Non-destructive estimates of soil carbonic anhydrase activity and soil water oxygen isotope composition

Sam P. Jones¹, Jérôme Ogée¹, Joana Sauze¹, Steven Wohl¹, Noelia Saavedra¹, Noelia Fernández-Prado¹, Juliette Maire¹, Thomas Launois¹, Alexandre Bosc¹, and Lisa Wingate¹

¹ISPA, Bordeaux Science Agro, INRA, Villenave d'Ornon 33140, France.

Correspondence to: Sam Jones (samuel.jones@inra.fr)

Abstract

The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO₂) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ¹⁸O) of atmospheric CO₂. To do so, the activity of carbonic anhydrases (CA), a group of enzymes that catalyse the hydration of CO₂, in soils and plants needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ¹⁸O of CO₂ fluxes to solve for the apparent, potentially catalysed, rate of CO₂ hydration. This requires information about the δ¹⁸O of CO₂ in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO₂ interacts with, that may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ¹⁸O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO₂ hydration and the δ¹⁸O of soil water from the relationship between the δ¹⁸O of CO₂ at the soil surface measured at different ambient CO₂ conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ¹⁸O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ¹⁸O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO₂ hydration were 6.8 to 14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments suggesting that this represents a robust approach to assay the activity of CA in soil. As expected, estimates of the δ¹⁸O of the soil water that equilibrates with CO₂ varied in response to alteration to the δ¹⁸O of soil water. However, these estimates were consistently more negative than the composition of the soil water extracted by cryogenic vacuum distillation at the end of the gas measurements with differences of up to -3.94 ‰ VSMOW. These offsets suggest that CO₂ may be principally interacting with water pools associated with particle surfaces rather than the bulk water pool under the incubation conditions of this study.
1 Introduction

Carbonic anhydrases (CA) are a group of metalloenzymes, typically utilising either zinc (Hewett-Emmett and Tashian, 1996) or cadmium (Xu et al., 2008), that catalyse the reversible hydration of dissolved carbon dioxide (CO$_2$). Spread amongst at least five unrelated classes, these enzymes have been identified in eukarya, bacteria and archaea (Gilmour, 2010). Such convergent evolution among diverse groups of organisms suggests that CA are fundamental to many life strategies (Smith et al., 1999). Indeed, these enzymes have been linked to a number of common and specialised biological processes, such as CO$_2$ concentration mechanisms required to maintain photosynthesis in plants, algae and cyanobacteria (Badger, 2003; Badger and Price, 1994), calcification to limit calcium toxicity in bacteria (Banks et al., 2010; Li et al., 2005b), maintenance of required CO$_2$ and bicarbonate levels for metabolic activity in both bacteria (Merlin et al., 2003) and fungi (Kaur et al., 2009) growing under CO$_2$ limited conditions, and metabolic flexibility in methanogenic archaea (Smith and Ferry, 2000).

However, despite evidence of CA activity in soils, the variability and drivers of their expression by soil communities is poorly understood (Li et al., 2005a; Seibt et al., 2006; Wingate et al., 2009, 2008). This knowledge gap is of particular importance as soil CA activity can considerably alter the oxygen isotope composition (δ^{18}O) of atmospheric CO$_2$ (δ_{atm}) (Stern et al., 2001; Tans, 1998; Wingate et al., 2009). The presence of CA in soils and leaves influences δ_{atm} as oxygen isotopes are exchanged between CO$_2$ and water during CA-catalysed hydration (Mills and Urey, 1940; Uchikawa and Zeebe, 2012). The δ^{18}O of soil (δ_{soil}) and leaf water pools are typically distinct because of differences in pool sizes and evaporation rates, and these different signals are transferred to CO$_2$ molecules interacting with these water pools (Farquhar et al., 1993; Francey and Tans, 1987; Stern et al., 2001). This leads to contrasted δ^{18}O signatures of soil-atmosphere (δ_{R}) and leaf-atmosphere CO$_2$ exchange that can be used to partition the contribution of photosynthesis and soil respiration, the largest gross fluxes in the contemporary atmospheric carbon cycle (Ciais et al., 2013), to the net atmospheric CO$_2$ budget (Welp et al., 2011; Yakir and Wang, 1996). Whilst the extent to which the δ^{18}O of CO$_2$ interacting with leaves approaches equilibrium with leaf water pools has been considered (Gillon and Yakir, 2001), the degree to which the catalysis of CO$_2$ hydration by CA in soils influences δ_R is less well understood (Wingate et al., 2009). As such, appropriately modelling δ_{atm} budgets relies on improving our knowledge of soil CA activity. In this respect, a better understanding of soil CA activity not only represents a frontier in soil ecology but also in understanding interactions between soil hydrological and carbon cycles, and ecosystem function within the carbon cycle at much larger scales.

A number of methods have been developed to estimate CA activity. Conventionally, assays have expressed activity by comparing the time required to achieve a set pH change in a CO$_2$-saturated buffer solution in the presence and absence of
CA-containing extracts (Wilbur and Anderson, 1948). Whilst this approach has been applied to soils (Li et al., 2005a), the requirement to work with enzyme extractions at low temperatures implies that activity is being estimated under extremely disturbed conditions. Less disruptive isotope labelling techniques, that estimate the rate of hydration and thus CA activity based on the loss of the label from a $\delta^{18}O$-enriched CO$_2$ source (Mills and Urey, 1940; Tu et al., 1978) have also been applied to studies of aquatic algae (Hopkinson et al., 2013). Similarly, soil studies have focused on inverting models that describe δ_R (Miller et al., 1999; Tans, 1998) to assay CA activity under realistic conditions from natural abundance gas flux measurements (Kapiluto et al., 2007; Seibt et al., 2006; Wingate et al., 2008). Following Tans (1998) for a semi-infinite soil column with a constant CO$_2$ production profile, δ_R ($\%$ VPDB) at steady state can be described as (see also Wingate et al., 2010):

$$\delta_R = -\frac{v_{inv} C_a}{F_R} \delta_a + \frac{v_{inv} C_a}{F_R} \delta_{eq} + \delta_{eq} - a, $$

where δ_{eq} ($\%$ VPDB) is the $\delta^{18}O$ of CO$_2$ in isotopic equilibrium with δ_{sw}, a (8.8%) is the isotopic fractionation associated with the diffusion of 12C16O18O in still air, v_{inv} (m s$^{-1}$) is the so-called piston velocity of CO$_2$ diffusing in and out of the soil, C_a (μmol m$^{-3}$) is the concentration of CO$_2$ in the air at the soil-air interface, F_R (μmol m$^{-2}$ s$^{-1}$) is the net soil-atmosphere CO$_2$ flux and δ_a ($\%$ VPDB) is the $\delta^{18}O$ of CO$_2$ at the soil-air interface. The rate of ^{18}O exchange between CO$_2$ and soil water k_{iso} (s$^{-1}$) can be deduced from v_{sw} as:

