A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer

Authors: Charlotte P. Iverach1,2,3, Dioni I. Cendón1,2,3, Karina T. Meredith3, Klaus M. Wilcken3, Stuart I. Hankin3, Martin S. Andersen1,4, Bryce F.J. Kelly1,2,*

1Connected Waters Initiative Research Centre, UNSW Sydney, NSW, 2052, Australia
2School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW, 2052, Australia.
3Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, 2234, Australia.
4School of Civil and Environmental Engineering, UNSW Sydney, NSW, 2052, Australia.

*Corresponding author: bryce.kelly@unsw.edu.au
Understanding pathways of recharge to alluvial aquifers is important for maintaining sustainable access to groundwater resources. Water balance modelling is often used to proportion recharge components and guide sustainable groundwater allocations. However, it is not common practice to use hydrochemical evidence to inform and constrain these models. Here we compare geochemical versus water balance model estimates of artesian discharge into an alluvial aquifer, and demonstrate why multi-tracer geochemical analyses should be used as a critical component of water budget assessments. We selected a site in Australia where the Great Artesian Basin (GAB), the largest artesian basin in the world, discharges into the Lower Namoi Alluvium (LNA), an extensively modelled aquifer, to convey the utility of our approach. Water stable isotopes (δ¹⁸O and δ²H) and the concentrations of Na⁺ and HCO₃⁻ suggest a continuum of mixing in the alluvial aquifer between the GAB (artesian component) and surface recharge, whilst isotopic tracers (³H, ¹⁴C and ³⁶Cl) indicate that the alluvial groundwater is a mixture of groundwaters with residence times of < 70 years using ³H and ~ 900 ka using ³⁶Cl methods. In addition, Cl⁻ concentrations provide a means to calculate a percentage estimate of the artesian contribution to the alluvial groundwater. In some locations, an artesian contribution of up to 70% is evident from the geochemical analyses, a finding that contrasts previous water balance modelling estimates of 22%. Our results show that hydrochemical investigations need to be undertaken as part of developing the conceptual framework of a catchment water balance model, as they can improve our understanding of recharge pathways and better constrain artesian discharge to an alluvial aquifer.
1 Introduction

Recharge to alluvial aquifers can occur via infiltration from the land surface and/or discharge into the alluvium from surrounding geological formations and artesian groundwater resources (Costelloe et al. 2012; Schilling et al. 2016; Rawling & Newton 2016; Salameh et al. 2017). Insufficient spatial and temporal data resolution, as well as heterogeneity in hydrogeological properties can result in considerable uncertainty when allocating recharge to each source (Anderson & Woessner 1992; Beven 2009; Gardner et al. 2012). Additional uncertainties when allocating recharge to each source include change in the magnitude of groundwater gradients and directions over time due to ongoing groundwater abstraction (for irrigation, stock and domestic water supplies), and the impact that this and flood frequency may have on the extent of artesian discharge and groundwater mixing. These complexities make it challenging to accurately proportion contributions from various sources to an alluvial aquifer and to guide water allocations.

Water balance modelling of alluvial aquifers is commonly used to quantify and proportion recharge inputs from river leakage, floodwaters, areal (diffuse recharge) and artesian sources (Anderson & Woessner 1992; Middlemis et al. 2000; Zhang et al. 2002; Dawes et al. 2004; Barnett et al. 2012; Giambastiani et al. 2012; Hocking & Kelly 2016). Historically, hydrochemical analyses are not often used to constrain catchment scale water balance modelling (Reilly and Harbaugh 2004; Barnett et al. 2012), despite Scanlon et al. (2004) highlighting the need to use multiple techniques (including hydrochemical insights) to increase the reliability of recharge estimates. Geochemical data can improve our understanding of recharge processes because of the potential to trace pathways of groundwater movement and water-rock interactions, whilst also providing insights on the impacts of past groundwater extractions (Martinez et al. 2017). Therefore, the integration of geochemical evidence to constrain aquifer water balance models provides a more rigorous
approach for estimating and proportioning sources of recharge to groundwater resources (Raiber et al. 2015; Currell et al. 2017).

Radioactive isotopic tracers that provide insights into groundwater residence times can constrain mechanisms of recharge and detect groundwater mixing. Isotopes of dissolved species can be useful for elucidating groundwater mixing provided the different sources of groundwater have distinctly different and consistent isotopic signatures. However, each tracer has a different half-life and undergoes processes specific to it that can often affect interpretations. Thus, these tracers can provide process insights but only for a given window of time. Therefore, multiple tracers are needed to cover the time scales relevant for the large range required for groundwater residence times. Tritium (³H) is an excellent indicator of modern recharge inputs in shallow groundwater (Robertson et al. 1989; Chen et al. 2006; Duvert et al. 2016), and provides valuable information on processes active in the past ~ 70 years. Carbon-14 (¹⁴C) is used to understand processes active from modern to ~ 30 ka (Clark & Fritz 1997; Cartwright et al. 2010; Cendón et al. 2014) and chlorine-36 (³⁶Cl), whilst applicable in modern groundwater (Tosaki et al. 2007), is usually reserved for the identification of much older groundwater (100 ka to 1 Ma). One of the challenges of using ³⁶Cl is that, in certain cases, nucleogenic production of ³⁶Cl can be significant and/or varying Cl concentrations can complicate groundwater residence time interpretations. However, in regions with low and fairly consistent Cl concentrations (such as in our study area), ³⁶Cl values can provide solid indications of old groundwater residence times (Mahara et al. 2007).

These isotopes can also be used for tracer mixing calculations independent of residence time estimations (Bentley et al. 1986; Andrews & Fontes 1993; Love et al. 2000; Moya et al. 2016). Therefore, the combination of ³H, ¹⁴C, and ³⁶Cl dating techniques can provide hydrochemical process insights that cannot be captured by using only one isotope.
Identification of recharge and discharge pathways, particularly from underlying artesian contributions, can be better constrained by combining traditional geochemical data with multiple dating techniques and other hydrologic analyses (Amiri et al. 2016; Rawling & Newton 2016; Schilling et al. 2016). Here, we present for the first time a multi-tracer approach to constraining artesian discharge from the Great Artesian Basin (GAB) into the Lower Namoi Alluvium (LNA), north-west New South Wales (NSW), Australia (Figure 1). We use water stable isotopes and major ion data to assess the major recharge pathways and occurrences of groundwater mixing in the LNA. We also use 3H, 14C and 36Cl to show that artesian discharge from the underlying GAB to the LNA is locally much higher than is currently estimated from water balance models used to guide groundwater allocations in the region (Lower Namoi Groundwater 2008).

