EDITOR DECISION

Dear Dr Mazzoleni,

thank you for the very detailed responses to the reviewers' comments. After having carefully read your responses, I would be happy to consider a revised manuscript. But please note that a revised manuscript will undergo further review, and a final decision will be made on the basis of those reviews. Because of the nature of the revisions, and depending on the availability of the previous reviewers, this may involve seeking the opinion of a third reviewer.

Kind regards

Wouter Buytaert

Dear Dr. Buytaert,

Thank you for your comments. We have corrected the manuscript based on the reviewer suggestions reducing the number of figures, restructuring the introduction, adding new experiments to assess theoretical scenarios on the effect of smartphone penetration and citizen involvement in urban areas, clarifying and/or removing text and acknowledging the theoretical approach of our study. The additional text in the updated version of the manuscript is reported using blue colour. In addition, we have replaced the term “engagement” with “involvement”. Although there is some overlap conceptually, engagement refers more to the recruitment process (how to get citizens involved) while involvement refers more clearly to their activity level (which is what we are focusing on this study).
We would like to thank you and the referees again for all the efforts, and we believe that the manuscript has improved substantially. Below, you can find a point-to-point discussions of all the comments.

Maurizio Mazzoleni
RESPONSE TO REVIEWER #1

General comment

The paper aims at assessing the usefulness of assimilating crowdsourced observations for improving model-based predictions of flood events, by distinguishing the contribution from static physical sensors from the one derived from either static or dynamic social sensors. Each family of sensors is characterized by a different level of reliability and time of availability. The application of the analysis using hypothetical data to the extreme flood event in the Bacchiglione catchment on May 2013 (when no real crowdsourced observations were available) show a good potential for including this novel type of information in flood control applications. The manuscript is well written and the topic is definitely interesting. However, I suggest the paper needs a major revision to clarify the specific points discussed below.

We appreciate reviewer’s compliments and suggestions, which were extremely helpful to improve the manuscript. Additional analyses have been included to assess theoretical scenarios on the effect of smartphone penetration and citizen involvement in urban areas. In addition, some parts have been removed to improve the structure and highlight the most innovative aspects of the manuscript. In the updated version, more focus is given on the citizen involvement effects on DA. The number of scenarios in Experiment 2 are reduced from 6 to 3.

Specific comments

RC 1: Literature Framework: despite the literature about crowdsourcing information and citizens science is relatively new, I believe that the authors should improve the manuscript’s introduction to better frame their work within the existing approaches, which are currently only listed in section 2. In my opinion this is key for clarifying the novelty with respect to previous publications by the same authors, particularly the paper “Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?” which also has the same case study application but, more generally, with respect to the entire series Mazzoleni et al. (2015a; 2015b; 2016). In addition, such improved analysis of the literature allows reinforcing the value of the results (obtained with hypothetical data) with respect to the few existing applications run over real crowdsourced observations. Practically, I would suggest re-structuring sections 1 and 2 with the purpose of reviewing the existing approaches and of clarifying how the current paper represents a step-forward with respect to other works.

AC 1: We thank the reviewer for this critical comment. Indeed, we realized that sections 1 and 2 should be re-structured, and in the revised version of the manuscript we have done that. Section 1 (introduction) in the revised version focuses now on the problem definition, the description and limitations of previous studies that include crowdsourced observations in flood modelling and the novelty of the manuscript with respect to the previous one. On the other hand, we moved the theoretical considerations of crowdsourced observations and citizen involvement in the discussion section. We believe that the manuscript now reads better due to the reviewer’s comments.

RC 2: Given the focus on the use of crowdsourced observations, part of the results’ discussion (e.g., the analysis on the lead time vs location) is relatively basic and would apply to any type of sensor available along the river. I’m not impressed by the fact that observations far from the outlet sections allow increasing the lead-time. I would hence suggest the authors to consider shortening this discussion in favour of a more extensive analysis of pros and cons of using/relying on crowdsourced data (see point 3).
AC 2: We thank the reviewer for this comment, which have led to several changes in the revised manuscript, as follows. First, we have removed the experiments on assimilation of observations from physical static sensors (experiment 1 in the manuscript) to favour a wider and more detailed analysis on the effect of different involvement levels in the assimilation process (experiments 2 and 3). Second, the paper have been shortened by removing some results in experiments 2 and 3 related to the influence of social sensor location on the assimilation performances. Finally, we have included a discussion section where pros and cons of using crowdsourced observations are considered.