$$k_{iso} = \frac{v_{inv}^2}{B \theta_w \kappa \phi_a D}, $$

where B (m3 m$^{-3}$) is the solubility coefficient for CO$_2$ in water, θ_w (m3 m$^{-3}$) is the volumetric soil water content, κ is the tortuosity of the soil pore network, ϕ_a is the soil air-filled porosity and D (m2 s$^{-1}$) is the molecular diffusivity of 12C16O18O in air. CA activity is then estimated from k_{iso} from rate constants (Mills and Urey, 1940; Uchikawa and Zeebe, 2012). Either as the equivalent CA concentration required to achieve the observed k_{iso} assuming known enzymatic parameters (Ogée et al., 2016; Uchikawa and Zeebe, 2012) or as the unit-less enhancement factor between k_{iso} and the theoretical un-catalysed rate of CO$_2$-H$_2$O isotopic exchange $k_{iso,uncat}$ (Seibt et al., 2006; Wingate et al., 2009, 2008). In the first instance, deducing a CA concentration is hampered by the paucity of information regarding the variability of CA kinetic parameters at the bulk soil scale (Ogée et al., 2016) as communities of fungi, algae, bacteria and archaea are likely to express a mixture of α, β and γ-CA classes (Gilmour, 2010; Smith and Ferry, 2000). The second approach has been used to describe temporal variations in CA activity (Seibt et al., 2006; Wingate et al., 2010, 2008), but its meaning is not always intuitive when applied across soil types, given the pH dependency of $k_{iso,uncat}$ (Uchikawa and Zeebe, 2012). This aside, solving Eq. 1 also requires δ_{eq} to be determined from depth-resolved knowledge about δ_{sw} (Wingate et al., 2009). In practice, δ_{sw} has been assumed to be
relatively constant over short periods and either extrapolated from proximal sampling (Seibt et al., 2006; Wingate et al., 2009, 2008) or set by irrigating dried soils with water of known isotopic composition (Kapiluto et al., 2007). Over longer periods, the development of δsw vertical profiles has also been estimated using soil water isotope transport models forced by meteorological data (Wingate et al., 2010). Given the need to make an assumption about the soil water pool with which CO2 is interacting, the potential for spatial and temporal variability of δsw, and limited a priori information with respect to appropriate sampling resolution and depth (Miller et al., 1999; Riley, 2005), approaches allowing CA activity to be estimated in the absence of this information are desirable.

Here we explore the idea that solutions for vinv and δeq can be obtained as a function of the response of δR to variations in δa, from gas flux measurements. Equation 1 describes a linear relationship of the form δR = mδa + c, where the slope, m, is -vinvCa/FR and the intercept, c, is vinvCa/FR δeq + δeq - a. If Ca and FR are held constant, vinv and δeq can be estimated from a linear regression between δR and δa:

\[v_{inv} = -\frac{m}{Ca/FR}, \]

\[\delta_{eq} = \frac{c+a}{1-m} \]

To test this approach, we conducted laboratory incubations using air-dried soils that were irrigated with three different waters of known δ18O composition (δiw,low, δiw,med or δiw,high). The gas fluxes from these incubations were made under three different inlet conditions that varied in terms of their δ18O composition of CO2 (δb,low, δb,med and δb,high) but not in terms of total CO2 concentration (Cb). Following gas measurements, water was cryogenically extracted from the incubated soils and its isotopic composition determined (δsw,ce) to allow for comparison with that estimated from the gas flux measurements (δsw,eq). We specifically aimed to 1) confirm the suitability of this approach by testing whether δR and δa are linearly related in an experimental context, 2) compare estimates of δsw,eq determined from the gas flux measurements with δsw,ce measured for the extracted bulk soil water, and 3) compare the sensitivity of kiso estimates to variations in δsw.

2 Materials and methods

2.1 Soil sampling and incubation preparation

Soil was collected in April, 2016 from Le Bray, a Pinus pinaster plantation in the southwest of France with predominately sandy soil (94.7 % sand, 2.6 % silt and 2.7 % clay), 5% organic carbon and a water-holding capacity of 0.27 g g\(^{-1}\) (Ogée et
al., 2004; Wingate et al., 2010). After the removal of the understory and the litter layer, consisting of living and dead *Molinia caerulea* tussocks, pine needles, cones, and wood fragments, about 6 kg of soil was collected from the superficial 10 cm at 4 locations spaced 5 m apart. This material was mixed and passed through a 4 mm sieve to remove any large debris. Three sub-samples of the sieved soil were taken to determine the pH, water content and δsw,ce of the fresh soil at the time of sampling.

The soil was air-dried for approximately two weeks before being stored in a closed box containing desiccant until the incubations were conducted between mid-June and mid-August, 2016. Approximately 400 g of soil were used to determine the δsw,ce of any residual soil water and 6 sub-samples were taken to determine pH after drying.

A total of 18 incubations were conducted with 6 replicates each for the δiw,low, δiw,med and δiw,high water treatments. Each incubation was prepared by placing ca. 430 g of air-dried soil in a plastic zip lock bag. Approximately 30 g of soil were removed to determine the residual water content and the remaining 400 g were re-wetted inside the bag with 40 ml of δiw,low, δiw,med or δiw,high irrigation water. The bag was closed, gently mixed by hand and 300 g of wet soil was then placed into a threaded PTFE chamber with a height of 11.6 cm and an internal diameter of 7.3 cm. The chamber was closed with a screw-top PTFE lid and shaken at 200 rpm for 10 minutes on an orbital shaker. The remaining 100 g of wet soil in the bag was then sampled for determination of the re-wetted water content and the initial δsw,ce. Following shaking, the chamber was opened, sharply tapped to encourage the soil to settle in a uniform manner and placed inside a humidifier designed to maintain the soil water content and composition prior to the gas exchange measurements. This consisted of a desiccator filled with 500 ml of the irrigation water through which ambient air was bubbled using a membrane pump. The humidifier was wrapped in reflective foil and kept in a temperature controlled room at 21 °C. Relative humidity and temperature inside the humidifier was monitored using a small combined sensor and data-logger (Hydrochron, iButtonLink, LLC., USA).

Typically, preparation and pre-incubation of the soils for each water treatment spanned 3 days. Three chambers, staggered at 2 hour intervals, were prepared on each of the first two days. The water used to re-wet the soil and initially fill the humidifier was sampled at the start of each day to characterise its isotopic composition (δiw). The water in the humidifier was sampled once on day 2 and twice on day 3 to track any change in its isotopic composition over the course of the pre-incubation. Each chamber was pre-incubated for 24 hours and then removed from the humidifier, weighed to determine water loss and finally connected to the gas exchange system. Following gas exchange measurements, the chamber was immediately removed, and re-weighed to determine water lost during the gas exchange measurements. The depth of the soil (zmax) inside the chamber was then measured at 4 points using a digital calliper, and 1 cm-thick horizons, from 0 to 5 cm depth, removed and split for determination of depth-resolved water content and δsw,ce.
Gravimetric water content (GWC) was determined from weight change after oven drying at 105 °C for 24 hours. Soil pH was determined from a soil-to-water slurry of 1:5 and measured in the supernatant after 2 hours. Soil bulk density was calculated from the initial GWC after re-wetting, the wet weight of the soil in the chamber and the volume of the soil in the chamber. Total porosity (ϕ_t) was calculated from bulk density assuming a particle density of 2.65 g cm$^{-3}$. Volumetric water content (θ_w) was calculated as the product of GWC and bulk density and ϕ_a as the difference between ϕ_t and θ_w.