In this study we are not attempting to determine groundwater ages for all sampling locations, as it is very difficult to obtain meaningful ages for samples where significant mixing of old and recent groundwater has occurred. However, we do present “age” constraints for both modern and old end-members as a basis for delineating the relative ages of these end-members. Our results highlight the need to consider a multi-tracer geochemical approach when assessing artesian contributions to alluvial aquifers and constraining water balance models of alluvial systems globally.
Figure 1. Map of the study area and sample locations, along with the location of the study area in Australia. Accompanying hydrographs show the groundwater level response in different piezometers throughout the study area (groundwater level data sourced from BOM 2017). The different colours in the hydrographs represent the different monitoring bores in the nested set. The bottom of the slotted
interval for each bore is shown in the key. The x-axis in each hydrograph is the year (1970-2010) and
the y-axis is depth (between 0 and 40 m below ground surface (bgs)). The two locations with red text
highlight areas where the hydrograph heads show clear GAB contribution, with the deeper piezometer
showing a higher head than the shallow one. The remaining locations show no apparent GAB
contribution to the LNA based on the hydrograph data.

2 Study Area

The lower Namoi River catchment is located in the north-west of NSW, Australia (Figure 1). Groundwater resources in the LNA are the most intensively developed in NSW (DPI Water 2017). For this reason, there is concern regarding groundwater exploitation and threat to the long-term sustainability of the system (Lower Namoi Groundwater 2008; DPI Water 2017). Groundwater abstraction from the LNA supports a multibillion-dollar agricultural sector (focused around cotton growing established in the 1960s), supplying around 50% of water for irrigation in the region (Powell et al. 2011). Peak extraction of approximately 170,000 mega litres (ML) occurred over the 1994/1995 growing season (Smithson 2009). Consistently declining groundwater levels and concern regarding the long-term sustainability of groundwater abstraction led to the implementation of a Water Sharing Plan in 2006, which systematically reduced groundwater allocations to the irrigation sector over a ten-year period. The present allocation is 86,000 ML/a (Lower Namoi Groundwater 2008).

2.1 Hydrogeological setting

The lower Namoi River catchment lies within the Murray-Darling Basin, overlying the Coonamble Embayment, which is in the south-east portion of the GAB (Radke et al. 2000). The southernmost portion of the LNA is underlain by Triassic formations, while northwest of monitoring bore 30345 the LNA is underlain by Jurassic formations (Figure 2). Within the region of study, the oldest outcropping bedrock formation is the early Triassic Digby
Formation (lithic and quartz conglomerates, sandstones and minor finer grained sediments) (Tadros 1993). The Digby Formation outcrops in the south-east of the area and the Namoi River abuts the formation just south of B’ on Figure 2. The Digby Formation is overlain by the Triassic Napperby Formation (thiny bedded claystone, siltstones and sandstone). This formation occurs at a depth of 106 m, just below the base of monitoring bore 30345 (NSW Pinneena Groundwater Database, driller logs). In outcrops to the east of the study area, the Napperby Formation is overlain by the late Triassic Deriah Formation (green lithic sandstone rich in volcanic fragments and mud clasts) (Tadros 1993). The boundary between the Triassic and Jurassic lies west of monitoring bore 30345. The Jurassic formations important to this study are the Purlawau Formation (carbonaceous claystone, siltstone, sandstone and subordinate coal), Pilliga Sandstone (medium to coarse quartzose sandstone) and the Orallo Formation (clayey to quartzose sandstone, subordinate siltstone and conglomerate) (Tadros 1993). The Pilliga Sandstone forms the bedrock below monitoring bores 25325 to 25342, and in the Namoi region is the primary aquifer of the GAB.
Figure 2. Two cross sections through the study area, showing the location and depth of the samples in the alluvium and their proximity to formations of the GAB. Contacts obtained from gas wells Nyora-1, Culgoora-1 and Turrawan-2, coinciding with our cross sections, are added. Their locations are displayed on the map. The chlorine-36 data interpolated using the ‘natural neighbours’ algorithm is shown in each cross section.

From the late Cretaceous to the mid Miocene, a palaeovalley was carved through the basement rocks (Kelly et al. 2014). Then from the mid Miocene until present, the palaeovalley was filled with reworked alluvial sediments. Groundwater abstraction in the study area is mostly from these alluvial sediments. Fluvial and aeolian interbedded clays, silts, sands and gravels form the up to ~ 140 m thick alluvial sequence of the Lower Namoi Catchment.
Traditionally, three main non-formally defined aquifers/formations have been used to describe the LNA. The semi-confined Cubbaroo Formation overlies the bedrock in the northern palaeochannel (which passes beneath monitoring bores 25325 and 30092). This formation is up to 60 m thick. The Cubbaroo Formation is overlain by the semi-confined Gunnedah Formation, which is up to 80 m thick, and is conformably overlain by the unconfined Narrabri Formation, which is 10 to 40 m thick (Williams et al. 1989). However, recent studies in the Namoi Catchment suggest that the rigid subdivision in to the Narrabri, Gunnedah, and Cubbaroo formations cannot easily explain the continuum in chemical evolution observed (discussed further below) and that the valley filling sequence is better characterised as a distributive fluvial system (Kelly et al. 2014, Acworth et al. 2015).

Groundwater drains from the Upper Namoi into the LNA via a bedrock constriction north of Narrabri and generally flows from east to west within the LNA (Barrett 2012). Hydraulic conductivity in the alluvial aquifer is highly variable (0.008-31 m/day) due to the presence of variable sand and clay (Golder Associates 2010). However, hydraulic conductivity generally increases with depth.

2.2 Current understanding of recharge and discharge processes in the Lower Namoi

Alluvium

There have been numerous catchment water balance models and hydrochemical investigations in the study area because of the local and national economic importance of the LNA. However, the hydrochemistry of the groundwater in the region has not been used in conjunction with water balance modelling prior to this study (Merrick 2000; CSIRO 2007; Kelly et al. 2007).

2.2.1 Water balance modelling of recharge
To guide groundwater allocations from the LNA, a series of water budget models were developed using MODFLOW (Merrick 2000; summarised in Kelly et al. 2007). These models were driven by climatic, rainfall, flood and streamflow data and calibrated to groundwater head data. There are multiple plausible solutions for all water balance models and the solution presented is often constrained by several factors. These constraining factors include geological insights; the modeller’s experience and biases (such as, for example, the way diffuse recharge is modelled either as a percentage of rainfall (Merrick 2000; CSIRO 2007) or as a complex evapotranspiration function (Giambastiani et al. 2012)); verification measures and pragmatic goals. One MODFLOW derived water balance model proportioned the recharge for the water budget period 1980-1994 as following: flood and diffuse rain recharge 24,100 ML/a, stream recharge 33,700 ML/a, up gradient alluvial inflow 3,060 ML/a, and artesian (GAB) recharge 9,500 ML/a. In that model, artesian recharge was inferred to occur in the eastern portion of the model (between Narrabri and Wee Waa), which overlaps with this study area (Figure 1). The zone between Narrabri and Wee Waa accounted for 42,700 ML/a of the total recharge to the LNA. Thus, according to the model, GAB discharge into the LNA in this area equated to 22%. When the LNA MODFLOW model was calibrated there was no consideration given to using hydrochemical data to constrain the calibration (Merrick 2000; CSIRO 2007; Kelly et al. 2007).

