Now
reads: “…Earth’s surface at high spectral…”

Page 5, line 23. The “in Lake Erie (see Fig. 1)” could be omitted, it has already been defined where the
station is.
Correction applied. Removed from page 5 line 22.

Page 5, line 25. The authors use different terms to mean the same thing, e.g. “CC Level2W”, “CC MERIS
L2W”, “CC L2W”. Make sure that the same term is always used. It is also not clear what Level2 data
product means.
Page 5 line 23-24 now explains what level 2 product is. Page 5 line 30, page 8 line 1 are changed to “CC
Level2W” to be consistent throughout the manuscript.

Page 5, line 26. “Concentration of water constituents”. This surely doesn’t mean ALL the constituents,
so it should be changed to “concentration of some water constituents” or similar.
Thank you for catching this. Now corrected on Page 5 line 26. The word “some” has been added.

Page 6, line 18. Are all these references really needed for this statement?
Only one main reference is now mentioned on page 6 line 18.

Page 7, line 1. I suppose that it should read that the MBE is calculated as the mean of modelled values…
Thanks for catching this mistake. It is now corrected on page 7 line 1.
Page 7, line 12. Could the authors provide a reference for the statement that resuspension is the most important cause for low water clarity in Lake Erie? Later, heavy plankton blooms are also discussed as the cause of high differences in water clarity.

Resuspension is mostly the major factor in low water clarity of shallow sections of the lake, whereas algal bloom is in general a factor threatening water quality of the whole lake. Clarifications are now applied on page 7 lines 11-14. A reference is also added. The sentence now reads as “Lake Erie (specifically its shallow regions) is more susceptible to re-suspension of bottom sediments compared to the other Great Lakes, which leads to lower water clarity (Binding et al., 2010).”

Page 7, equation 2. It has been shown in later studies that the relationship between Kd and SDD is not constant, as the authors also discuss later in this chapter. It is unclear why the authors want to argue here that it is constant. Or has this relationship been the basis of relating CC-derived Kd and SDD together? If so, why that was used instead of the exponential relationship shown e.g. in Arst et al. 2008?

Equation 2 shows the general form of relationship between SDD and Kd, which demonstrates these two variables are negatively correlated (page 7 lines 22-23). As it is discussed in the manuscript, this relationship was established by a pioneer study of Poole and Atkins (1929), but later on, other studies such as Koenings and Edmundson (1991) showed that different values of “k” than 1.7 (introduced in the pioneer study) can be derived, depending on the type of water bodies (page 7, lines 26-27).

In the other studies, there different relationships were introduced, although their general form is still showing a negative correlation between the two variables of SDD and Kd. Armengol et al. (2003) (page 7, lines 27-28), Arst et al. (2008) (page 8, lines 14-15), and the relationship in our study (page 8, line 13), all resulted in a power relationship with the form of \(y = ax^{-k} \), where “a” and “k” are constant values in each study, but different from each other. The “constant” term used in our manuscript is not referring to a constant value for the relationships developed for all different water bodies. Instead, it is implying that this is a constant value in one developed relationship, which could be a different value from one study to another (lines 26-27).

This is clarified on page 7 lines 26-28.

Page 8, lines 15-17. The authors say that, after SDD validation, the satellite-derived water clarity (as such, without any modifications) was used in the modelling. There seems to be quite good agreement between
SDD and CC-derived Kd when SDD>3m (Fig. 3). However, in Discussion the authors state that in situ measurements of water clarity are a requirement for satellite-derived Kd. Is there some reason to assume that in (clear) waters in general (e.g. SDD>3m) the satellite imagery doesn’t provide reasonably reliable estimates of Kd? In other words, if it worked for Lake Erie, what are the assumptions that it might not work on other lakes?

Thank you for this interesting question and comment. Lake optical properties vary significantly in different water bodies. The optical properties of Lake Erie are specifically complex as they are affected by different water constituents including suspended and dissolved matters, as well as algal bloom, which does not covary with the concentrations of the other two. Therefore, if the CoastColour algorithm is providing Kd with a high accuracy in this paper for the Lake Erie NDBC station, it still has to be verified in other water bodies using collected in situ data. But in general, for clear waters (e.g. SDD>3 m) with less complex optical properties, such as ocean, the performance of algorithms is expected to be even higher. But we are only speculating here, and further research and experiment is required to test this.