2.2 Soil water extraction and analysis

Soil samples taken for determination of $\delta_{\text{sw,ce}}$ consisted of 20 to 25 g of material stored at 4 °C in 20 ml glass vials with positive insert screw-top caps. Water samples were extracted from these soils using a cryogenic vacuum distillation system based on the design and methodology described by Orlowski et al. (2013). In brief, the system consists of 6 branches each equipped with 4 extraction vessels, a pirani vacuum gauge (APG100-XLC, Edwards, UK) and an isolation valve. The branches connect to a manifold equipped with a vacuum gauge, a vacuum release valve and a two-stage rotary vane vacuum pump (RV5, Edwards, UK). Extractions were prepared by placing about 20 g of soil, topped with oven-baked glass wool, into an extraction vessel. For each branch, extraction vessels were weighed and frozen in a bath of liquid nitrogen. After freezing, the manifold and branches were checked for leaks using the vacuum gauges and evacuated to a starting pressure of less than 0.3 Pa. Extractions were initiated by isolating a branch, transferring the liquid nitrogen bath to a U-shaped water trap and the sample vessels to a water bath initially at room temperature. Extractions lasted for 180 minutes and the water bath was set to 80 °C after 60 minutes. Following extraction, the water traps were removed, the ends sealed with parafilm and the collected ice allowed to thaw before being weighed. The extracted waters were transferred to 5 ml glass vials with positive insert screw-top caps and stored at 4 °C. Extraction vessels and empty water traps were oven-dried and re-weighed to determine extraction efficiency.

The accuracy of cryogenic vacuum distillation techniques has been questioned as the δ^{18}O values of extracted water tends to be depleted, the extent of which depending on soil properties, relative to the irrigation water when oven dried soils that have been re-wetted are considered (Orlowski et al., 2016a; Sprenger et al., 2015). To quantify biases associated with our methodology and the soil studied, two tests were conducted where six 20 g soil samples were re-wetted to a gravimetric water content of about 0.1 g g$^{-1}$ with water that had a δ^{18}O of -4.84 ± 0.06 ‰ VSMOW-SLAP. In the first test, residual water was removed from air-dried soil by oven drying at 105 °C for 24 hours prior to re-wetting. In the second test, residual water was removed by cryogenic extraction following the above methodology prior to re-wetting. These soils were then treated as described for samples.
The δ¹⁸O composition of irrigation and cryogenically-extracted water samples was measured on an off-axis integrated cavity optical spectrometer (TIWA-45EP, Los Gatos Research, USA) coupled to an auto-sampler (Berman et al., 2013). Prior to analysis, 1 ml of each water sample was pipetted into a 1.5 ml vial and capped with a pre-slit septa. An auto-sampler equipped with a 5 μl syringe and a heated septum port (PAL LC-xt, CTC Analytics AG, Switzerland) sequentially injected 8 aliquots of each sample into the analyser. The first three injections for each sample were discarded to avoid inter-sample memory effects (Lis et al., 2008), as were any injections flagged by the analyser's software (Berman et al., 2013). To avoid applying a linearity correction, the mean water density for a run was calculated and any injection with a water density more than 10¹⁵ molecules cm⁻³ away from the mean was rejected (Lis et al., 2008). The mean water density was then re-calculated and only injections within three standard deviations were retained. A raw mean δ¹⁸O was calculated for all samples where 3 to 5 injections were retained. We accounted for analyser drift and report on the VSMOW-SLAP scale by including two working standards (-10.31 ‰ and 0.62 ‰ VSMOW-SLAP) and a quality control (-4.84 ± 0.06 ‰ VSMOW-SLAP) between every 5 samples.

2.3 Incubation system and gas analysis

Measurement of gas fluxes at δ₇₉⁰₂₀, δ₇₉₁₆₂₀ and δ₇₉₂₀₂₀ was achieved using a gas supply manifold capable of delivering one of three gas mixtures to the inlet of the incubation system (Fig. 1). Briefly, the inlet to the incubation system was connected to a normally closed 2/2 solenoid valve actuated by a microcontroller (Arduino Uno, Arduino LLC, Italy). One port of the valve was connected directly to a cylinder of compressed air (δ₇₉₂₀₂₀) with a total CO₂ concentration and δ¹⁸O composition of 424.93 ± 0.01 ppm and -3.45 ± 0.02 ‰ VPDB (NOAA Earth System Research Laboratory, USA). The other ports were preceded by open splits and connected to continuous flows from two in-house gas dilution systems capable of providing a given concentration of CO₂ by mixing pure CO₂ from gas cylinders into CO₂-free air generated by an air compressor (FM2 Atlas Copto, Nacka, Sweden) equipped with a scrubbing column (Ecodry K-MT6, Parker Hannifin, USA). The concentrations of the two gas mixes were adjusted to match that of δ₇₉₂₀₂₀ and contrasts in δ¹⁸O composition were achieved by using pure CO₂ cylinders of different origins (δ₇₉₁₆₂₀ and δ₇₉₂₀₂₀). Following the inlet of the incubation system, the gas stream was split into a chamber and bypass line that terminated at open splits in front of a normally closed 2/2 solenoid valve connected to the sample inlet of a CO₂ isotope ratio infra-red spectrometer (Delta Ray IRIS, Thermo Fischer Scientific, Germany). The flow rate of each line was limited to 216 ml min⁻¹ using two mass-flow controllers. The soil chamber was connected in-line at the middle of the chamber line and placed in a water bath at 21 °C.

Gas exchange measurements were made by alternately switching the valve to the sample inlet of the IRIS, allowing approximately 80 ml min⁻¹ of the total flow to pass through the instrument, between bypass and chamber lines three times. The IRIS reports concentrations at 1 Hz for the three most abundant isotopologues of CO₂ (¹²C¹⁶O¹⁶O, ¹³C¹⁶O¹⁶O and
\(^{12}\text{C}^{18}\text{O}^{16}\text{O})\), allowing determination of the total concentration and isotopic composition of \(\text{CO}_2\) (Geldern et al., 2014; Rizzo et al., 2014). The stability of measurements of the total concentration and the \(\delta^{18}\text{O}\) of \(\text{CO}_2\) were assessed prior to the gas exchange measurements by analysing the contents of an air cylinder for 22.5 h (Fig. S1) and subsequent computation of Allan variances (Carrio, 2015). A maximum precision of 0.01016 ppm for total \(\text{CO}_2\) and 0.0487 \(\%\) VPDB for \(\delta^{18}\text{O}\) was achieved after integrating over 172 s and 144 s, respectively. Given the profile of the Allan plot (Werle, 2010) and the 35 s residence time of the air in the instrument cell (Geldern et al., 2014), a measurement period of 120 s was used. The first 80 s of each measurement were discarded to minimise carry-over effects and the final 40 s were kept and averaged to provide a measurement mean and standard deviation. A 40 s integration period corresponds to standard deviations for total \(\text{CO}_2\) and the \(\delta^{18}\text{O}\) of \(\text{CO}_2\) of 0.0155 ppm and 0.0587 \(\%\) VPDB, respectively. Averaged isotopologue concentrations were corrected by bracketing every three pairs of bypass and chamber line measurements with the measurement of two calibration cylinders (Deuste Steinger GmbH, Germany). The standard deviations for total \(\text{CO}_2\) and the \(\delta^{18}\text{O}\) of \(\text{CO}_2\) over 960 s (the interval between two calibration measurements) were 0.0150 ppm and 0.0645 \(\%\) VPDB, respectively. The calibration cylinders contained mixtures of \(\text{CO}_2\) in synthetic air (21\% \(\text{O}_2\) and 0.93\% \(\text{Ar}\) in a \(\text{N}_2\) balance) that had been characterised for the total concentration, carbon isotope composition and \(\delta^{18}\text{O}\) of \(\text{CO}_2\) (Max Planck Institute for Biogeochemistry IsoLab, Germany). The total concentration, carbon isotope composition and \(\delta^{18}\text{O}\) of \(\text{CO}_2\) for each cylinder were, respectively, 380.26 ppm, -3.064 \(\%\) VPDB and -14.631 \(\%\) VPDB, and 481.62 ppm, -3.071 \(\%\) VPDB and -14.698 \(\%\) VPDB. Concentrations of \(^{12}\text{C}^{16}\text{O}^{16}\text{O}, ^{13}\text{C}^{16}\text{O}^{16}\text{O}\) and \(^{12}\text{C}^{18}\text{O}^{16}\text{O}\) were calculated from these values following Wen et al. (2013). Measured averages for the calibration cylinders were linearly interpolated and correction coefficients calculated from two-point linear regressions between cylinders, allowing correction of sample isotopologue concentrations and calculation of total concentration and \(\delta^{18}\text{O}\) of \(\text{CO}_2\) (Bowling et al., 2003; Wen et al., 2013; Wingate et al., 2010). This calibration scheme was validated for our isotopic measurements by allowing 40 l of pure \(\text{CO}_2\) to equilibrate with 4 l of water in a 25 l barrel at 24 °C. Approximately three months after filling, the \(\delta^{18}\text{O}\) of \(\text{CO}_2\), calibrated using the scheme described above, in the barrel head-space was measured in dilutions with concentrations ranging from 390 to 560 ppm. Following these measurements the water with which the \(\text{CO}_2\) had equilibrated with was sampled and its \(\delta^{18}\text{O}\) composition determined as described previously. Measurements of \(\delta^{18}\text{O}\) of \(\text{CO}_2\) were not significantly dependent on \(\text{CO}_2\) concentration over this range but the composition of the \(\delta^{18}\text{O}\) of \(\text{CO}_2\) was, on average, 0.31 \(\%\) more depleted than that of the water. To account for this offset between our gas (VPDB) and water (VSMOW-SLAP) scales, a post-calibration correction of +0.31 \(\%\) was applied to all bypass and chamber \(\text{CO}_2\) measurements.