2.2.2 Hydrochemical estimates of recharge

The first isotopic investigation in the area was conducted from 1968 to 1975 and partially published by Calf (1978). The author used 14C and 3H to assess recharge pathways to the LNA and found evidence for river recharge in the upper aquifer, and that modern groundwater penetrated the deeper parts of the LNA. Calf (1978) also found evidence for
‘leakage’ of groundwater from the GAB up into the deeper LNA, however volumetric estimates were not provided.

McLean (2003) conducted an extensive hydrochemical and isotopic characterisation of both the GAB groundwater and the alluvial groundwater in 1999-2000. This research concluded that mixing of groundwater from the GAB into the lower and middle parts of the LNA is an important process especially in the south of the catchment. This study also did not quantify the amount of mixing occurring between the two groundwater sources.

The over-reliance of water balance models used to allocate groundwater resources that have not been constrained by isotopic tracer residence times or hydrochemical results is a common issue globally. This research highlights that hydrochemical investigations improve our conceptual understanding of recharge pathways and that such investigations should be applied to all important groundwater resource assessments to enable sustainable management.

3 Materials and methods

3.1 Groundwater collection

This study comprised two field campaigns, the first one from 28 January 2016 to 8 February 2016 (summer) when the aquifer was stressed by pumping for irrigation, and the second from 21 June 2016 to 30 June 2016 (winter) in the absence of abstraction for irrigation.

In summer, 28 groundwater samples were collected from NSW Department of Primary Industries Water (DPI Water) monitoring bores and a surface water sample from the Namoi River. In winter, 16 groundwater samples were collected from NSW DPI Water monitoring bores and surface water samples from the Namoi River and 2 upstream tributaries (see Supplementary Table 2 for locations). The bores are screened at varying intervals, intersecting the shallow, middle and deep alluvium. Most bores were sampled with either a Grundfos (MP1 sampling pump) or Bennett compress air piston pump, with the pump placed ~ 1 m above the
screen when using the Grundfos pump and a drop-tube extension adjusted to place the pump intake within the screen when using the Bennett pump. Some deep monitoring bores were sampled with a portable bladder pump using low-flow methods (Puls & Barcelona, 1996). In these bores the pump was placed approximately 10 m below standing water level, with a drop-tube cut to place the pump intake within the screen. For shallower bores (less than 50 m), a 12 V battery operated pump was used with the pump intake placed ~1 m above the screen. For all sample sites, physico-chemical parameters (pH, DO, EC) were monitored and samples collected once three well volumes had been pumped and/or the physico-chemical parameters stabilised. This was generally achieved within 1 to 3 hours after onset of pumping. Sample collection involved an in-line, 0.45 μm, high-volume filter connected to a high density polyethylene (HDPE) tube. Total alkalinity concentrations (field alkalinity) were determined in the field by acid titration using a HACH digital titrator and external pH meter control. The Fe^{2+} and HS^{-} concentrations were determined using a portable colorimeter (HACH DR/890).

Samples for anion and water stable isotope (δ²H and δ¹⁸O) analyses were collected in 60 mL and 30 mL HDPE bottles, respectively, with no further treatment. Samples for cation analysis were collected in 60 mL HDPE bottles and acidified with ultrapure nitric acid. Samples for ¹⁴C and ³H were collected in 1 L narrow mouth HDPE bottles and 2 L HDPE bottles respectively, and were sealed with tape to avoid potential atmospheric exchange during storage. Samples for ³⁶Cl were collected in 1 L narrow mouth HDPE bottles with no further treatment. Major ion and ¹⁴C samples were refrigerated at 4°C until analysed.

For both sampling campaigns, we aimed to collect samples representative of the river, the alluvium and the GAB, however we were not able to access any previously characterised GAB bores within the study area, with the only bore screened within the Pilliga Sandstone (273314) (Figure 2). To better constrain GAB groundwater characteristics, we reviewed regional information and used geochemical data from known GAB bores collected by Radke
et al. (2000) and McLean (2003). These data were collected to the northwest of our study area and are used as a range (depending on availability of the original reported data) for the GAB end-member in all future plots and discussions (Supplementary Table 1).

To help in the description of results, we use shallow (< 30 m), intermediate (30 – 80 m) and deep (> 80 m) as a rough guide to the origin of the groundwater sample. The chosen depth categories are based on clusters and trends in the 14C analyses. Groundwater samples from similar contemporaneous alluvial-filled valleys in other eastern Australian river valleys show a continuum of geochemical evolution that cannot be explained by separating samples into arbitrary aquifers (such as the aforementioned Narrabri, Gunnedah and Cubbaroo Formations). In such settings, proximity to modern channels and depth are the primary controls on residence time (Cendón et al. 2010; Iverach et al. 2015).

3.2 Geochemical analyses

Groundwater samples from both campaigns were analysed at ANSTO by inductively coupled plasma atomic emission spectroscopy (ICP-AES) for cations and ion chromatography (IC) for anions. Samples for δ^2H and δ^{18}O were analysed using Cavity Ring-Down Spectroscopy (CRDS) on a Picarro L2130-i analyser. These values are reported as ‰ deviations from the international standard V-SMOW (Vienna Standard Mean Ocean Water) and results are accurate to ± 1‰ for δ^2H and ± 0.15‰ for δ^{18}O.

The 14C samples were processed and analysed at ANSTO using methods described in Cendón et al. (2014). The 14C activities were measured by accelerator mass spectrometry (AMS) using the ANSTO 2MV tandemron accelerator, STAR (Fink et al. 2004). The 14C results were reported as percent modern carbon (pmc) following groundwater 14C reporting criteria (Mook & van der Plicht 1999; Plummer & Glynn 2013) with an average 1σ error of 0.21 pmc.
The 3H samples were analysed at ANSTO. Water samples were distilled and electrolytically enriched prior to analysis by liquid scintillation. The 3H concentrations were expressed in tritium units (TU) with a combined standard uncertainty of ± 0.03 TU and quantification limit of 0.04 TU. Tritium was measured by counting beta decay in a liquid scintillation counter (LSC). A 10 mL sample aliquot was mixed with the scintillation cocktail that releases a photon when struck by a beta particle. Photomultiplier tubes in the counter convert the photons to electrical pulses that are counted over 51 cycles for 20 minutes.