Page 8, line 16. “are deemed to be correct”. There is huge scatter in Fig. 3 when SDD when SDD<2m, so it is an overstatement to say that the satellite-derived Kd are correct. I suggest to change the wording to “can be considered representative”.

We applied your suggested correction on page 8 lines 17-18. Thank you.

Page 8, lines 21-22. Very complex and vague subordinate clause (motivating the investigation of potential of integrating). Be more specific.

Thank you for the comment. Modifications have been made on page 8 lines 22-24. It now reads: “Direct measurements of K_d in the field is not widely available. These limitations motivate the investigation on the potential of integrating satellite-based estimations of K_d into lake models. “

Page 8, line 30. “focused on”, change e.g. to “shown for”

Change applied on page 9 line 1.

Page 9, paragraphs 1 and 2. It is quite difficult to follow the big picture what was done. This could be made easier for the reader if e.g. after “…, respectively.” on line 4, a new sentence would be written: “We made four different simulation schemes which were then compared to the observed LSWT”.

Thank you. This sentence has been added on page 9 lines 7-8.
Page 9, line 6-7. Where does the acronym CRCM come from?
The acronym comes from the study by Martynov et al. (2012). Our study was built upon their study to improve FLake simulations results. FLake results in Martynov study are coupled with the Canadian Regional Climate Model (CRCM), as a lake representing scheme. This information was mentioned in page 2 line 20 already.

Page 9, line 11. Change sentence order from “surface temperature in spring (April-June) is modelled warmer” to “surface temperature was modelled warmer in spring (April-June)”
Change applied on page 9 line 15.

Page 9, lines 11-13. Looking at Fig. 4, it seems to me that 2006 and 2007 ‘merged’, ‘avg’, and ‘obs’ are quite similar from late-June to mid-August. This is contrasting to what is now written in the text.

Thank you for your comment. The calculations on page 9 lines 15-17 are based on LSWT values in all three years of 2005-2007 together. Therefore, these years together show underestimation in fall and summer, overestimation in spring. The seasonal-based performance of each simulations for all three years together is also shown in Figure 5.

If we only focus on summer (which is considered as months of July-Sep) 2006, Avg and Merged simulations have MBE values of -0.38 and -0.46. For summer 2007, Avg and Merged simulations have MBE values of -0.40 and -0.41, respectively.

Page 9, line 16. Change sentence order from “to more slowly gain (lose) heat” to “to gain (lose) heat more slowly”.

Corrected. Page 9 line 20 is now modified.

Correction applied on page 9 line 21.

Page 9, paragraph starting with Fig. 5. and Fig. 5 itself. Write the text in the same order as they are presented in the figure. Either change the order in the text or in the figure. Now the discussion starts with CRCM simulations whereas they are panels c and d in the figure.

Thank you for this comment. We have made the suggested change on page 9 line 34 and page 10 lines 5-12.
Page 9, line 29-30. This needs a bit of rephrasing because according to the figure the CRCM simulations underestimate the observed LSWT only when LSWT is roughly >7 deg C.

The sentence on page 10 line 6 has been modified.

Page 10, line 29. The authors argue that solar radiation is absorbed more in dark waters due to existing particles in water. If you can reliably state that this is true for Lake Erie, then the explanation is acceptable. But even in this case I suggest to change ‘dark waters’ e.g. to ‘waters with low clarity” because particles do not always make the water dark, and the water can be dark without particulate matter.

Changed from “dark waters” to “waters with low clarity” on page 11 line 3.

Page 10, line 30. “(lower LBWT…)”. I suggest to change it to “(which shows in lower LBWT…)” so that the reader doesn’t need to guess what the authors try to imply.

Changed as suggested on page 11 line 4.

Page 10, line 30. Fig. 8 can not be introduced before Fig. 7 has been introduced. Either change the text or one option would also be to combine Fig. 8 to Fig. 6 (it could e.g. be subplot d in Fig. 6).

Thank you for the suggestion. Figure 8 is now in Figure 6 as a subplot (d). Changes are made accordingly on page 11 line 4-5, and page 12 line 6.