The soil \(\text{CO}_2\) flux \(F_R\) (\(\mu\text{mol m}^{-2} \text{s}^{-1}\)) was calculated from the corrected values for each pair of calibrated bypass and chamber measurements as:
where \(u \) (mol s\(^{-1}\)) is the flow rate of dry air through the chamber line, \(C_a \) (ppm) is the CO\(_2\) concentration of the chamber line, \(C_b \) (ppm) is the CO\(_2\) concentration of the bypass line and \(A \) (m\(^2\)) is the surface area of the soil in the chamber. Similarly, \(\delta_R \) (‰ VPDB) was calculated as:

\[
\delta_R = \frac{\delta_a C_{a,12} - \delta_b C_{b,12}}{C_{a,12} - C_{b,12}},
\]

(6)

where \(\delta_a \) and \(C_{a,12} \) are respectively the \(^{18} \)O of CO\(_2\) and concentration of \(^{12}\)C\(^{16}\)O\(^{16}\)O in the chamber line and \(\delta_b \) and \(C_{b,12} \) are the \(^{18} \)O of CO\(_2\) and concentration of \(^{12}\)C\(^{16}\)O\(^{16}\)O in the bypass line. To ensure steady-state conditions for measurements under different \(\delta_b \), a complete cycle where only the chamber line was measured was included to allow the chamber head-space and soil pore-space conditions to stabilise between transitions from atmospheric conditions at the start of the incubation and subsequent \(\delta_b \) conditions (Fig. 2). The order of the \(\delta_b \) conditions (\(\delta_{b,low} \), \(\delta_{b,med} \) and \(\delta_{b,high} \)) also varied between the 6 replicates of each \(\delta_{iw} \) treatment to avoid introducing a temporal treatment bias.

2.4 Data processing

All data processing and analysis was conducted in R (R Core Team, 2017). Linear regressions of \(\delta_R \) and \(\delta_a \) were calculated from the measurements taken at the three different combinations of \(\delta_b \) for each of the incubations (Bates et al., 2015). Following Eq. 3a, \(v_{inv} \) was estimated using the slope \(m \) of the linear regression and the mean of the ratio \(C_a/F_R \) for each incubation. As Eq. 3 is only strictly valid when there is a semi-infinite soil column (Tans, 1998), we adapted the equation to account for the influence of boundary conditions found at the bottom of the incubation vessel. The soil-depth adjusted piston velocity, \(\tilde{v}_{inv} \), was estimated by using \(v_{inv} \) obtained from Eq. 3a to iteratively satisfy:

\[
v_{inv} = \frac{\tilde{v}_{inv} \tanh \left(\frac{\tilde{v}_{inv} z_{max}}{\kappa \phi_d D} \right)}{\kappa \phi_d D},
\]

(7)

where \(z_{max} \) (m) is the total soil column depth. In doing so we adopted the formulation of Moldrup et al. (2003) for the \(\kappa \) of repacked soils:

\[
\kappa = \frac{\phi_a}{\phi_l}^{1.5},
\]

(8)

The temperature-dependant CO\(_2\) solubility \(B \) was calculated using Weiss (1974) and the diffusivity of \(^{12}\)C\(^{16}\)O\(^{18}\)O in air was calculated according to Massman (1998) and Tans (1998):
where T (K) is soil temperature. Derived estimates of \tilde{v} were then used to calculate k_{iso}, by replacing v_{inv} with \tilde{v}_{inv} in Eq. 2. The difference between the semi-infinite and finite-depth solutions are shown in Fig. S2 for different soil depths. For this soil type and water content, a soil depth of > 8 cm is necessary to be able to neglect the influence of boundary conditions found at the bottom of the incubation vessel.

Corrections for a finite soil depth had also to be applied to estimate δ_{eq}. For this, the soil-depth adjusted isotopic fractionation associated with the diffusion of CO$_2$, \tilde{a}, was first calculated as:

$$\tilde{a} = a \left(1 - \frac{\kappa \phi D}{\tilde{v}_{inv} z_{max}} \tanh \left(\frac{\tilde{v}_{inv} z_{max}}{\kappa \phi D} \right) \right),$$

(10)

where a was set to 8.8 ‰ (Riley, 2005). Estimates of δ_{eq} were then obtained using the intercept c of the linear regression and by replacing m with $-\tilde{v}_{inv} C_a/F_R$ and a with \tilde{a} in Eq. 3b. To allow for comparison with $\delta_{sw,eq}$, derived estimates of δ_{eq} were converted to equivalent values of $\delta_{sw,eq}$ based on the temperature-dependant equilibration fractionation between water and CO$_2$ and the difference between the VPDB$_g$ and VSMOW-SLAP scales (Brenninkmeijer et al., 1983; Kapiluto et al., 2007; Wingate et al., 2010):

$$\delta_{sw,eq} = \delta_{eq} + 0.2 \left(T - 297.15 \right),$$

(11)

Treatment summaries are reported as mean and standard deviation unless stated otherwise. Differences in $\delta_{sw,eq}$ and k_{iso} among δ_w treatments, with significance reported at $p < 0.01$, were tested through a one-way analysis of variance with post-hoc comparison by Tukey's HSD (Mendiburu, 2016).