The 36Cl/Cl and 36Cl/37Cl ratios were measured by AMS using the ANSTO 6MV SIRIUS Tandem Accelerator (Wilcken et al. 2017). Samples were processed in batches of 10, with each batch containing 1 chemistry blank. The amount of sample used was selected to yield ~5 mg of Cl for analysis without carrier addition. Chloride was recovered from the sample solutions by precipitation of AgCl from hot solution (Stone et al. 1996). This AgCl was redissolved in aqueous NH$_3$ (20-22 wt %, IQ grade, Seastar) to remove sulfur compounds of Ag.

Owing to isobaric interference of 36S with 36Cl in the AMS measurements, a saturated Ba(NO$_3$)$_2$ solution (99.999% trace metal basis) was used to precipitate sulfur as BaSO$_4$. At least 72 h were allowed for BaSO$_4$ to settle from a cold solution (4°C) in the dark before removal of the supernatant by pipetting and filtration (0.22 Millex GS). Pure AgCl was re-precipitated by acidifying the Ag(NH$_3$)$_2$-Cl solution with 5M nitric acid (IQ Seastar, sub-boiled). Finally, AgCl was recovered, washed twice and dried. It was then pressed into high-purity AgBr (99% trace metal basis, Aldrich) in 6 mm diameter Cu-target holders. AgBr has a much lower sulfur content than Cu. The stable Cl isotopes 35Cl and 37Cl were measured with Faraday cups and 36Cl events were counted with a multi-anode gas ionisation chamber. Gas (Ar) stripping (for good brightness/low ion straggling) the ions to 5+ charge state in the accelerator terminal suffices for effective 36S interference separation in the ionisation chamber combined with sample-efficient and rapid analysis. Purdue PRIMELab Z93-0005 (nominally
1.20x10^{-12} \text{Cl/Cl} \) was used for normalisation with a secondary standard (nominally 5.0x10^{-13} \text{Cl/Cl} (Sharma et al. 1990)) used for monitoring. Background subtraction was done with a linear dependence between \text{Cl-rate} and interfering \text{S-rate}. This dependency is established by combining all the blank and test sample measurements and applied to the unknown samples during offline data analysis. This correction factor was typically less than analytical uncertainty of 3-4\% bar one sample that had a correction factor of 12\% with an analytical uncertainty of 6\%.

\section*{3.3 Geochemical calculations}

Calculations necessary to assess electrical neutrality, dissolved element speciation and saturation indices for common mineral phases were undertaken using the PHREEQC Interactive program (3.3.8) (Parkhurst & Appelo 1999) and the incorporated WATEQ4F thermodynamic database (Ball & Nordstrom 1991). The cation and anion analyses were assessed for accuracy by evaluating the charge balance error percentage (CBE\%). All samples fell within the acceptable ± 5\% range, except for samples 25327-1 and 36001-1, which both contained high \text{NH}_4^+ concentration that was not part of the initial ion analyses. This elevated \text{NH}_4^+ concentration skewed the CBE\% so that they were initially outside the acceptable ± 5\% range. The inverse geochemical modelling code NEPATH XL (Plummer et al. 1994; Parkhurst & Charlton 2008) has been used to calculate the mixing ratio between two end-members, using their Cl concentrations. The choice of end-members will influence calculated proportions. However, end-members were selected to provide conservative approximations. In general, Cl concentrations in surface water and shallow groundwater in the study area are low (< 30 mg/L), while samples recovered from the Pilliga Sandstone (GAB) have higher concentrations (~ 60 mg/L). We mix a representative shallow, modern groundwater (30170-1) with an average GAB composition obtained from regional groundwater samples (McLean 2003). These two initial
end-members are mixed in different proportions so that Cl concentrations in a selected final
bore can be explained via inverse modelling calculations.

36Cl residence times were calculated from the equations of Bentley et al. (1986),
assuming no other sources or sinks besides recharge and natural decay (eqn. 1):

$$ t = \frac{-1}{\lambda_{36}} \ln \frac{R_{se} - R_{se}}{R_{0} - R_{se}} $$

where $R = ^{36}$Cl/Cl ratio measured in the sample, $R_{0} =$ the initial 36Cl/Cl ratio (meteoric
water), $R_{se} =$ the 36Cl/Cl ratio under secular equilibrium (in this case the 36Cl/Cl ratio from the
Pilliga Sandstone), and λ_{36} is the decay constant (2.303×10^{-6}). We used a R_{0} value of 160
(x10$^{-15}$), which was an average of 10 samples compiled from studies in the Coonamble
Embayment and reported in Radke et al. (2000). For R_{se} a value of 5.7 (x10$^{-15}$) was used,
which is appropriate for aquifers dominated by sandstone (this secular equilibrium value can
vary according to the dominant lithology). This R_{se} value has been applied to 36Cl/Cl
calculations elsewhere in the GAB (Moya et al. 2016).

4 Results

4.1 Major ion chemistry

The groundwater of the alluvial aquifer is predominantly Na-HCO$_3$-type water, with
concentrations ranging from 0.12 mmol/L to 54.6 mmol/L (average: 6.85 mmol/L) for Na$^+$
and 0.29 mmol/L to 24.0 mmol/L (average: 6.43 mmol/L) for HCO$_3^-$ (Supplementary Table
2). Generally, the highest concentrations of Na$^+$ and HCO$_3^-$ occur in the deeper groundwater
and decrease up the vertical groundwater profile (Figure 3a). The concentration of these two
ions in the groundwater of the LNA is higher than expected from local rainfall sources and
other shallow groundwater alluvial systems in eastern Australia (Martinez et al. 2017). In
GAB groundwater, the Na-HCO$_3$ molar ratio is generally 1:1 and the two ions are generally
present in higher concentrations than in our alluvial samples (Radke et al. 2000; McLean 2003), which is evident in the position of the regional GAB samples in Figure 3a.

Additional ions used in this study are F^-, Cl^- and the Cl/Br ratio. The concentration of F^- in the groundwater ranges from 0.002 mmol/L to 0.215 mmol/L (average: 0.028 mmol/L). Fluoride concentrations generally increase with depth and accumulate in solution as all groundwater samples are below saturation with respect to fluorite (Figure 3b). Concentrations of Cl^- in the alluvial groundwater range from 0.063 mmol/L to 26.73 mmol/L (average: 1.67 mmol/L). Unlike the other major ions, Cl^- concentrations through the vertical groundwater profile are relatively stable (Figure 3c). The relationship between Cl^- and the Cl/Br ratio shows that groundwater composition clusters from values below the seawater ratio to values close to seawater. The Cl/Br ratios are similar to ranges found in other alluvial groundwater systems but slightly lower than ratios observed in other GAB samples for Australian locations (Herczeg et al., 1991; Cendón et al., 2010; Cartwright et al., 2010). Additionally, the Cl/Br ratios in shallow samples connected to the river are consistent with expected ratios in rainfall (Short et al. 2017). The regional GAB samples (Radke et al. 2000) show a Cl/Br ratio more similar to seawater, with our samples from the LNA lying on a mixing trend between the two end-members (Figure 3c).
Figure 3. a) Na⁺ vs HCO₃⁻ showing the mixing trend that the alluvial samples form between the Namoi River and samples from the GAB (Radke et al. 2000; McLean 2003). The shaded blue ellipse represents all river chemistry data available for the Namoi River and tributaries (this work (n=4), McLean 2003 (n=4), Mawhinney 2011 (n=79)); b) Na⁺ vs F⁻ and c) Cl⁻/Br⁻ vs Cl⁻, highlighting the mixing trend between the surface recharge and the GAB that we observe in other geochemical indicators. The red dotted line represents the Cl⁻/Br⁻ ratio for rainfall and the blue dotted line is the seawater ratio.
We identified one major outlier in the hydrochemical results, which was sample 273314. This sample is from 207 m bgs and the bore screen is classified as being in the GAB. However, the geochemical parameters for this deep GAB sample have a signature more similar to river water than what would be expected in the GAB 207 m bgs. The concentration of Na\(^+\), HCO\(_3\)-, Cl\(^-\), F\(^-\) and the Cl/Br ratio in this sample plot closer to the river and shallow groundwater than the deeper groundwater system (Figure 3). Potential reasons for this are explored in detail below.

