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Abstract. This study proposes a stochastic framework for a lumped rainfall-runoff 9 

problem at a catchment scale under the assumption of a linear relationship between the 10 

runoff discharge and the catchment storage. Both rainfall and discharge are treated as 11 

random fields. An autoregressive model is adopted to account for the temporal variability 12 

of the rainfall process. For a stochastic description, solutions of the surface flow problem 13 

are derived in terms of first two statistical moments (namely, mean and variance) of the 14 

runoff discharge through the nonstationary Fourier-Stieltjes representation approach. The 15 

mean solution is an unbiased estimator of runoff discharge, and the variance can be used 16 

to characterize the uncertainty of mean model. The closed-form expression for the 17 

variance of runoff discharge may also be viewed as an index of temporal variability, 18 

allowing to assessing the impacts of the rainfall and catchment storage on the discharge 19 

variability. It is found that the temporal variability of the runoff discharge induced by a 20 

random rainfall process persists longer for smaller values of the storage or rainfall 21 

parameters. 22 

 23 
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1 Introduction 24 

 25 

Rainfall-runoff models simulate the processes of converting rainfall to runoff. They 26 

are used for a variety of applications in hydrology (e.g., Beven, 2012; Falahi et al., 2012), 27 

for example, to predict the peak flow used in drainage design purposes, to estimate flows 28 

of ungauged catchments, and to assess the effects of climate changes. The quantitation of 29 

rainfall-runoff processes is essential for providing a basis of water resources management 30 

and planning in river basins. 31 

Rainstorm is the source to the generation of surface runoff and the production of 32 

runoff is, therefore, dependent on the characteristics of rainfall events. Rainfall processes 33 

are generally recognized as being affected by complex natural events. The details of the 34 

processes cannot be described precisely. Moreover, to carry out rainfall-runoff calculations 35 

detailed information about landscape properties and hydrologic states must be known in 36 

the whole catchment. The parameter values of the rainfall-runoff models may vary at 37 

different points of the catchment. It therefore requires a large quantity of measurements 38 

for accurate predictions of the hydrological response of the catchment. The number of 39 

measurement sites in most catchments, however, is likely to be small and therefore the 40 

amount of information is rather limited. Thus, it is very difficult to make an accurate 41 

prediction of catchment response based on insufficient measurements. As such, there is a 42 

great deal of uncertainty about the runoff prediction using a deterministic model. The 43 

analysis of rainfall-runoff processes is therefore taken by means of a stochastic 44 

framework (e.g., Córdova and Rodríguez-Iturbe, 1985; Goel et al., 2000; Lee et al., 2001; 45 

Moore, 2007; Bartlett et al., 2016). 46 
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Much of stochastic research in rainfall-runoff modellings focused on development of 47 

the probability distribution of state variables (such as rainfall and flow discharge). In 48 

most cases, due to a complex non-linear behavior in general, the analytical solution for 49 

the probability distribution function does not exist. Alternatively, to take the advantage of 50 

closed-form expressions, the purpose of this study is to derive analytical solutions, 51 

namely the first two moments of runoff discharge, for a linear lumped rainfall-runoff 52 

problem. The first moment (ensemble mean) is used as an unbiased estimate of a system 53 

state, and the second moment (ensemble variance) is used as a measure of uncertainty by 54 

applying the mean model. Those expressions will be obtained using the nonstationary 55 

Fourier-Stieltjes representation approach along with the assumption of an autoregressive 56 

(AR) rainfall model (e.g., FoufoulaGeorgiou and Lettenmaier, 1987; Thyregod et al., 57 

1999; Srikanthan, and McMahon, 2001; Rebora et al. 2006; Hannachi, 2014). 58 

 59 

2 Stochastic Formulation 60 

 61 

The physical-based equation in modeling the rainfall-runoff process is the equation of 62 

conservation of mass. If the control volume is extended to the scale of a catchment, the 63 

continuity equation for the free surface flow then takes on the lumped form of the 64 

storage equation as (e.g., Brutsaert, 2005; Beven, 2012) 65 

QER
dt

dS
tt   (1) 66 

where S is catchment storage, Rt and Et denote the rainfall and evapotranspiration at time t, 67 

respectively, and Q is the discharge from the catchment. The lumped model attempts to 68 

relate the forcing (rainfall input) to the model output (runoff) without considering the 69 