3 Results

3.1 Soil properties

The GWC and pH of freshly sampled, sieved soil was 0.207 ± 0.0054 g g$^{-1}$ and 4.75 ± 0.053 respectively. The pH of the air-dried soil was 4.34 ± 0.016. Soil properties were similar among δ_w treatments. Following drying and storage, the GWC of air-dried soil measured during incubation preparation was 0.00993 ± 0.0012 g g$^{-1}$. After re-wetting and mixing, the GWC of the soil placed into incubation chambers was 0.107 ± 0.0018 g g$^{-1}$. Given 300 g of wet soil placed into each incubation, chambers contained 271 ± 0.45 g of dry soil. During the 24-hour pre-incubation 0.172 ± 0.075 g of water evaporated and a
further 0.361 ± 0.05 g of water was subsequently lost over the course of the 96 min gas exchange measurement. The \(z_{\text{max}} \) measured following incubation was 60.7 ± 1.3 mm. The GWC between 0 and 5 cm were 0.0992 ± 0.0048 g g\(^{-1}\) at 0–1 cm, 0.105 ± 0.0025 g g\(^{-1}\) at 1–2 cm, 0.106 ± 0.0031 g g\(^{-1}\) at 2–3 cm, 0.107 ± 0.003 g g\(^{-1}\) at 3–4 cm, and 0.107 ± 0.0024 g g\(^{-1}\) at 4–5 cm. Bulk density was 1.06 ± 0.023 g cm\(^{-3}\) and taking into account the effect of water losses, \(\theta_w \) at the mid-point between the start and end of incubations was 0.111 ± 0.0024 m m\(^{-3}\). Subsequently, \(\phi_t \), \(\phi_a \), and \(\kappa \) were 0.602 ± 0.0088, 0.491 ± 0.011 and 0.571 ± 0.01, respectively. Values of \(z_{\text{max}} \), \(\phi_t \) and \(\theta_w \) carried forward to calculate model solutions are summarised by \(\delta_{iw} \) treatment in Table 1.

3.2 Water composition

The \(\delta_{sw,ce} \) of freshly sampled soil was -3.63 ± 0.10 ‰ VSMOW-SLAP. After air drying and storage, the \(\delta_{sw,ce} \) of the residual water pool was -6.69 ± 0.01 ‰ VSMOW-SLAP. Mean \(\delta_{iw} \) and standard errors for \(\delta_{iw,low} \), \(\delta_{iw,med} \) and \(\delta_{iw,high} \) irrigation waters were respectively -6.74 ± 0.03, -3.69 ± 0.03 and 0.24 ± 0.04 ‰ VSMOW-SLAP. The addition of these waters to the air-dried soils used in the incubations resulted in initial \(\delta_{sw,ce} \) of -7.03 ± 0.34, -4.28 ± 0.21 and -0.795 ± 0.049 ‰ VSMOW-SLAP for the \(\delta_{iw,low} \), \(\delta_{iw,med} \) and \(\delta_{iw,high} \) treatments, respectively. The difference between \(\delta_{iw} \) and the initial \(\delta_{sw,ce} \) was 0.29 ± 0.35 ‰ VSMOW-SLAP for the \(\delta_{iw,low} \) treatment, 0.58 ± 0.22 ‰ VSMOW-SLAP for the \(\delta_{iw,med} \) treatment and 1.04 ± 0.05 ‰ VSMOW-SLAP for the \(\delta_{iw,high} \) treatment. Evaporation during pre-incubation and gas measurements (Fig. 3) resulted in final \(\delta_{sw,ce} \) (averaged between 0 and 5 cm depth and weighted by water content) of -6.75 ± 0.11, -4.17 ± 0.36 and -0.55 ± 0.065 ‰ VSMOW-SLAP for the \(\delta_{iw,low} \), \(\delta_{iw,med} \) and \(\delta_{iw,high} \) treatments, respectively.

The \(\delta_{sw,ce} \) of the methodological tests using soil where residual water was removed prior to labelling by oven drying was -5.41 ± 0.19 ‰ VSMOW-SLAP, i.e., 0.57 ‰ more depleted than the labelling water. Similarly, the \(\delta_{sw,ce} \) of the soil where residual water was removed by cryogenic extraction (\(n = 5 \)) was -5.01 ± 0.18 ‰ VSMOW-SLAP which overlapped the labelling water with a mean depletion of only 0.17 ‰.

3.3 Gas measurements

The mean CO\(_2\) concentration \(C_b \) of the gas mixtures, \(\delta_{b,low} \), \(\delta_{b,med} \), and \(\delta_{b,high} \), measured in the bypass line were between 422 and 426 ppm for all water treatments, with standard deviations for individual gas mixtures and water treatments smaller than 2 ppm (Table 2). The mean CO\(_2\) concentration \(C_a \) measured in the chamber line for these inlet conditions varied between 480 and 497 ppm, with standard deviations for individual gas mixtures and water treatments between 2.9 and 15 ppm (Table 2). Subsequently, the resultant CO\(_2\) fluxes \(F_{rt} \) (Eq. 5) for \(\delta_{b,low} \), \(\delta_{b,med} \) and \(\delta_{b,high} \) were 1.98 ± 0.01 µmol m\(^{-2}\) s\(^{-1}\) for the \(\delta_{iw,low} \) treatments, 2.51 ± 0.01 µmol m\(^{-2}\) s\(^{-1}\) for the \(\delta_{iw,med} \) treatments and 2.22 ± 0.01 µmol m\(^{-2}\) s\(^{-1}\) for the \(\delta_{iw,high} \) treatments, with standard deviations for individual gas mixtures and water treatments between 0.1 and 0.52 µmol m\(^{-2}\) s\(^{-1}\). The similarity
within water treatments demonstrates the good repeatability of the experiment, however the greater variability in the concentration of CO\textsubscript{2} in the chamber C\textsubscript{a} compared to that in the bypass line C\textsubscript{b} indicates that steady-state conditions may not have been fully attained in all experiments (the order in which the gas mixtures were introduced to the inlet of the chamber was varied between measurement sequences). Indeed whilst there was no general relationship between F\textsubscript{R} and C\textsubscript{b}, F\textsubscript{R} linearly decreased with time (r2 = 0.83 to 0.99), at a rate between 0.078 to 0.31 µmol m-2 h-1 over the course of all the incubations. Because of these trends, the mean ratios C\textsubscript{a}/F\textsubscript{R} were 10200 ± 1200, 8350 ± 1100 and 9140 ± 320 s m-1 for the δ\textsubscript{iw,low}, δ\textsubscript{iw,med}, and δ\textsubscript{iw,high} treatments, respectively. Standard deviations associated with the ratio for an individual incubation were between 240 and 425 s m-1.

Mean δ\textsubscript{b} and δ\textsubscript{a} values for the different treatments are given in Table 2 together with the resultant δ\textsubscript{R} values (Eq. 6). Unlike F\textsubscript{R} there was no general relationship between δ\textsubscript{R} and time but, as expected, δ\textsubscript{R} was strongly negatively correlated with the δ\textsubscript{b} value of the bypass line (r2 > 0.95 in all the incubations). Generally variability in these measurements was largest for the δ\textsubscript{b,low} gas mixture.

3.4 Estimates of k\textsubscript{iso} and δ\textsubscript{sw,eq}

In all the incubations δ\textsubscript{a} and δ\textsubscript{R} were strongly (r2 > 0.93) and negatively correlated (Fig. 4). The slope m of the linear regressions were broadly similar among water treatments with means of -1.83 ± 0.25 for the δ\textsubscript{iw,low} treatment, -1.32 ± 0.25 for the δ\textsubscript{iw,med} treatment and -1.53 ± 0.15 for the δ\textsubscript{iw,high} treatment. In contrast, the intercept c of the linear regressions between δ\textsubscript{a} and δ\textsubscript{R} were distinct with treatment means of -30.2 ± 2.1 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,low} treatment, -20.1 ± 2.7 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,med} treatment and -14.3 ± 1.2 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,high} treatment.