RC 3: A major limitation of the analysis is the lack of real crowdsourced observations. To overcome this issue, I believe the results would need a more extensive discussion about some key aspects that may strongly impact the results in case real data were available: first of all the level of public engagement is crucial and I would recommend trying to justify the theoretical formulations with respect to some preliminary findings either from the WeSenseIt project or from similar studies in the literature. I’m quite skeptical about the assumption that the 41% mobile phone penetration can be considered a good proxy for estimating a ratio of active citizens equal to 41%. In addition, I would assume this may vary spatially (even though I don’t know whether it could be higher in cities or in the rural areas). Moreover, the distinction of the different behaviours seems also quite theoretical and should be somewhat mapped to the specific case study. Finally, it is not clear how many observations are assumed to be available in each experiment. Given the fast dynamics of flood events, the whole process lasts few hours and indeed the maximum lead-time is one day. This temporal dynamics may however represent a strong constraint for collecting crowdsourced observations, because active citizens might not be there at the right time. I would hence recommend discussing the upper and lower limits in terms of number of observations needed to provide an accurate flood forecast.

AC 3: We agree with the reviewer that the model used to represent citizen involvement levels is rather theoretical, and we have clearly stated this. In the framework of WeSenseIt project we have carried out an exercise with interested (engaged) citizens who were providing water level observations via the smartphone app to initiate the citizen observatory. However, no formal assessment of citizens’ involvement under preparedness and emergency situations has been carried out for this case study. In relation to the Bacchiglione case study, the WeSenseIt Project focused on the analysis of the role of personal weather stations in sharing data via online amateur weather networks, but this data was not neither. Under the consideration that the Civil Protection of Vicenza was involved within the WeSenseIt project, and in reality there is a high chance that it will be happening in the future, however, for this paper it was assumed that only volunteers and/or trained volunteers will participate in providing water level observations. A further assumption is that the mobile application available for the project is easy-to-use and accessible for all participants (this in fact may increase the assumed level of involvement).

The involvement scenarios adopted in our study are assumed to represent the hypothetical situations where citizens will be fully involved and engaged by the Alto Adriatico Water Authority within the Citizen Observatory project. CS observations are assumed to be collected at a particular location and time upon request from the Alto Adriatico Water Authority. The distinction between favourable attitudes are treated from a theoretical point of view, based on Batson et al. (2002): 1) own personal purposes (usefulness of the collected data for personal interest or direct flood risk management impact); 2) shared or community interests belonging to a community of peers with shared interested; and 3) altruism (beneficing society at large).

In order to clarify this aspect, in the revised manuscript we have included an additional sub-section (section 2.3) where citizen involvement level in collecting water level data within the Bacchiglione catchment is described.
Regarding the assumption of 41% for the mobile phone penetration, we have considered this percentage based on Statistica (2016). This value depends on the geographic area and on the characteristic of the population. In fact, we assumed that not everyone will be willing to use smartphone to collect and share water level data due to for example their age and habits. More exhaustive analysis should be performed in order to better define the percentage of active citizens. We agree with the reviewer on the fact that the percentage of active citizen can change spatially. That is why we have conducted additional analysis considering higher percentage of smartphone users (80%) in areas with higher population density, i.e. the municipality of Vicenza. The results of such analysis are reported below (figure 1), and included in the updated version of the manuscript.

![Figure 1. Difference between μ (NSE) values obtained considering standard and higher active citizen percentage in the municipality of Vicenza for different involvement levels from StSc and DySc](image)

In figure 1, the difference between the μ (NSE) values obtained assuming smartphone penetration of 41% and 80% are represented. From the previous graphs it can be seen that increasing the smartphone penetration in Vicenza does not affect model results in case of scenario 2. In fact, for this scenario, no involvement is assumed in densely urbanized areas such as the municipality of Vicenza. On the other hand, higher number of smartphones in Vicenza affects (partially) only scenarios 1 and 3. In these scenarios we can observe an expected increment in the model performance due to the higher involvement in Vicenza. However, small increments in the NSE values are reported in figure 1, with a maximum difference of 0.04 between normal and higher smartphone penetration. Even in case of the 41% of smartphone usage, high involvement level is achieved for small number of active citizen (see figure 3 of the manuscript). This means that in the proposed theoretical involvement model more active citizens (more mobiles available) won’t significantly improve involvement and affect the model performance. In addition, regardless of the number of CS observations if the quality is not good enough the model performance will not improve further improve as described in Mazzoleni et al. (2017). We have included these considerations in the updated version of the results.