4.2 Water stable isotopes (\(\delta^2\)H and \(\delta^{18}\)O)

The stable water isotopic values for this study range from -0.76‰ to 8.4‰ for \(\delta^{18}\)O and -7.5‰ to -54.9‰ for \(\delta^2\)H. Most groundwater samples cluster together at around -6‰ and -40‰ (\(\delta^{18}\)O and \(\delta^2\)H) and lie on the global meteoric water line (GMWL), to the right of the nearest available local meteoric water lines (LMWL) (Macquarie Marshes and Gunnedah) (Figure 4; Supplementary Table 3). A group of mostly shallow samples collected from piezometers close to river channels follow an evaporation line. Our results are similar, including the shallow groundwater evaporative trend, to those recorded by McLean (2003).

Water stable isotopic compositions for regional GAB samples range from -6.58‰ to -6.24‰ for \(\delta^{18}\)O and -43.1‰ to -38.8‰ for \(\delta^2\)H (McLean 2003) (Figure 4).
Figure 4. Water stable isotopes in the LNA, showing the two separate mechanisms of recharge; surface water recharge plotting along an evaporation trend line and potential inflow from the GAB clustered with regional samples from the GAB (McLean 2003).

4.3 Isotopic tracers (3H, 14C and 36Cl)

Tritium activities vary throughout the study area, ranging from 0.01 TU to 2.36 TU (average: 0.42 TU). Tritium activities generally decrease with depth and distance from the river channel (Figure 5) (all data in Supplementary Table 3), with modern recharge evident in the high 3H activities near the main river channels. However, 3H above the detection limit (0.04
TU) was measured at depth (down to 207 m bgs). The 3H activities we measured at depth are significant for Australian groundwater, as the peak of the bomb pulse in Australia was around 60 TU and 3H in Australian rainfall as been at natural background concentrations for some time.

![Figure 5](image.png)

Figure 5. Plot of depth vs 3H, highlighting the 3H activity throughout the vertical groundwater profile.

The 14C content in the groundwater ranged from 0.2 pmc to 107.6 pmc (average: 54.0 pmc). Generally, groundwater samples shallower than 30 m had a high 14C content (> 90 pmc), which decreased with depth. There were 9 samples with a 14C content below 1 pmc, indicating very old groundwater (> 30 ka), with total depths ranging from 35 m bgs to 207 m bgs.
Our ^{36}Cl results for the alluvial groundwater ranged from 24.06×10^{-15} to 455.35×10^{-15} (average: 169.4×10^{-15}) (shown in the interpolation in Figure 2). It has been found that groundwater in the GAB recharge zone closest to the study area has a $^{36}\text{Cl}/\text{Cl}$ ratio up to $\sim 200 \times 10^{-15}$ (Radke et al. 2000) with recharge values applied in calculations elsewhere in the GAB of 110×10^{-15} (Moya et al. 2016). Water from the Namoi River has a $^{36}\text{Cl}/\text{Cl}$ ratio of $\sim 420 \times 10^{-15}$, possibly affected by thermonuclear ^{36}Cl input from atmospheric bomb testing in the 1950s (Supplementary Table 4).

5 Discussion

5.1 Identification of recharge and mixing between the GAB and the LNA

The $\delta^{18}\text{O}$ and $\delta^2\text{H}$ isotopic compositions suggest two mechanisms of recharge to the alluvium: artesian discharge and surface water infiltration. The regional GAB samples plot within the alluvial groundwater sample range, suggesting a GAB component in the alluvium. The evaporation line in Figure 4 indicates recharge to the alluvium via surface water infiltration. It also shows a good connection between surface water that has undergone evaporation and shallow groundwater.

Additional evidence for these two mechanisms of recharge is the composition of Na^+ and HCO_3^- in the LNA. Figure 3a shows a mixing line that the alluvial samples follow, plotting between the end-members of the GAB and the Namoi River, suggesting an increasing GAB contribution to the alluvial groundwater with depth. This also implies that a continuum of mixing exists between the shallow and deep groundwater within the LNA. The shallow samples (25220-1 and 30259-1) that are more Na^+ enriched compared to samples from the GAB have undergone separate evapotranspiration processes and hence have a concurrent increase in Cl^-. Assuming that Cl^- is behaving conservatively (Appelo & Postma
we surmise that increases in dissolved major ion concentrations concomitant with increases in Cl⁻ in the shallow groundwater are likely to be a result of evaporation.

Further hydrochemical evidence for these recharge mechanisms is the covariation of Na⁺ and F⁻, both interpreted as primarily derived from groundwater interaction with silicate minerals in this region (Airey et al. 1978; Herczeg et al. 1991; McLean 2003) (Figure 3b). Our alluvial samples fall on the mixing line between samples from the river and nearby tributaries and regional samples from the GAB (Radke et al. 2000), in a similar way to the Na-HCO₃ trend that we observe in Figure 3a. The Cl/Br ratios in the groundwater also support the mixing interpretation provided by the Na⁺ and HCO₃⁻ concentrations, contrary to the possibility of water rock interactions along the alluvium flowpath (Figure 3c). Furthermore, the relationship between ³⁶Cl and Na⁺ provides additional evidence of mixing in the groundwater (Supplementary Figure 1).

Figure 3 also highlights the aforementioned deep outlying sample (273314), which was 207 m bgs in total depth, yet plots with the shallow alluvial and river samples. Figure 2 shows that this sample is situated just above the Napperby Formation. We hypothesise that this sample originated from surface recharge from the Namoi River (which is in contact with the underlying Digby Formation to the south of the study area), with negligible input from the more Na-HCO₃-rich groundwater in the Pilliga Sandstone, where the sample is from. Sample 30345-2 (Supplementary Tables 2 and 3), which is situated in the lower part of the LNA in proximity to the alluvial contact with the Napperby Formation (Figure 2) has a similar geochemistry. These results suggest the connection between deeper Triassic formations beneath the GAB and the Namoi River, which must be an important consideration in future water balance models of the catchment.