Page 11, line 26. “lessening of the radiative absorption” implies that something has happened in the lake. I suggest to change this to “decrease in radiative forcing” which means that the incoming radiation from the atmosphere has decreased.

Changed as suggested on page 11 line 34.

Page 11, lines 28-29. These are very vague sentences and not all parts true. The deepening of the thermocline is related to wind forcing. In dark waters the density gradient is sharp and forms an effective barrier for the wind-induced mixing to reach deeper depths. In clear waters the density gradient is weaker and therefore mixing can more easily deepen the thermocline. There are many processes working at the same time in lakes that affect thermal stratification. Besides heat transfer, wind currents and internal waves are important. Because the same wind forcing is used as an input for all the different model runs, it is important to explain how water clarity takes part into the development and progress of thermocline.

Thank you for this comment. The heat transfer is happening due to different factors including convective, and mechanical forcing (wind driving mixings, and internal waves), as it is mentioned by the respectful
reviewer. Therefore, all these factors control the heat transfer and consequently the deepening of the thermocline. This information is now added on page 12 line 3-5.

Page 11, line 30. “derived from isotherm”. Be more specific how MLD was defined. It seems to me that the authors have identified the MLD correctly, but there are many ways to do this and no general guideline on how to do this. Therefore, more specification is needed.

MLD and isotherms are both direct outputs of FLake. Therefore, “derived from isotherms” might be misleading here since the authors did not apply any calculation to actually derive MLD values. Instead, the output of FLake for MLD was used. What we were trying to imply here was that, the two figures of MLD and isotherms might have overlap in what they are showing. More specifically, MLD can be a subsequence of isotherm plot. But here we show them separately for different purposes and to make different points.

The sentence on page 12 line 4 is now modified to avoid confusion.

Page 12, paragraph starting with “In the darkest water…”. Here the same oversimplifications are presented. If there is no wind, there is no mixed layer in clear or dark water because there is only stratification, no mixing. So the explanation is not only that in clear waters the solar radiation can distribute to a larger volume in the water column. Very important factor is also how much (deep) of the density stratification can be destroyed by wind-induced turbulent kinetic energy. In dark waters this layer is shallower than in clear waters and therefore dark waters have shallower MLD with the same wind forcing.

Thank you for mentioning this point. This is now added on page 12 lines 14-16.

Page 12, lines 9-25. If there is some study that shows that FLake predicts well the ice phenology in Lake Erie, then this text can be as it is and that study should be cited. Otherwise, these are only simulation runs without validation, and therefore in the beginning or in the end of these paragraphs a text should be added that mentions “It must be noted that these results couldn’t be verified because of lack of measurements” or similar.

A sentence has now been added to this effect on page 13 lines 1-2.

Chapter 3.3. This chapter needs the most modification. Now there are three main points in the chapter: 1. spatial variation, 2. temporal variation, and 3. inter-annual variation of Kd. Currently, the authors briefly
describe what was observed and show the figures, but the meaning and importance of these findings are not elaborated. From the figures 10-12 it seems evident that these are important findings but these are not discussed. For example, it seems interesting that Kd can be time-independent constant even though there are huge changes in Kd both in space and in time. If Kd influences the thermal stratification as shown in Fig. 7 and related studies, then it would be reasonable to assume that the thermal stratification is very different in the western end of Lake Erie than in the eastern end. Yet, some studies and results suggest that one lake specific but constant Kd can be used to model the stratification. Fig. 11 seems to imply that in big lakes lake-specific Kd cannot be used.

As the reviewer mentions, this section has three main points: 1- spatial variations of Kd which is covered in lines 9-18 page 13; 2- temporal variation of Kd, covered in lines 19-25 page 13; the inter-annual changes of Kd, covered in line 26 page 13 to line 2 page 14. These lines explain the observation of Kd variations derived from satellite imagery, demonstrating that satellite measurements are capable of capturing these variations, while the conventional in situ measurements cannot. This is mentioned on page 13, lines 5-9, which is the main focus of this section, to imply the strength of remote sensing versus in situ measurements.