The number of observations used in each experiment varies based on a particular involvement level scenario used. In fact, considering a 48h flood event and an hourly model time step, an involvement equal to 1 corresponds to 48 available observations. An involvement of 0.5 implies 24 observations (randomly distributed in time and space) to assimilate. As the reviewer correctly pointed out, active citizens might not be always available during a flood event. A limitation of our study is that we did not consider the fact that citizen may not provide observations for instance during night hours, as done in an earlier paper by Mazzoleni et al. (2015). This limitation will be mentioned in the concluding section of the updated manuscript.

Finally, it is difficult to recommend a defined number of observations needed to achieve an accurate flood forecast. In fact, as mentioned in Mazzoleni et al. (2017), it is not possible to define a-priori the upper and lower limits of crowdsourced data needed to improve a model because it depends on the uncertainty level of CS observations (which depends on the training level and experience of citizens).
RC 4: The last point regards the need of discussing two additional key aspects of crowdsourcing (or more in general citizen science) experiments: how to stimulate citizens engagement and how to keep them engaged in the long term. I understand the authors are assuming a kind of self-motivated behaviour differentiated according to the level of engagement. However, in the final discussion, I would suggest the authors to comment about possible techniques for motivating citizens in participating to this data collection experiment and increasing their engagement level (e.g., gamification techniques). In addition, it would be nice discussing also about the potential evolution in time of such engagement as many studies observed decreasing levels of engagement in time. How this would affect the overall flood forecasting system? Assuming it is possible to have a good level of engagement in a critical event, how many citizens are expected to remain active until the next flood? Given the case study analysed in the paper where floods are not frequent, in my opinion this point is critical as I see a high probability of having a lot of people potentially involved just after a catastrophic flood event who will lose interest in time and may not be active anymore at the next flood event.

AC 4: We agree with the reviewer’s comment on the importance of stimulating citizens’ engagement for a long period of time. Many studies reported a temporal pattern of citizen participation driven by self-directed motivations and person’s interests. Involvement during flood event tends to disappear if no other event will occur in a short time. In fact, depending on the memory of the community, the awareness of flood risk decays with time, and, therefore, the tendency to be engaged in data collection will also tend to reduce or even disappear. As the reviewer stated correctly, many citizens may be potentially involved just after a catastrophic flood event but they might not be active anymore at the next flood event because they lost interest in time. A possible solution for collecting water level data over time could be the involvement of staff of the civil protection agency which act as (trained) volunteers. This approach is currently being used in the Bacchiglione catchment by the Alto Adriatico Water Authority, which requests the water level data at particular location and time from the Civil Protection to validate model results in near real-time.

As our study is based on theoretical considerations, we simply acknowledged in the discussion the importance to keep citizens engaged. We suggest, for example, gaming approaches or periodic meetings/seminars with interested participants. A more critical and detailed analysis of citizen involvement motivations is reported in Geoghegan et al. (2016).

As the reviewer mentioned, in this study the citizen involvement is assumed constant in time because only one flood event is considered. However, when multiple flood events are simulated, some model has to be used to represent the possible decay of involvement level on time. A possible way to represent such decay is to use a logistic curve and to vary the value of growth rate \(r \) over time. Figure 2 (which is included in the revised version of the manuscript) presents sensitivity analysis of model results with respect to the varying values of the coefficient \(r \) to representing the varying involvement levels over time (see in Eq.15). Only involvement scenario 3, for three different values of \(w \), is considered. The results demonstrated that decreasing involvement over time (low values of \(r \)) will lead to a reduction of the model performance, and consequently influence flood prediction. This is somehow an expected result that, once more, demonstrates the importance of keeping citizens engaged not only for a short period of time but on the long run. However, such reduction of model performances is significant only for values of \(r \) lower than 0.3, leading to the conclusion that model performances can still be high even if involvement reduces over time up to a given threshold value. Additional relevant literature about involvement strategies are included in the updated version of the manuscript. The ongoing H2020 project GroundTruth2.0 is trying to answer these questions and further research will take those outcomes into account.
Figure 12. μ(NSE) and σ(NSE) values obtained considering varying values of the coefficient r for scenarios 1 and 3 with three different values of w