The mean piston velocity assuming a semi-infinite soil column v\textsubscript{inv} (Eq. 3a) varied between 0.16 and 0.18 mm s-1 (Table 3). Accounting for the finite depth of the soil column lead to v\textsubscript{v} values (Eq. 7) that were systematically but only marginally larger (Table 3), mostly because soil depth had been chosen to minimise this difference (Table 1 and Fig. S2). These values led to CO\textsubscript{2}-H\textsubscript{2}O isotopic exchange rates k\textsubscript{iso} that were not significantly different between treatments, with means of 0.08 ± 0.01, 0.06 ± 0.02 and 0.07 ± 0.01 s-1 for δ\textsubscript{iw,low}, δ\textsubscript{iw,med}, and δ\textsubscript{iw,high}, respectively (Table 3).

Estimates of a (Eq. 10) were approximately half the full fractionation of 8.8 ‰ (Table 3). Expectedly, there were significant differences in δ\textsubscript{eq} (Eq. 3b) estimates among water irrigation treatments, with values of -8.7 ± 0.2 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,low} treatment, -6.44 ± 0.52 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,med} treatment and -3.56 ± 0.18 ‰ VPDB\textsubscript{g} for the δ\textsubscript{iw,high} treatment. These values led to equivalent values of δ\textsubscript{sw,eq} (Eq. 11) that were also significantly different between water irrigation treatments, and surprisingly more depleted than the isotopic composition of cryogenically extracted soil water δ\textsubscript{sw,ce} at all depths (Fig. 3).
4 Discussion

Our first aim was to confirm the assumption that the isotopic compositions of the CO$_2$ flux (δ_R) and the CO$_2$ of the air at the soil-air interface (δ_a) are linearly related (Eq. 1). This appears to be a good approximation for our data with strong correlations between δ_R and δ_a in all experiments (Fig. 4). However, a number of other assumptions inherent to applying the model described by Eq. 1 in this way may influence our results. Namely, that CO$_2$ production profiles were constant with depth and that gas flux measurements were made under steady-state conditions (Tans, 1998). The first point is unlikely to be an issue here because care was taken to homogenise the soils before each gas exchange measurement (see Methods) and the total period between preparation and measurement (24 hr) was too short to allow large gradients, for example in soil moisture, that might cause an unequal respiration profile to develop. Potential deviations from steady-state conditions require more attention. A period of 21 min was included before the measurements from which fluxes were calculated, not only at the initial connection of an incubation chamber but also after each subsequent switch of the inlet conditions (Fig. 2). This period was chosen based on initial tests indicating that 10 min was sufficient for the concentration and composition of CO$_2$ to stabilise in an empty chamber and calculations indicating that full isotopic equilibrium of the CO$_2$-H$_2$O system, given the acidity and temperature of the soil, should theoretically be reached within ca. 12 minutes, even in the absence of any catalysed reaction (Uchikawa and Zeebe, 2012). However, our results showed that the soil CO$_2$ flux F_R systematically decreased with time, by about 10% on average between the first and last measurements within an incubation. This indicates that our measurements did not strictly adhere to the assumption of steady state. This trend probably reflects a combination of dissolved CO$_2$ de-gassing from the soil water as a result of small differences between pre-incubation and incubation CO$_2$ concentrations and, probably more importantly, the temporal response of soil respiration to re-wetting (Birch, 1958; Jarvis et al., 2007). As such, the ratio between C_a and F_R is not strictly constant and this introduces uncertainties into the estimations of k_{iso} and δ_{sw-eq}, that are considerably larger than that associated with individual gas measurements. Indeed, propagating this within-incubation variability in the ratio C_a/F_R leads to within-incubation uncertainties in k_{iso} of around 0.01 s$^{-1}$ for all treatments and within-incubation uncertainties in δ_{sw-eq} of 0.45, 0.37 and 0.24 ‰ for the $\delta_{iw,low}$, $\delta_{iw,med}$ and $\delta_{iw,high}$ treatments. These within-incubation uncertainties are the same of order magnitude as the variability in treatment means (Table 3), indicating that this temporal deviation from steady-state conditions may contribute to the majority of the reported variability. This variability could be reduced in future studies by working with fresh soils or allowing longer acclimatisation periods after re-wetting, provided efforts are made to limit the development of heterogeneity in the soil profile. As the linearity between δ_R and δ_a appears strong, variability could also be reduced by considering two rather than three combinations of δ_b to shorten the overall measurement time.
Secondly, we aimed to compare estimates of $\delta_{sw,eq}$ determined from the gas flux measurements with $\delta_{sw,ce}$ measured for the extracted bulk soil water. Whilst $\delta_{sw,eq}$ estimates were distinct among water treatments, they were also consistently more depleted than $\delta_{sw,ce}$ with mean offsets from $\delta_{sw,ce}$ between 0 and 5 cm of -2.56 ± 0.11, -2.87 ± 0.56 and -3.61 ± 0.23 ‰ VSMOW-SLAP for the $\delta_{iw,low}$, $\delta_{iw,med}$, and $\delta_{iw,high}$ treatments, respectively. Given the difference between the externally assigned value of -3.45 ± 0.02 ‰ VPDB for $\delta_{bw,high}$ and its measurement, with treatment means of -3.63 ± 0.15, -3.62 ± 0.3 and -3.58 ± 0.11 ‰ VPDB for $\delta_{iw,low}$, $\delta_{iw,med}$, and $\delta_{iw,high}$, respectively, we find no evidence that an offset between the calibration of our gas and water measurement scales could account for the size of the offset observed. Similarly, we find no evidence for large biases in our cryogenic extraction methodology as $\delta_{sw,ce}$ and composition of the labelling water overlapped in the tests where residual water was removed under extraction conditions prior to label addition (Orlowski et al., 2013, 2016b). This suggests that the offset between $\delta_{sw,eq}$ and $\delta_{sw,ce}$ is the result of CO$_2$ interacting with a water pool whose isotopic composition is more depleted than $\delta_{sw,ce}$. Differences in the water pools characterised by different methodologies for determining the isotopic composition of soil waters are well known, with the cryogenic extraction method being expected to remove mobile, immobile, hygroscopic and potentially crystalline water, whilst the static equilibration of soils with CO$_2$ is expected to principally reflect only the mobile and immobile pools (Hsieh et al., 1998b; Orlowski et al., 2016b; Sprenger et al., 2015). For this reason, we might expect $\delta_{sw,eq}$ derived here to reflect the isotopic composition of mobile and immobile pools and $\delta_{sw,ce}$ to reflect both these as well as hygroscopic and crystalline waters. However, disregarding the crystalline water pool in this predominately sandy soil, this would suggest that the isotopic composition of the hygroscopic pool would have to be considerably more positive than that of the mobile and immobile water pools in order to account for the fact that $\delta_{sw,eq}$ estimates were more negative than $\delta_{sw,ce}$. Contrary to this, extraction of water from the air-dried soil, of which hygroscopic water presumably represents a greater portion of the total water pool than in re-wetted samples, yielded a $\delta_{sw,ce}$ more depleted than that of the freshly sampled soil and the initial compositions of both the $\delta_{iw,med}$ and $\delta_{iw,high}$ treatments. This suggests that this residual pool in fact reflects the potentially rapid and dynamic exchange with atmospheric vapour during storage (Lin and Horita, 2016; Orlowski et al., 2016b; Savin and Epstein, 1970). Indeed, the fact that about 10 % of water in the re-wetted soils consisted of this residual pool helps account for the differences between δ_{iw} and initial $\delta_{sw,ce}$ across the water treatments. Observations that fractionation occurs between water associated with cations and anions present in solution or mineral surfaces (Oerter et al., 2014), organic particle surfaces (Chen et al., 2016) and pore spaces (Lin and Horita, 2016) and bulk water pools may help explain our data. In particular, Chen et al. (2016) found that the composition of the water bound to organic particle surfaces could be up to 4 ‰ more depleted than bulk water, with a greater fraction at higher volumetric ratios of solid to water. Such a depletion in bound (hygroscopic) water would explain our $\delta_{sw,ce}$ data, given the relatively high carbon content and low water content of the soil studied. However this requires us to consider that CO$_2$ is not principally equilibrating with mobile and immobile water but rather with hygroscopic water. Interaction between CO$_2$ and such surface pools may be plausible if this is where microbial communities expressing CA are present and active. If this were the case we...
should expect to see a smaller offset between δ_sw,eq and δ_sw,ce at higher water contents as the relative influence of surface pools decrease (Chen et al., 2016; Hsieh et al., 1998b; Oerter et al., 2014). We tested this by creating and measuring an additional six incubations, following the methods described above, that were re-wetted with different amounts of the same water to achieve water contents ranging from about 15 to 70 % water-filled pore space. The difference between estimated δ_sw,eq and δ_sw,ce determined for sampling depths of 0-1 cm (r² = 0.92) and 1-5 cm (r² = 0.88) were positively and linearly correlated with water-filled pored space across these incubations (Fig. 5). The fact that these relationships indicate the offset is smallest around 95 % water-filled pore space may indeed support the inference that estimates of δ_sw,eq are being influenced by fractionations between surface and bulk water pools.

