Referee Comments by Elena Toth

MS hess-2017-396
“The sub-annual calibration of hydrological models considering climatic intra-annual variations”
by Binru Zhao, Huichao Dai, Dawei Han, and Guiwen Ron

The paper presents a comparison of procedures (based either on clustering or on calendar) for calibrating and validating a rainfall-runoff model with parameter sets that depend of the period of the year.

Since the analysis of the seasonal variability of the dominating hydrological processes is a crucial topic, and the importance of keeping such variability into account when calibrating a rainfall-runoff model is often neglected in both research and hydrological practice, the addressed theme is of broad interest for the HESS readers.

The application to only one case study (even if with adequately long time-series) is certainly a serious limitation of the work, as highlighted also by the Editor, Ralf Merz, in addition a number of clarifications on the work are needed.

The main concerns I have are:

1) The final objective of the procedure is not clear.
 The method is in fact not supposed to be used for choosing a different parameter set in real-time (like some examples in the cited literature, where the hydro-meteorological conditions PRECEDING the forecast instant are used for the classification/clustering and for the choice of the most adequate parametrization to be used for real-time forecasting), but it has to be used off-line, since the hydro-meteorological similarity is identified a posteriori in the clustering technique here applied. In fact, in order to identify the cluster to which a specific time instant belongs, the future rainfall (and temperature) values are needed in input.
 The sub-annual calibration scheme based on FCM is therefore applicable only a posteriori; such drawback, in addition to its complexity, is not justified by the results, since the calendar grouping performs equally well than the best FCM.
 Maybe the authors should elaborate more on the differences in the simulation results in comparison to the traditional approach, possibly in order to improve the model structure?
 The final aim of the study should be clearly stated in the introduction and a deeper interpretation of the results is needed in the result/conclusion sections.

2) The reasons for the choice of the variables used in the clustering technique are not clear: of course many other hydro-meteorological features may be needed to appropriately identify the peculiarity of each subperiod/‘season’.

In addition, it is important to underline that an important problem in using the model with changing parameter sets is the fact that the model is a continuously-simulating conceptual one, that needs all the previous simulation values (depending on the specific parameter set) to update the state variables. This also implies that when switching from one subperiod to the following one (e.g. at the end of the month and beginning of the new one) there may be some discontinuities in the simulated streamflow, due to the change. Such aspects are one of the main issues in the use of time-varying parameters in rainfall-runoff modelling and it’s not very clear in the presentation.
Specific comments:

in particular, in this case, the study does not address climate change, but interannual variations, so I don’t think such digression (especially being a very complex and debated issue) is needed.

Section 3.2: a flowchart or a diagram explaining the splitting and use of the different time periods would be very useful to understand the proposed approaches.

p.4: ll 30-31: explain how the months are merged: the 6-months periods are only the Jan to June one and the July to December one, or other 6 consecutive months periods have been analysed?

p. 4, ll 36-37: specify that the clustering technique was applied for all the time-scales (1 month, 2 months, 4 months and 6 months)

p. 4, ll 37-41: please add more information on the selection of the input variables: which other variables have been considered, how you have chosen such five ones, etc; (see point 2) above)

p. 5, ll 60-62: add that the description of the steps for identifying Kopt is reported in Section 4.1.

p.5, ll 68-69: as said above, explain that the problem in using the model with changing parameters is the fact that the model is a continuously-simulating conceptual one, that needs all the previous simulation values (depending on the specific parameter set) to update the state variables: for this reason the model has to be run for the entire observation period and not only for the analysed sub-period.

p. 5, ll. 77-79: more information on the optimization algorithm are needed and in particular either add the the definition and meaning of of ‘nlminb’, or remove such detail.

p. 5, l.84- 85: explain better how dealing with discontinuities in the simulated streamflow values when going from one period to the following one (see comments above).

All section 4.1 must be thoroughly revised and reworded since it’s very confusing and the utility of using the cluster validity index is far from demonstrated (in the only information referring to it, Fig. 4, the values of V_{XB} seem to fluctuate randomly):

- from ll. 90-93 and ll. 100-06 it is not clear how, eventually, the optimal number of clusters is identified, considering both the simulation results and the validity index;
- l. 92: with ‘according’ you mean ‘also considering’?
- ll.96-97: comment also on the results for the validation period.
- Overall, the text does not report the final chosen value for Kopt at monthly time-scale, and most importantly, nor the text nor Table 2 report the final number of clusters chosen for each of the other time-scales: in table 2, both possible values of Kopt are shown for each time-scale. And the paper does not provide any information on the reasons for the choice of the number of clusters for all the other time-scales (2-, 4-, 6—months periods), since Figure 4 (in addition to reporting difficult to interpret results) refers only to the monthly time-scale (even if this is not stated in the caption).
Fig. 5 does not provide any information on the relation between clusters and seasons: you should find a way to show this information and to analyse it deeper.

p. 7, l. 25-26: this result is hardly surprising: the first FCM is based on four over five input variables that depend only on rainfall, whereas temperature has a clear annual cycle, well-reproduced by a calendar method. And in fact Fig. 6 is not very useful, since all the plots show the same pattern in the rainfall variables. Probably more/different climatic variables would provide more insights in the hydrological behavior of the catchment during the year (see point 2).

Section 4.3 (l.36-49): adding a second FCM classification procedure based on different climatic variables as a sort of ‘second thought’ experiment in the results section makes the overall work difficult to follow: please introduce also such FCM algorithm earlier, in section 3, together with the other two techniques, and not here when discussing the results.

End of section 4.3: please add considerations also on the possible effect of snow (guided by temperature) in the study basin.

p. 8, l. 65: why Fig. 11 shows the simulation for the period 2005-2008? The validation period is 2001 to 2011.

p. 8, l. 87-88: actually, given the confusion and lack of information in section 4.1, this conclusion (utility of cluster validity index for choosing Kopt) is not supported by what is presented in the current version of the manuscript.

p. 8, l. 89-90 (and section 4.4): please elaborate more on such result (bi-monthly sub-periods as the best performing partition), trying to explain it, if possible.