4 

spatial variability. Therefore, S, Q, Rt and Et in Eq. (1) represent spatial averages over the 70 

entire catchment area, and, as such, only their temporal variability is retained. That is, in a 71 

lumped system model, the flow is evaluated as a function of time alone at a particular 72 

location in large catchments. 73 

For given Rt and Et, there are two unknowns, namely Q and S, in Eq. (1). Therefore, 74 

further knowledge of the relation of Q to S is needed in order to solve the equation. In 75 

most practical applications, S in Eq. (1) is specified as an arbitrary function of Q (e.g., 76 

Lamb and Beven, 1997; Kirchner, 2009; Brauer et al. 2013). As such, the changes in S 77 

with time may be expressed as  78 

dt

dQ

dQ

dS

dt

dS
  (2) 79 

Given Eqs. (1) and (2), it follows that  80 

dQdS
ER

dQdS

Q

dt

dQ tt

//


  (3) 81 

This study will concentrate only on the case of S being a linear function of Q (e.g., 82 

Kaseke and Thompson, 1997; Botter et al., 2007; Suweis et al., 2010, Guinot et al., 83 

2015):  84 

KQS   (4) 85 

where the constant K is the storage parameter. Eq. (1) can then be cast in the form 86 

K
ER

K

Q

dt

dQ tt   (5) 87 

It is assumed in the following analysis that Rt is a temporal stochastic process (random 88 

field). We also assume that evapotranspiration has a negligible effect on Q as compared 89 

to that of rainfall (i.e., Rt >> Et) (e.g., Jothityangkoon and Sivapalan, 2001; Dooge, 2005; 90 
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Botter et al., 2009). Since the temporal random heterogeneity of Rt appears as a forcing 91 

term which generates the random variations in Q, the differential Eq. (5) is then viewed 92 

as a stochastic differential equation. The probabilistic structure of random Q is 93 

determined by its temporal statistical moments. In the present study, we are interested 94 

mainly in developing the first two moments of Q. The mean (unbiased estimate of) 95 

runoff discharge may also be interpreted as the solution predicted by the deterministic 96 

model. The second moment (variance) of catchment discharge derived below can then be 97 

used to characterize the uncertainty in applying the deterministic (or mean) model. The 98 

variance can be viewed as an index of large-scale discharge variability as well. 99 

Due to its linearity, Eq. (5) may be split into two sub-equations. They are a mean 100 

equation governing the temporal behavior of mean catchment discharge,  101 

K

R

K

Q

dt

Qd
  (6a) 102 

and an equation for the perturbations describing the discharge perturbation produced as a 103 

result of the input rainfall perturbation, 104 

K

r

K

q

dt

dq
  (6b) 105 

In Eq. (6), Q and R indicate the means of Q and Rt, respectively, and q (= Q-Q ) and r 106 

(= Rt - R ) are zero-mean perturbations.  107 

Spectral representation theorem provides a very useful way of evaluating the 108 

variance of perturbations. To carry out the calculation, Eq. (6b) in the perturbed-form 109 

must be solved in Fourier space. Since r(t) in Eq. (6b) is a noise force contributing to the 110 

variations in q, the solution of Eq. (6b) requires knowledge of the temporal distribution of 111 

rainfall field. The section that follows attempts to develop the spectrum of r(t) which will 112 
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be achieved by solving an AR model for temporal rainfall processes through the 113 

nonstationary spectral approach. 114 

 115 

3 Spectral Solution for the Rainfall field 116 

 117 

The AR model specifies linear dependence of the output variable partly on its own 118 

previous values and partly on the random disturbance (or white noise) (e.g., Priestley, 119 

1981; Vanmarcke, 1983). In other words, the AR model uses a linear equation with 120 

constant coefficients to define the relation between an output process and an input white 121 

noise process.  122 

Throughout this study, the temporal distribution of rainfall field is assumed described 123 

by the AR model as proposed by Vanmarcke (1983). Following Vanmarcke (1983), the 124 

random rainfall perturbation field r(t) without directional preference may be expressed in 125 

the form  126 

)()1()1()( ][ ttrtratr   (7a) 127 

where a is a parameter and  is a stationary purely random (white noise) process. 128 