Finally we aimed to compare the sensitivity of estimates of k_iso to δ_sw. Estimates of k_iso ranged from 6.8 to 14.6 times greater than the theoretical un-catalysed rate k_iso,uncat of 0.0062 s⁻¹ for the incubation conditions (Uchikawa and Zeebe, 2012). This enhancement of the apparent over the un-catalysed rate of hydration indicates that the reaction is indeed being catalysed by the presence of CA in these soils. After considering differences in the value of k_iso,uncat used, these rates are on the lower end of those reported from soil chambers deployed in the forest where soil used here was collected (Wingate et al., 2009; Wingate et al., 2010). Our estimates of k_iso were not distinct among water treatments (Table 3), supporting the idea that our new approach is robust enough to assay soil CA activity in the absence of information about δ_sw. This is beneficial as this approach also does not rely on any assumption about which soil water pool the CO₂ must equilibrate with, as such an assumption could introduce strong biases in the retrieved k_iso. To illustrate this point, we compared our new approach with previous studies (Wingate et al., 2009, 2008) where δ_sw has been used to determine k_iso from Eq. 1 and Eq. 2. For this, we replaced ν_inv and a in these equations with ν_inv (Eq. 7) and ã (Eq. 10) and iteratively solved for ν_inv using δ_sw,eq and gas measurements made at the individual δ_b conditions reported here. In doing so we highlight the potential sensitivity of estimating k_iso in this way to the combination of both δ_sw and δ_b conditions. Equivalent values of δ_eq calculated (Eq. 11) from δ_sw,ce between 0 and 5 cm were -6.15 ± 0.11, -3.57 ± 0.36 and 0.049 ± 0.065 ‰ VPDB for the δ_sw,low, δ_sw,med, and δ_sw,high treatments, respectively. Treatment means for k_iso estimated in this way using measurements made at δ_b,low were 0.0424 ± 0.0045, 0.029 ± 0.0078 and 0.035 ± 0.0034 s⁻¹ for the δ_sw,low, δ_sw,med, and δ_sw,high treatments, respectively. These rates are roughly half the size of k_iso estimated from regression among multiple δ_b conditions (Table 3). Positive solutions for k_iso estimated using measurements made at δ_b,med were not found for all incubations and estimates were smaller still with treatment means of 0.0059 ± 0.0021, 0.0079 ± 0.0051 and 0.015 ± 0.0042 s⁻¹ for the δ_sw,low (n = 3), δ_sw,med (n = 5) and δ_sw,high (n = 6) treatments, respectively. No solution was found for k_iso estimated using measurements made at δ_b,high for the δ Swan,med and δ Swan,high water treatments, whilst the estimates for δ Swan,low water treatment were two orders of magnitude larger with a mean of 3.18 ± 2.6 s⁻¹, i.e., more than 500 times larger than k_iso,uncat. Situations were no solution are found arise in cases where (δ_eq − δ_b)(δ_eq − δ_s) ≥ 0. These cases and the considerable variability in k_iso among water treatments under different δ_b conditions reflect the presence
of an asymptote in the model response when δ_{eq} and δ_{a} are similar (Eq. 1). In this region of the response, relatively small changes in δ_{eq} result in large changes in \(k_{iso} \) as seen among estimates for the δ_{sw,low} water treatment made using δ_{b,low}, δ_{b,med} and δ_{b,high} conditions (Fig. 6). From this analysis we can see that this can be problematic when attempts to estimate \(k_{iso} \) are made under field conditions. The oxygen isotopic composition of atmospheric CO\(_2\) (δ_{atm}) typically ranges from -1.5 to +1.5 ‰ VPDB (Welp et al., 2011). The isotopic composition of superficial soil water varies as a function of latitudinal and altitudinal patterns in the composition of precipitation and the subsequent influence of evapotranspiration, but is frequently reported in the range of -10 to +5 ‰VSMOW (Barbeta et al., 2015; Brooks et al., 2010; Dawson et al., 2002; Hsieh et al., 1998a). This suggests that values of δ_{eq}, after accounting for the influence of soil temperature and difference between scales in converting from δ_{sw} (Eq.11), can overlap δ_{atm} under normal conditions (Wingate et al., 2009).

5 Conclusions

We have demonstrated that a strong linear correlation existed between δ_{b} and δ_{a}, so that we should also be able to derive soil CA activity (\(k_{iso} \)) and isotopic composition (δ_{eq}) from only two inlet conditions. Given the temporal changes seen in the net flux after even 24h soil irrigation, this is likely to decrease even further the uncertainty in the estimation of \(k_{iso} \).

We also reported an offset between δ_{sw,ce} and δ_{sw,eq} which is an indication that bulk soil water may not be the pool of interaction with CO\(_2\). Such an offset might be explained by an isotopic fractionation between bound and mobile water pools while the sign of this offset seems to indicate that CO\(_2\) interacts preferentially with bound water. Clearly, a better understanding of the fine-scale heterogeneity in soil water isotope composition and microbial activity is required.

Finally, our estimates of \(k_{iso} \) were independent of the isotopic composition of the irrigation water used, suggesting our approach is a robust assay of the activity, even in soils with low CA activities as reported here. Given the sensitivity of \(k_{iso} \) when estimated using a single CO\(_2\) composition and prescribed vales of δ_{sw,eq}, our approach clearly represents a more conservative and robust method. To better understand the cycling of oxygen isotopes of CO\(_2\) within soils, further work is required to understand the physical processes controlling fractionation between soil water pools and the relation of microbial communities and their enzymes to these pools.
Author contributions

S.W., J.S. and S.J. designed and built the gas exchange system.
S.J. and S.W. conducted gas flux measurements.
N.S, N.F, J.M, and S.J. tested the water extraction system and analysis system and conducted the soil water extractions and water analysis.
S.J. wrote the manuscript with contributions from all authors.