5.1.1 Mixing between groundwaters of varying residence times
Major ion and water stable isotope data suggest two primary mechanisms of recharge to the LNA and show that mixing is occurring within the alluvium. 3H activity and 14C content in the alluvial groundwater to quantify the potential residence times of the groundwater sources that are mixing within the alluvium. Tritium activities above the detection limit at depth (down to 207 m bgs) indicates the extent of recharge from episodic flooding. Measuring 3H above the detection limit at these depths also shows that surface recharge reaches the deeper LNA relatively quickly (< 70 years). Past 3H data from the region (Calf 1978) suggest that 3H was already present in the deeper parts of the alluvial aquifer (> 70 m bgs) prior to a major flood in 1971, with activities ranging from 7.9 TU to 11.2 TU. This indicates good connectivity to the surface. Additionally, measurements of 3H post-flooding (16.6 to 20.7 TU) indicate that substantial recharge took place during this flood, highlighting the importance of surface water recharge to the LNA. The activities of 3H above the detection limit throughout the vertical profile of the LNA (Figure 5) are inconsistent with the low 14C contents in the groundwater. The presence of measurable 3H but negligible 14C (close to 0 pmc) suggests that mixing is occurring between groundwater that is associated with modern recharge processes in the alluvium and groundwater that, as indicated by the 14C content, is presumably much older. This older groundwater may be derived from artesian inflow. Figure 6 shows 3H activities above the detection limit in samples with 14C content of almost 0 pmc, suggesting that groundwater with a very low 14C content is mixing with groundwater with a high 3H activity. Even though there is evidence of 14C dilution in localised areas, we also observe mixing between groundwaters of widely different 14C and 3H values in the gradient of the samples in Figure 6 (emphasised with a dotted blue line). This gradient would be steeper if there were mixing between groundwaters closer in residence times (Cartwright et al. 2013).
Figure 6. 3H (TU) vs 14C (pmc). This shows the mixing between groundwater with detectable 3H activity (as indicated by the red band) and groundwater with very low 14C content (as indicated by the dotted blue line).

5.2 Extent of interaction between the GAB and the LNA

The 3H and 14C values show that there is mixing between groundwater of varying residence times, however they provide little constraint on the groundwaters with a 14C content of close to 0 pmc (ie > 30 ka). This is where chlorine-36 dating can be a useful tracer because it can be used to identify the presence of groundwaters that are much older than the range provided by 14C.

A plot of 36Cl/Cl vs 14C (pmc) (Figure 7) shows a distinct mixing trend between groundwater with high and very low 14C content. The 2 deep outlying samples (30345-2 and
273314; shaded yellow ellipse in Figure 7) display different geochemical characteristics from
the other samples, possibly because of their aforementioned proximity to the Napperby
Formation (Figure 2). Figure 7 shows the $^{36}\text{Cl}/\text{Cl}$ value range of GAB recharge, highlighting
the alluvial samples with values lower than this GAB recharge value. This suggests that these
alluvial groundwaters are influenced by artesian inflow of very old groundwater. This is
evident in the natural neighbour interpolation in Figure 2.

The longest residence time calculated from eqn. 1 for our study area is between 700 ka
and ~900 ka. Using the two extremes of the $^{36}\text{Cl}/\text{Cl}$ range for GAB recharge (100×10^{15} and
200×10^{15}) this calculated residence time would be slightly shorter or slightly longer,
respectively.

Figure 7. $^{36}\text{Cl}/\text{Cl} (\times 10^{15})$ vs ^{14}C (pmc). The colour gradient represents the mixing between the two
major sources: surface water recharge (blue = modern) and the GAB (brown = old). The shaded
yellow ellipse encompasses the two outliers where the geochemistry is being influenced by proximity to the Napperby Formation. The shaded pink ellipse is sample 25327-3 located in the irrigation area.

The apparent degree of 36Cl decay observed in the alluvial groundwater samples is too large to be explained simply by radioactive decay as indicated by the measurable 14C content in the same samples (Phillips 2000). This means that the time needed for the 36Cl to decay as much as observed would be well outside the range of 14C dating (> 30 ka) and therefore all groundwater samples would be expected to have a 14C content of 0 pmc, which is not observed. Furthermore, the decrease in 36Cl is unlikely to result from dilution by 36Cl-depleted sources such as evaporites, as the Cl concentrations are similar in most samples (Figure 8a and b). Therefore, mixing between groundwaters of different residence times is the most likely explanation for the observed 36Cl signatures.

Figure 8. a) 36Cl vs Cl concentration. The 36Cl production arrow represents in situ 36Cl production as a result of high U and Th in host rocks; b) 36Cl/Cl ratio (x1015) vs Cl/Br$^-$. The dotted blue line represents the Cl/Br$^-$ ratio in seawater and the dotted red line represents the expected Cl/Br$^-$ ratio for rainfall at Narrabri based on distance from the coast (Short et al. 2017).
Our groundwater samples from the deep alluvium display lower 36Cl/Cl ratios (down to 24×10^{15}) than those measured in the GAB recharge zone. This indicates that there is very old groundwater in the deeper LNA (up to 900 ka), and that the mixing observed in our geochemical data could be taking place between groundwater with a residence time of less than 70 a (assumed using 3H) and groundwater with a residence time of ~ 900 ka (calculated using 36Cl; an approximation based on eqn. 1). In the study area, the only source of groundwater with a residence time of ~ 900 ka is the GAB.

To quantify the extent of interaction between the two groundwater sources, we use the concentration of the conservative chloride ion to determine an approximate percentage of GAB to alluvial groundwater at each sample location. To estimate the local surface infiltration end-member, a shallow groundwater sample with a high 3H activity (sample 30170-1; 2.21 TU) was used. The average of all available GAB data was used for GAB inputs. These end-members are mixed in varying proportions to obtain the Cl$^-$ concentration that we observe in all our groundwater samples. If the Cl$^-$ concentration in the sample was lower than that in the representative local surface infiltration sample, a 100% LNA contribution is assumed. The representative sample used as the local surface infiltration end-member has been subject to some evaporation and therefore does not have the lowest Cl$^-$ concentration in the alluvium. If the sample with the lowest Cl$^-$ concentration was used as the surface water end-member, we would require a higher percentage of GAB contribution across the study area. Thus, the use of the evaporated sample as our end-member represents a conservative approach when considering the mixing components from both the LNA and the GAB.