Minor points

- There is a quite intensive use of acronyms. I would suggest - if possible - to reduce it and to add a table of acronyms to help the readers

As suggested by the reviewer, we have included a table with all the acronyms used in this study.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAWA</td>
<td>Alto Adriatico Water Authority</td>
</tr>
<tr>
<td>CIL</td>
<td>Citizen Involvement Level</td>
</tr>
<tr>
<td>CS</td>
<td>Crowdsourced</td>
</tr>
<tr>
<td>DySc</td>
<td>Dynamic Social</td>
</tr>
<tr>
<td>KF</td>
<td>Kalman filter</td>
</tr>
<tr>
<td>MCIL</td>
<td>Maximum Citizen Involvement Level</td>
</tr>
<tr>
<td>PA</td>
<td>Ponte degli Angeli</td>
</tr>
<tr>
<td>StPh</td>
<td>Static Physical</td>
</tr>
<tr>
<td>StSc</td>
<td>Static Social</td>
</tr>
<tr>
<td>WL</td>
<td>Water level</td>
</tr>
<tr>
<td>WSI</td>
<td>WeSenseIt</td>
</tr>
</tbody>
</table>

- Page 3, lines 12-13: soil moisture (from AMSR-E) is repeated duplicated

We have reduced the introductory section and removed the duplicated term

- Page 3, lines 25-27 / Page 4, lines 14-15: the classification of behaviours from Bonney et al. is duplicated

We thank the reviewer for spotting this mistake. We have removed the duplicated term

- Page 9, lines 2-3: why the model does not depend on temperature? how evapotranspiration is estimated?
In order to shorten the manuscript, we did not provide many details about the hydrological model. For this reason, we referred to Ferri et al. (2012) and Mazzoleni et al. (2017) for the interested readers. The temperature is used for the estimation of the real evapotranspiration, which is calculated using the formulation of Hargreaves and Samani (1985)

- Page 23, line 19: I assume there is an extra N in “allows to achieve higher N N_{SE}”

Thank you for the comment. We have removed the additional N

- Page 25, line 19: sigma(NSE) is never defined. I assume it is the standard deviation across the 100 experiments, but this must be explicitly stated.

We clearly defined sigma(NSE) in the updated version of the manuscript

Reference:

RESPONSE TO REVIEWER #2

General comment

This paper on the potential use of citizen science data for flood forecasting is interesting to the readers of HESS but I have several major and some minor comments and concerns.

We appreciate the critical reviewer’s comments and suggestions on our paper. We have addressed them all, in some cases by adding new experiments and in others re-structuring, clarifying and/or removing text and acknowledging the theoretical approach of our study. We therefore believe that the manuscript has improved substantially. Below, you can find a point-to-point discussions of all the comments.

Major comments

RC1: The paper describes the results for multiple experiments, for different river stretches, lead times and stations but the multitude of results are never integrated or discussed. In fact, there is almost no discussion of the results at all. The lack of integration of the different results leaves the reader at loss about what the main take home message or contribution of this work is. This seriously harms the impact of this study and paper. Often the results for different stream sections or sub-catchments are described in detail and while these specific results (and the differences for the sections or subcatchments) may be of interest for people working in this basin, it is unclear why the results are different and what was learned from these differences that can be used outside this particular basin. Due to this lack of synthesis and discussion, the paper reads a lot more like a report of a modelling study for an agency (or thesis) than a paper for an international journal. Overall, much more integration and discussion of the results are needed and to clearly state what new thing was learned from this study. The paper has 17 figures, many of which contain multiple subplots and look similar. It is hard for the reader to pin-point what the main or most important “take home” figures are. Is there not a way to merge some of the figures or to summarize the results in a more clever way so that it is clear what figure (and thus what result) the reader should remember from this manuscript? The different figures don’t integrate and compare the results from the different experiments and therefore it is hard to compare the model simulation results for the different data types and thus to appreciate the value of the different data types.

AC 1: We thank the reviewer for the comprehensive comment, and indeed noting the deficiencies of way material is presented in the manuscript. In the complex process of assimilation of crowdsourced observations in water system models many factors play an important role in the correct flood estimation. Those are for example the type of a social sensor, citizen involvement, decay of the involvement over time, type of hydrological and hydraulic model, and quality control of CS observations. We agree with the reviewer and accept that results were presented without giving the reader a clear “take home” message. In this study we focused on the type of social sensors, on the citizen involvement level and its variability in time and space. To better integrate the results and to give a stronger message on the effect of CIL on flood prediction, we removed figures 6, 9, 10, 12, 16 and 17, which contains many multiple sub-plots.