Acknowledgements

We would like to thank Régis Burlett, Callum Tyler, Thomas Sajus, and Jason West for their input in the laboratory and development of the experiment. This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) (grant agreement No. 338264) awarded to L.W. Salary for J.S. was funded by the Agence Nationale de la Recherche (ANR, project ORCA) and the INRA departments EA and EFPA.
References

Tables

Table 1: Soil properties for the different water irrigation treatments, i.e., maximum soil depth (z_{max}), total porosity (ϕ_t) and volumetric soil moisture content (θ_w). Means ($n = 6$) and their standard deviations (in parentheses). Lower-case letters indicate significant differences (one-way analysis of variance and Tukey's HSD, $p < 0.01$) among water treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>z_{max} (mm)</th>
<th>ϕ_t</th>
<th>θ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{w,\text{low}}$</td>
<td>60.3 (1.5) a</td>
<td>0.599 (0.01) a</td>
<td>0.112 (0.002) a</td>
</tr>
<tr>
<td>$\delta_{w,\text{med}}$</td>
<td>61.5 (0.76) a</td>
<td>0.607 (0.0043) a</td>
<td>0.11 (0.0023) a</td>
</tr>
<tr>
<td>$\delta_{w,\text{high}}$</td>
<td>60.3 (1.4) a</td>
<td>0.599 (0.0093) a</td>
<td>0.112 (0.0024) a</td>
</tr>
</tbody>
</table>
Table 2: Gas exchange data for the different irrigation treatments ($\delta_{iw,low}$, $\delta_{iw,med}$ and $\delta_{iw,high}$) and the different CO$_2$ isotope composition on the bypass line ($\delta_{b,low}$, $\delta_{b,med}$ and $\delta_{b,high}$). Means ($n = 6$) and their standard deviations (in parenthesis).

<table>
<thead>
<tr>
<th></th>
<th>$\delta_{b,low}$</th>
<th>$\delta_{b,med}$</th>
<th>$\delta_{b,high}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_b (ppm)</td>
<td>426</td>
<td>424</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(0.92)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>C_a (ppm)</td>
<td>482</td>
<td>480</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>(9.8)</td>
<td>(8.6)</td>
<td>(6.4)</td>
</tr>
<tr>
<td>F_R (µmol m$^{-2}$ s$^{-1}$)</td>
<td>1.98</td>
<td>1.99</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.3)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>δ_b (%) VPDB$_{a}$</td>
<td>-26.8</td>
<td>-13.9</td>
<td>-3.63</td>
</tr>
<tr>
<td>δ_b (%) VPDB$_{b}$</td>
<td>(0.25)</td>
<td>(0.092)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>$\delta_{b,low}$</td>
<td>-26.9</td>
<td>-14</td>
<td>-3.62</td>
</tr>
<tr>
<td>$\delta_{b,med}$</td>
<td>(0.22)</td>
<td>(0.17)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>$\delta_{b,high}$</td>
<td>(0.062)</td>
<td>(0.082)</td>
<td>(0.11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\delta_{a,low}$</th>
<th>$\delta_{a,med}$</th>
<th>$\delta_{a,high}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{a,low}$</td>
<td>10.8</td>
<td>-6.04</td>
<td>-20.3</td>
</tr>
<tr>
<td>$\delta_{a,med}$</td>
<td>(3.7)</td>
<td>(1.2)</td>
<td>(0.95)</td>
</tr>
<tr>
<td>$\delta_{a,high}$</td>
<td>(3.8)</td>
<td>(1.1)</td>
<td>(1.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\delta_{a,low}$</th>
<th>$\delta_{a,med}$</th>
<th>$\delta_{a,high}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{a,low}$</td>
<td>17.7</td>
<td>4.4</td>
<td>-8.36</td>
</tr>
<tr>
<td>$\delta_{a,med}$</td>
<td>(2.0)</td>
<td>(1.2)</td>
<td>(0.74)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\delta_{a,low}$</th>
<th>$\delta_{a,med}$</th>
<th>$\delta_{a,high}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{a,low}$</td>
<td>10.8</td>
<td>-6.04</td>
<td>-20.3</td>
</tr>
<tr>
<td>$\delta_{a,med}$</td>
<td>(3.7)</td>
<td>(1.2)</td>
<td>(0.95)</td>
</tr>
<tr>
<td>$\delta_{a,high}$</td>
<td>(3.8)</td>
<td>(1.1)</td>
<td>(1.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\delta_{a,low}$</th>
<th>$\delta_{a,med}$</th>
<th>$\delta_{a,high}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{a,low}$</td>
<td>17.7</td>
<td>4.4</td>
<td>-8.36</td>
</tr>
<tr>
<td>$\delta_{a,med}$</td>
<td>(2.0)</td>
<td>(1.2)</td>
<td>(0.74)</td>
</tr>
</tbody>
</table>
Table 3: Model solutions for the different water irrigation treatments. Means ($n = 6$) and their standard deviations (in parentheses). Lower-case letters indicate significant differences (one-way analysis of variance and Tukey’s HSD, $p < 0.01$) among water treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>v_{inv} (mm s$^{-1}$)</th>
<th>\bar{v}_{inv} (mm s$^{-1}$)</th>
<th>$k_{\text{iso-ap}}$ (s$^{-1}$)</th>
<th>δ (% VPDB)</th>
<th>$\delta_{\text{sw.eq}}$ (% VSMOW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{\text{iw,low}}$</td>
<td>0.179 (0.011) a</td>
<td>0.181 (0.011) a</td>
<td>0.0799 (0.0086) a</td>
<td>5.36 (0.16) a</td>
<td>-9.31 (0.2) c</td>
</tr>
<tr>
<td>$\delta_{\text{iw,med}}$</td>
<td>0.158 (0.021) a</td>
<td>0.162 (0.02) a</td>
<td>0.0633 (0.015) a</td>
<td>4.88 (0.43) a</td>
<td>-7.04 (0.52) b</td>
</tr>
<tr>
<td>$\delta_{\text{iw,high}}$</td>
<td>0.168 (0.014) a</td>
<td>0.171 (0.013) a</td>
<td>0.0712 (0.012) a</td>
<td>5.14 (0.29) a</td>
<td>-4.16 (0.18) a</td>
</tr>
</tbody>
</table>
Figures

Figure 1: Schematic of the system used to make gas exchange measurements.
Figure 2: An example of the gas exchange measurement sequence, scanning sequentially calibration cylinders, the chamber line during a stabilisation period, calibration cylinders again, and finally the chamber (C_a, δ_a) and bypass (C_b, δ_b) lines, for three CO$_2$ isotopic composition values of the bypass line (δ_b). In this case, the δ_b inlet conditions, whose changes are indicated by the vertical dashed lines, started with δ_b,med and ended with δ_b,low. (a) Total CO$_2$ concentration and (b) the δ^{18}O of CO$_2$.
Figure 3: Profiles of $\delta_{\text{sw,ce}}$ cryogenically extracted from incubated soils at intervals of 0-1, 1-2, 2-3, and 4-5 cm.
Figure 4: Relationships between δ_R and δ_a for the different irrigation water treatments. Dashed lines indicate linear regressions for individual incubations.
Figure 5: Relationships between water-filled pore space and the difference between estimates of $\delta_{sw,eq}$ and $\delta_{sw,ce}$ determined for depths of 0-1 cm and 1-5 cm. Dashed lines indicate linear regressions for the two sampling depths.
Figure 6: Model responses between \(k_{iso} \) and \(\delta_{eq} \) at different \(\delta_b \) conditions for \(\delta_{iw,low} \) water treatments.