The Cl mixing results provide an approximate mixing threshold with shallower samples generally containing a higher proportion of alluvial groundwater, which diminishes with depth. These mixing proportions show that some deeper samples in the LNA contain up to
70% GAB groundwater. Figure 9 presents approximate contours for artesian discharge proportions into the LNA based on the Cl mixing approach. The dotted lines indicate areas where there is just one sample to inform the interpretation, whereas the solid lines connect multiple samples that all displayed similar contributions from the GAB.

Figure 9. Approximate percentages of GAB contribution to the LNA, calculated from multiple geochemical tracers and major ion data.

Artesian input can be inferred from nested piezometers at locations 30481 and 30259 (Figure 1). At these locations, the monitoring bore slotted in the lower portion of the LNA has a head higher than the monitoring bore slotted in the shallow portion of the LNA, indicative of upward flow. At all other locations artesian contributions cannot be discerned from head data. Comparing Figure 9 to Figure 1 we show that groundwater geochemistry can provide a more accurate evaluation of GAB contribution to the LNA. Multiple geochemical
tracers reveal that boreholes in the north and west of the study area may be experiencing much more GAB inflow than has been inferred in catchment water balance models (Merrick 2000; Kelly et al. 2007; CSIRO 2007). This is most evident at sample 25342. It is not immediately apparent from the vertical heads in the hydrograph set at sample 25342 that there is any GAB inflow, yet based on the geochemical tracers this location is 100% GAB groundwater. The water balance model described in Merrick (2000) has GAB groundwater contributing 22% of all inflow into the LNA between Narrabri and Wee Waa (Figure 1). From the geochemistry alone it is not possible to make an estimate that can be directly compared to that artesian discharge estimate. However, it is apparent from the mixing results shown in Figure 9 that a large portion of the study area has an artesian input to the LNA that is likely to be greater than 22%. The above observations highlight why geochemical insights should ideally be used as one of the constraining data sets when doing water balance models in regions where there is both artesian discharge and surface water recharge to the alluvial aquifer.

5.3 Temporal changes in the interaction between the LNA and the GAB

The multiple geochemical tracers we have used show substantial artesian discharge to the LNA, which is larger than that currently considered in groundwater models of the region (Merrick 2000; Kelly et al. 2007; CSIRO 2007). Time series sampling can constrain how this GAB discharge changes over time and is important for understanding future artesian contributions to the LNA. We use 14C (pmc) data collected in 1978 (Calf), 2003 (McLean), 2010 (ANSTO data) and 2016 (this study) to observe how the 14C content in the groundwater changes over that period. Even though dissolved inorganic carbon content and isotopic signature can be affected by processes involving both organic and inorganic carbon sources along its flow path, (which can alter the 14C content) the application of 14C data can still be
useful as a tracer when investigating mixing and recharge processes (Meredith et al. 2016). This is especially the case if it is assumed that the processes that can potentially alter the 14C signature do not change substantially over the period where different historical 14C data are compared. Therefore, the historical 14C data, coupled with data from this study could be used to estimate the changes in relative contributions of high 14C contents from recent surface recharge (~ 100 pmc) versus low 14C contents of the GAB discharge to the LNA. The dataset contains 14 bores from 5 nested sites and is the most comprehensive long-term time-series database for the study area, if not Australia, despite not being complete for all years.

Most of the samples displayed relatively consistent 14C values across the years where data were available. However, we observed large changes in 14C content in 5 monitoring bores; 4 showed an increase and 1 showed a decrease (bold text in Table 1). The borehole that displayed a decrease in 14C (30092-2) between 2003 and 2016 suggests that there is an increasing GAB contribution over the time period at this site. Using the Cl$^-$ concentration, this sample displayed 60% GAB contribution (Figure 9), despite the vertical head gradients in the hydrograph showing no evidence of this (Figure 1). The remaining 4 monitoring bores, primarily located deeper in the LNA, have an increase in 14C, suggesting a larger alluvial contribution at these locations over time. At monitoring bore 25332-4, 14C increased between 1978 and 2010, then decreased between 2010 and 2016. These locations were in the northern part of the study area where there is extensive pumping for irrigation, suggesting that these changes in the 14C contents are reflecting the extent of pumping occurring and associated surface water recharge with modern carbon versus artesian discharge. Therefore, measuring the 14C in the groundwater at any future time and assessing how this has changed using past data is useful as a preliminary indicator for the current state of the system.
Table 1. Changes in 14C content (pmc) in select boreholes in the study area between 1978-2016 (see Figures 1 and 8 for the locations of the bores). The 5 bores in bold text highlight where we observe changes in the 14C content from 1978 to this study. Where available, the time of sampling is included.

ND = no data.

<table>
<thead>
<tr>
<th>Bore</th>
<th>Depth interval (m bgs)</th>
<th>Calf (1978)</th>
<th>McLean (2003)</th>
<th>ANSTO data (summer 2010)</th>
<th>This study (summer 2016)</th>
<th>This study (winter 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25220/1</td>
<td>24.4-30.5</td>
<td>28.15</td>
<td>ND</td>
<td>ND</td>
<td>69.66</td>
<td>69.94</td>
</tr>
<tr>
<td>25220/3</td>
<td>97.5-109.7</td>
<td>0.99</td>
<td>ND</td>
<td>0.13</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>25325/2</td>
<td>36.9-38.4</td>
<td>83.63</td>
<td>ND</td>
<td>85.77</td>
<td>86.25</td>
<td>ND</td>
</tr>
<tr>
<td>25325/6</td>
<td>67.1-70.1</td>
<td>65.31</td>
<td>ND</td>
<td>66.57</td>
<td>90.37</td>
<td>ND</td>
</tr>
<tr>
<td>25332/1</td>
<td>17.7-21</td>
<td>103.61</td>
<td>ND</td>
<td>ND</td>
<td>102.48</td>
<td>ND</td>
</tr>
<tr>
<td>25332/2</td>
<td>38.1-41.1</td>
<td>99.19</td>
<td>ND</td>
<td>104.78</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>25332/3</td>
<td>59.9-55.5</td>
<td>94.70</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>25332/4</td>
<td>66.8-69.8</td>
<td>49.33</td>
<td>ND</td>
<td>84.12</td>
<td>73.57</td>
<td>ND</td>
</tr>
<tr>
<td>25327/1</td>
<td>18.9-21.9</td>
<td>123.36</td>
<td>101.3 (s)</td>
<td>ND</td>
<td>103.43</td>
<td>102.74</td>
</tr>
<tr>
<td>25327/2</td>
<td>57.9-60.9</td>
<td>84.16</td>
<td>93.78 (s)</td>
<td>ND</td>
<td>92.05</td>
<td>90.56</td>
</tr>
<tr>
<td>25327/3</td>
<td>80.8-83.8</td>
<td>8.48</td>
<td>8.63 (s)</td>
<td>ND</td>
<td>25.79</td>
<td>56.08</td>
</tr>
<tr>
<td>30092/1</td>
<td>17.7-20.7</td>
<td>ND</td>
<td>90.51 (w)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>30092/2</td>
<td>48.2-49.4</td>
<td>ND</td>
<td>80.06 (w)</td>
<td>72.31</td>
<td>ND</td>
<td>66.92</td>
</tr>
<tr>
<td>30092/4</td>
<td>108.2-110</td>
<td>ND</td>
<td>0.19 (w)</td>
<td>0.24</td>
<td>0.3</td>
<td>0.21</td>
</tr>
</tbody>
</table>

6 Conclusion

We have used multiple geochemical tracers to show that artesian discharge to a shallow alluvial aquifer is higher than previously derived from water balance models in the literature (Merrick 2000; CSIRO 2007; Kelly et al. 2007). This finding is important when considering the sustainable use of connected alluvial and artesian systems. We have also provided a percentage estimate of GAB groundwater in each sample collected in the LNA using the concentration of Cl in the groundwater, showing that in some locations the ‘alluvial’ sample is comprised of up to 70% GAB groundwater.