We have included additional analyses on the effect of diminishing citizen involvement in time and variable spatial smartphone penetration on the model performances. In addition, we have reduced the number of scenarios in the experiment 3 (now called experiment 2). In the revised manuscript version we reduced the number of presented scenarios from 6 to 3 (see next figure). We included new analyses on the effect of temporal and spatial variability of citizen involvement levels. Finally, we divided results and discussions into two separate sections to clearly present the findings of this study.
The main “take home” message we wanted to convey is: assimilation of CS observations provided by citizens improves model performance, and we can show how much, and how this improvement depends on the level of involvement. In particular, assimilation of CS observations in hydrological model tends to lead to a lower improvement than the assimilation in hydraulic models. Bias in water level observations plays an important role. Finally, the effect of spatial variability of active citizens and the decay of citizen involvement in time it is of vital importance to keep adequate model results. This study demonstrates that high model performance can still be achieved even for decreasing involvement in time. We made these statements clearer in the revised version.

RC2: P4L34: It is unclear how this paper is different from the four other papers by the authors on this topic. It would be good to specifically state here (or elsewhere) what is different between this paper and these previous papers and how this paper builds on the work of (and goes further than) these previous papers.

AC 2: We thank the reviewer for this valuable comment. Indeed, we should have been clearer. In the revised version, we are clarifying this aspect in the discussion section. In the four previous studies we investigated the effects of assimilating real-time (synthetic) crowdsourced (CS) observations into hydrological models. However, in Mazzoleni et al. (2015; 2017a and 2017b), we have not investigated the effect of assimilating CS observations into hydraulic models. Furthermore, we have not considered neither (theoretical) scenarios of citizen involvement, nor the simultaneous assimilation of CS observations from static and dynamic social sensors. For this reason, the main objective of this study is to assess the usefulness of assimilating CS observations in both hydraulic and hydrological models-based predictions of flood events. To that end, we analyse the flood event occurred in May 2013 in the Bacchiglione basin with the data which would come from a distributed network of static physical (StPh), static social (StSc) and dynamic social (DySc) sensors (however this data was simulated). These (synthetic) CS observations for water level are assimilated in a cascade of hydrological and hydraulic models. The experiments are analysed as CS observations and the assessment of citizen involvement levels are yet not operational nor available in the case study. CIL is further defined as the probability of receiving a CS observation based on the citizen’s own interest or intention in collecting water levels. We assume that CIL mainly limit the intermittency or timely availability of observations. All mentioned above are reflected in the revised manuscript and we hope will improve its clarity.
RC 3: Methods: It is not fully clear what data that could come from citizen science observations was used. On P5L11, both water level and precipitation data are mentioned. From the methods (P5L25) it appears that only the water level data are used and the precipitation data are not used (except the precipitation from the standard measurement stations - not the simulated citizen science data) but then on P18L20-21, P29L4, 11 and P33L1 it is suggested that amateur weather observers will take more measurements. Why would amateur weather observers be particularly interested in water levels? Weather stations don’t regularly measure water levels. Or was the weather data used as well? Also, it is not clear when the water level data was converted to streamflow and when it was just used as water level. On P15L21-25 it is suggested that for this experiment the water levels were not converted. Were they only used in the hydraulic model or also in the hydrologic model? Or did that depend on the situation/experiment? If so, then it should be explained much better when water level and when streamflow (converted from the water level observations) was used. If sometimes water level and other times streamflow was used, it should be discussed how this hinders comparison of the results for the different experiments.

AC 3: We fully agree with this comment, and regret the confusion. On P5L11 we were referring to the mobile app developed within the WeSenseIt project, used to observe both water levels and precipitation. However, in this study we only used water level, since precipitation data are provided by static physical sensors within the catchment. We clarify this aspect in the revised version of the manuscript.

We referred to amateur weather observers to point at the active citizens which will (regularly) provide water level data driven by moral norms and the wish to create knowledge about the hydrological status of the river. We agree with reviewer that the term amateur weather observers might be confusing. For this reason, in the revised version we have modified the term “weather enthusiast individuals” into “enthusiast individuals” which do not use any weather stations for providing water level observations. No weather data was used from these hypothetical citizens, just water level.