Subtracting 2ar(t) from both sides and rearranging terms yields (Vanmarcke,1983)  129 

)()()21()1()(2)1( ][ ttratrtrtra   (7b) 130 

In continuous time, the natural analogue of the linear Eq. (7b) is a linear differential 131 

equation, of the form  132 

)(2

2

2

tr
dt

rd    (8) 133 

where 2 = (1-2a)/a. In addition, the initial conditions are specified as  134 
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0)0( r  (9a) 135 

0)0( r
dt

d
 (9b) 136 

Eq. (8) along with Eq. (9) permits one to determine the spectrum of r(t).  137 

Whenever the random field is stationary, there always exists a unique representation 138 

of the process in terms of a Fourier-Stieltjes integral as (e.g., Lumley and Panofsky, 139 

1964)  140 

)()(  






 dZt e ti  (10) 141 

where Z() is an orthogonal process (i.e., the random amplitudes dZ are uncorrelated) 142 

and  denotes the frequency. Without the restriction that the r(t) process must be 143 

stationary, the perturbed quantities r(t) may be presented as (Priestley, 1965)  144 

)();()(  






 dZttr e ti
r  (11) 145 

In Eq. (11), r(-) is referred to as the modulating function by Priestley (1965). 146 

Introducing Eqs. (10) and (11) into Eqs. (8) and (9), respectively, produces 147 

1)(2 22

2

2

 





r
rr

dt

d
i

dt

d
 (12) 148 

with  149 

0);0(  r  (13a) 150 

0
);0(


dt

d r    (13b) 151 

The system of equations admits the solution as follows:  152 
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where  = t and  = t. Using Eq. (14), Eq. (11) implies 154 
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It follows from using the representation theorem for r(t) that the variance of r(t), r
2, 156 

admits a representation of the form  157 










   dSdStttrtrEt rrrrr )()();();()]()([)( **2  (16) 158 

where E[-] indicates the ensemble average of the quantity, * denotes the complex 159 

conjugate, S () is the spectrum of (t), and Srr(t;) is the evolutionary spectrum of r(t), 160 

quantified corresponding to Eqs. (14) and (16) as  161 
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  (17) 162 

In Eq. (17),  = /. The evolutionary spectrum referred by Priestley (1965) has the same 163 

physical interpretation as the spectrum of a stationary process that it describes the energy 164 

of a signal distributed with frequency. The latter is determined by the behavior of the 165 

process over all time, while the former represents specifically the spectral content of the 166 

process in the neighborhood of the time instant t.  167 

As defined above, (t) represents a white noise process which consists of a sequence 168 

of uncorrelated random variables. The corresponding spectrum for such a process is  169 

IS   )(  (18) 170 
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in which I is constant for all frequencies. The variance of the rainfall field resulting from 171 

Eqs. (16) - (18) is now given by  172 

It tr 



 3
2

2
)(   (19) 173 

where t = sinh(2)-2.  174 

It follows from Eqs. (17) - (19) that for a given r
2, the evolutionary spectrum of the 175 

rainfall response to white noise input can be rewritten as 176 
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 (21) 179 

The dependence of Srr(t;) in Eq. (20) on rainfall parameter  is depicted in Fig. 1 at 180 

different times. The reduction of the temporal rainfall spectrum with  is clearly 181 

observed in the figure. This reflects that a larger  produces shorter persistence of 182 

rainfall perturbations, which, in turn, leads to less deviations of the rainfall perturbation 183 

from the mean rainfall profile and, consequently, less variability of the rainfall process. It 184 

can be shown that the variance of rainfall in Eq. (19) decreases with a large . 185 

The results presented in this section will be employed in the derivation of solutions 186 

for the flow discharge problem in terms of its moments. 187 

 188 

4 Moments of discharge 189 

 190 

We consider the case where initially, there is no discharge from the catchment, implying 191 
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that  192 

0)0( Q  (22a) 193 

0)0( q  (22b) 194 

The solution of Eqs. (6a) and (22a) for the mean runoff discharge is in the form  195 