A lake-specific time-invariant Kd value is sufficient for simulating thermal structure of NDBC station. However, this comment and conclusion has to be confirmed for other locations on the lake, since depth is another major factor influencing simulation results.

Lake-specific constant for the full Lake: Other locations of the lake, especially eastern basin, are potentially significantly sensitive to the changes in Kd value. Since most of the lake has Kd values in the critical threshold, a lake-specific constant Kd value cannot be used in 3-D lake models on Lake Erie.

Time-invariant: Using a time-invariant Kd value for other locations depend on the influence of depth on the simulation results. The importance of these results has been added at the end of the section 3.3, lines 4-9 of page 14.

Page 13. Kd values are presented as average value plus minus some number. Could you specify what the number is.

Thank you for your comment. The numbers are the average value ± standard deviation. This is now clarified on page 13 line 16.
Page 13, line 25. It seems that the years for CC product are 2003-2012 (fig. 2), not 2002-2012. When this paragraph is written as it is now, it seems that these were the years for all the measurements and modelling. In order to not be misleading, specify at least for which years the model runs were made.

Thank you for catching this mistake. Page 14 line 12 is now corrected. All simulation results are studied for years 2003-2012. However, the simulations were run from 2002-2012, and then the first year of results (2002) omitted from further processing. This is recommended for the ‘spin up’ period to stabilize the model output in lake modeling community.

Page 14, lines 8-9, first sentence of this paragraph. It is unclear what the authors mean with the concept of ‘thermal regime of lakes’ in regards of this study. Only observed surface water temperatures are used to validate modelled temperatures. All the rest (water column temperature, bottom water temperature, mixed layer depth) are only simulated and thus tells more of how FLake model performs with different water clarity in this lake than how the lake thermal structure actually was influenced during the years in this study period. Also, it has already been shown in previous studies (which the authors cite) that transparency impacts physical processes, and thus this is not a new finding. I suggest to replace the first sentence of this paragraph with specific strengths of this study.

Thank you. Modifications are now applied on page 14 lines 27-29.

Page 14, line 22. Change “Flake” to “FLake”.

Thank you for the comment. It is corrected on page 15 line 9.

All figures in general. Include tick marks to all figures, both x- and y-axes. Also minor tick marks could be useful in some cases.

Thank you for this comment. All figures x- and y-axis have major ticks now. Minor ticks are added for numeric axes.

Fig. 1. Write the meaning of the acronyms in the caption or describe what the different stations are. Specify what are the vertical dashed lines.

25 Thanks for the comment. The meaning of the abbreviations is now provided in the caption of Fig. 1. Also, the vertical dashed lines are specified.

Fig. 2. Write open what ‘CC-derived’ means.

The abbreviation is “opened” in the caption of Fig. 2. Thank you for the comment.
Fig. 4. It is difficult to understand the caption and how it is exactly linked to the figure. Discuss the lines in the caption in the same order as in the legend of the plots. Write open what ‘Obs’, ‘AvgXXXX’, ‘Merged’, ‘CRCM-12.6’, and ‘CRCM-20’ mean. Assign (a), (b), and (c) to the subplots. What is the time resolution of the data? The general principle is that the reader should be able to understand the figure without having the need to constantly see the main text.

The caption of Fig. 4 has been modified. And (a), (b), (c) are assigned to plots.

Fig. 9. It seems that the green line (CRCM-12.6) is missing from the plot. The last sentence of the caption seems out of place. The proper place should be in Results/Discussion.

Thank you for your comment. In the Result and Discussion section, page 12 lines 13-14, it is mentioned that CRCM-12.6 and min (Avg and Max) simulations are reproducing similar ice phenology. This explains the reason for not seeing the green and black lines as obvious as red and orange ones. This explanation is also mentioned in the caption to avoid confusion for the reader. We feel that the last sentence in caption should remain to elaborate the reason for not seeing two of the lines. More explanation is added in the caption of Fig. 9.

Figs. 10-12. Show more values in the colorbars. Now only 0; 2.5 and 5 are shown, the interval should be at least 1 m-1 (i.e. 0, 1, 2, 3, 4, 5). Show the unit of the colorbar somewhere.

Thank you for the comment. The colorbar values in the figures have been changed and unit is also added, Fig. 10-12.