Isotopic tracers (3H, 14C, and 36Cl) indicate that there is substantial mixing between two groundwater end-members of very different residence times (< 70 a and ~ 900 ka). This suggests interaction between modern surface recharge through the shallow LNA and variable artesian inflow at depth, dependent on where the sample is located in the system. Using past 14C data (1978, 2003, 2010), along with data from this study to show that there has been an increase in 14C in the groundwater in some locations of the LNA in the last ~ 40 years. This
suggests a greater contribution from modern river and flood recharge in locations proximal to
the Namoi River since 1978, which could be induced by nearby groundwater abstraction for
irrigation. In contrast, a sample farther from the river has displayed a steady decrease in ^{14}C
content since 1978. How these trends change geographically throughout the system, and how
they will behave in the future are difficult to constrain without continuous monitoring.

Recharge inputs to the LNA from the GAB were previously considered less than 22% (Merrick 2000; CSIRO 2007; Kelly et al. 2007). However, the geochemical data reported
above clearly indicate that GAB discharge is occurring in locations where inflow is not
apparent from the nested hydrograph data. This highlights the need to apply multiple
groundwater investigation techniques (including flow modelling, hydrograph analysis,
geophysics, and geochemistry) when inferring artesian discharge to an alluvial aquifer. This
research has demonstrated that a multi-tracer geochemical approach is required to better
determine artesian contributions to the alluvial aquifer and must be considered in
constraining future models of the study system and elsewhere.

Acknowledgements
This research was funded by the Cotton Research and Development Corporation (CRDC).
Charlotte Iverach was supported by scholarships from the Australian Government, ANSTO
and CRDC. ANSTO support and analytical staff are thanked for their continuous efforts
(Chris Dimovski, Henri Wong, Robert Chisari, Vladimir Levchenko, Krista Simon, Alan
Williams, Simon Varley). The authors also thank Dr. Lisa Williams for editing and
proofreading the manuscript. In addition, many thanks to the three reviewers, who provided
constructive feedback and raised the overall quality of the paper.

Author contributions
Experimental conceptualisation and design was carried out by D.I.C & B.F.J.K. Fieldwork was conducted by C.P.I., D.I.C., S.I.H. & B.F.J.K. Additional data was contributed by K.T.M. Geochemical analyses were conducted by C.P.I., D.I.C. & K.M.W. The manuscript was written by C.P.I with input from all authors.

Competing Interests

The authors declare that they have no conflict of interest.

References

Puls, R.W. & Barcelona, M.J. Low-flow (minimal drawdown) groundwater sampling procedures. EPA/540/S-95/504, 10pp., 1996.

List of Figures

Figure 1. Map of the study area and sample locations, along with the location of the study area in Australia. Accompanying hydrographs show the groundwater level response in different piezometers throughout the study area (groundwater level data sourced from BOM 2017). The different colours in the hydrographs represent the different monitoring bores in the nested set. The bottom of the slotted interval for each bore is shown in the key. The x-axis in each hydrograph is the year (1970-2010) and the y-axis is depth (between 0 and 40 m below ground surface (bgs)). The two locations with red text highlight areas where the hydrograph heads show clear GAB contribution, with the deeper piezometer showing a higher head than the shallow one. The remaining locations show no apparent GAB contribution to the LNA based on the hydrograph data.

Figure 2. Two cross sections through the study area, showing the location and depth of the samples in the alluvium and their proximity to formations of the GAB. Contacts obtained
from gas wells Nyora-1, Culgoora-1 and Turrawan-2, coinciding with our cross sections, are
added. Their locations are displayed on the map. The chlorine-36 data interpolated using the
‘natural neighbours’ algorithm is shown in each cross section.

Figure 3. a) Na$^+$ vs HCO$_3^-$ showing the mixing trend that the alluvial samples form between
the Namoi River and samples from the GAB (Radke et al. 2000; McLean 2003). The shaded
blue ellipse represents all river chemistry data available for the Namoi River and tributaries
(this work (n=4), McLean 2003 (n=4), Mawhinney 2011 (n=79)); b) Na$^+$ vs F$^-$ and c) Cl/Br$^-$
vs Cl$^-$, highlighting the mixing trend between the surface recharge and the GAB that we
observe in other geochemical indicators. The red dotted line represents the Cl/Br$^-$ ratio for
rainfall and the blue dotted line is the seawater ratio.

Figure 4. Water stable isotopes in the LNA, showing the two separate mechanisms of
recharge; surface water recharge plotting along an evaporation trend line and potential inflow
from the GAB clustered with regional samples from the GAB (McLean 2003).

Figure 5. Plot of depth vs 3H, highlighting the 3H activity throughout the vertical
groundwater profile.

Figure 6. 3H (TU) vs 14C (pmc). This shows the mixing between groundwater with detectable
3H activity (as indicated by the red band) and groundwater with very low 14C content (as
indicated by the dotted blue line).

Figure 7. 36Cl/Cl (x10$^{-15}$) vs 14C (pmc). The colour gradient represents the mixing between
the two major sources: surface water recharge (blue = modern) and the GAB (brown = old).
The shaded yellow ellipse encompasses the two outliers where the geochemistry is being
influenced by proximity to the Napperby Formation. The shaded pink ellipse is sample
25327-3 located in the irrigation area.

Figure 8. a) 36Cl vs Cl$^-$ concentration. The 36Cl production arrow represents in situ 36Cl
production as a result of high U and Th in host rocks; b) 36Cl/Cl ratio (x10$^{-15}$) vs Cl$^-$/Br$^-$. The
dotted blue line represents the Cl/Br$^-$ ratio in seawater and the dotted red line represents the expected Cl/Br$^-$ ratio for rainfall at Narrabri based on distance from the coast (Short et al. 2017).

Figure 9. Approximate percentages of GAB contribution to the LNA, calculated from multiple geochemical tracers and major ion data.