  

t

tyt ee KK Rdy
K

R
tQ

0

)1()( //)(  (23) 196 

It is easy to see from Eq. (23) that the mean discharge decreases with a larger storage 197 

parameter.  198 

We proceed to derive the variance of catchment discharge. A similar procedure to 199 

the above, applying the nonstationary spectral representation for the perturbed quantities 200 

q(t)  201 

)();()(  






 dZttq ei
q  (24) 202 

and Eq. (11) into Eqs. (6b) and (22b), leads to the following results  203 

K
i

Kdt

d r
q

q  
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(  (25a) 204 

with  205 

0);0(  q
 (25b) 206 

The solution to this problem is  207 
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where 1 = exp(-)-exp(-), 2 = exp(-)-exp(),  = K, and  = t/K. Eqs. (24) and (26) 210 

provide the framework required to express the discharge perturbation q(t). 211 

The variance of runoff discharge q
2(t) can now be obtained as follows:  212 
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where the evolutionary spectrum of q(t) is given by  214 
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The discharge variance follows from Eq. (27) through the application of Eqs. (18) and 218 

(28):  219 
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Finally, using the relation (19) leads to  225 
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  (31) 227 

The result of this type can be used directly to evaluate the uncertainty in the mean runoff 228 

discharge model when applying it to the field situations. 229 

Figures 2a and 2b display the runoff discharge variance in Eq. (31) as functions of 230 

the storage parameter K and rainfall parameter, respectively, for various time scales. It 231 

is seen from Fig. 2a that the discharge variability decreases with increasing K for a 232 

given. This can be attributed to that persistence of random discharge fluctuations is 233 

reduced by a large K, which leads to smaller deviations of the discharge fluctuations. A 234 

similar conclusion has been made for the case of response of the Brownian particle 235 

motion to a stationary random noise forcing. Note that Eq. (6b) is in fact a generalized 236 

Langevin equation (e.g., van Kampen, 1981; Gardiner, 1985) arising in the analysis of 237 

Brownian motion, where K corresponds to a particle mass. It has been reported from the 238 

literature that the velocity variability of the Brownian particle is reduced by a large 239 

particle mass. That is, velocity fluctuations in stationary flow fields persist shorter with a 240 

larger particle mass.  241 

Figure 2b shows the reduction in the variability of the runoff discharge field with  242 

for a fixed value of K. It is evident from Eq. (26) that in a linear system, the variability of 243 

output process correlates positively with that of input process. The larger the rainfall 244 

parameter, the smaller the variability of the rainfall field (Fig. 1), and, consequently, the 245 

smaller the variability of runoff discharge (Fig. 2b). In other words, the runoff processes 246 

in response to rainstorms characterized by a small rainfall parameter exhibit a relatively 247 
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smoother data profile.  248 

The consideration of a non-linear relationship between the discharge and the 249 

catchment storage will complicate the mathematical procedure. In general, an analytical 250 

solution to Eq. (25) doesn’t exist. The runoff discharge variability of a non-linear 251 

reservoir modeling system will therefore be assessed numerically. It is expected that the 252 

discharge variability behavior of a non-linear reservoir modelling system will be 253 

qualitatively similar to that of a linear reservoir modelling system, although not 254 

quantitatively 255 

 256 

5 Concluding remarks 257 

 258 

In this work, the catchment-scale rainfall-runoff process is modeled by a linearized model 259 

and analyzed by means of a stochastic framework. In our derivation, the temporal 260 

distribution of the random rainfall process is described by an AR model. The closed-form 261 

solutions to the linear lumped rainfall-runoff model are expressed in terms of first two 262 

statistical moments through the nonstationary Fourier-Stieltjes representation. The first 263 

moment (mean) is used as an unbiased estimate of runoff discharge, while the second 264 

moment (variance) gives a quantitative measure of the uncertainty by applying the mean 265 

rainfall-runoff model to the field situations.  266 

The analysis of the closed-form solutions clearly demonstrates that an introduction of 267 

a large rainfall parameter leads to the reduction in the variability of the rainfall process. 268 

The smaller the storage or rainfall parameters, the more persistence of the random 269 

fluctuations in runoff discharges and, in turn, the larger deviations from the mean, which 270 
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results in larger variability of the runoff process.  271 
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Figures 348 

 349 

Figure 1. The dependence of Srr(t;) in Eq. (20) on rainfall parameter  at different 350 

times. 351 
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 355 

Figure. 2 The dependence of q
2 in Eq. (31) on (a) storage parameter K and (b) rainfall 356 

parameter  at different times.  357 