In both hydrological and hydraulic models, water level observations are assimilated. Ideally, water level values can be directly assimilated into the hydraulic model. However, in this study we use a Muskingum-Cunge model which requires flow information rather than water level. For this reason, water level value at a certain random location is converted into flow value using Manning equation. Similarly, for the hydrological model the water level observations at the outlet of each sub-catchment has to be converted into streamflow values to be assimilated. This can be done by means of the rating curves available at the sub-catchment outlet cross-sections. As suggested by the reviewer, in the revised manuscript (3.3) section we are providing more details and explanation on the assimilation of water level and streamflow within the hydraulic and hydrological models.

RC 4: P11L27: In this study, the modelled streamflow was used to obtain the water level and streamflow data. However, when real citizen science water level data are used, a rating curve is needed for every potential measurement location to obtain information on the streamflow. How would you do that? This is crucial information that is needed when this approach would be used with actual citizen science data (rather than this hypothetical or virtual study). However, almost no guidance is given on how this rating curve information would be obtained for the real citizen science case or how the huge uncertainty in any assumed rating curve will affect the model results. This really needs to be addressed to make the proposed approach useful for real cases with citizen science data. On P15L19 it is suggested that cross sections can be derived from natural cross sections elsewhere but cross sections vary hugely. So this will significantly impact the results.

AC 4: As the reviewer correctly mentioned, it is quite unlike to have the information of the rating curve at a random location of the CS observation provided by dynamic sensors in real world applications. In
this case, a properly calibrated Manning equation can be used along the river to convert water level into streamflow. Roughness parameter in the Manning equation is calibrated by comparing the observed and simulated rating curve at the outlet section of the catchment. Such a calibrated value is optimal for the cross section of Vicenza but may not be optimal for other upstream sections. In addition, Manning equation uses the cross-section information to estimate hydraulic variables like wetted area and perimeter. When there are no data regarding the cross-section, assumptions should be made about a rectangular cross-section with a given width and depth. Obviously, in case of a more complex hydraulic model, the estimation of streamflow from water level is not required since it can directly assimilate water level.

On the other hand, in case of static sensors the water level can be converted into streamflow using a rating curve. During the installation of the sensor/staff gauge it would be possible to derive the rating curve and cross section in order to convert water level into discharge. However, both Manning equation and rating curve introduce a significant degree of uncertainty in the streamflow estimation. For this reason, CS observations from social sensors are assumed to have lower (and variable) accuracies. These considerations have been included in section 3.3 and in the discussion section of the updated manuscript.

RC 5: Table 2: How were these values chosen? What are they based on? No references or information is given and therefore it cannot be determined if these values are reasonable at all!! Give references to back up these values or describe how they were chosen and why they are considered reasonable.

AC 5: In this study we assumed that observations from DySc sensors are randomly biased adding a white noise with standard deviation proportional to a coefficient γ. This coefficient has the same absolute value of the error value of α in case of StSc sensors. No reference to the choice of γ was provided in the manuscript since it was subjectively assumed. Obviously, we do not want to conclude that 0.3 should be considered as default value to estimate bias in real-life crowdsourced observations. Such bias has to be defined based on field experiments with volunteers proving water level observations during real flood conditions. The main point of this analysis was to provide a sensitivity analysis of model results based on a subjective value of γ.

This study demonstrated that the effect of biased observations on flood prediction strongly depends on the model performance without any assimilation. In the flood event we considered, model without update tends to underestimate the observed water level and streamflow. For this reason, assimilation of overestimated water level data provides higher model performances (N_{SE}). On the other hand, underestimation of water level data will give lower NSE. These results can be seen in figure 7 of the paper. These considerations have been included in the discussion and conclusion sections of the updated manuscript.

RC 6: Table 3: What are these alpha values based on? A reference should be given or the choice of these values should be discussed in detail! P13L7: do these values really suggest that if water levels can be measured from a staff gauge at 1 cm increments that citizen scientists can estimate the distance between the bank and the water level without a staff gauge with a 2-5 cm accuracy? This latter value seems not reasonable to me at all (since already the surface level of the bank probably differs by a few cm).

AC 6: We agree with the reviewer that the assumption of a citizen scientists estimating the distance between the bank and the water level without a staff gauge with a low error is unrealistic. A more appropriate method for measuring flow at a random location using a dynamic sensor can be the one proposed by Beat et al. (2014). The authors proposed an approach to measure water level with good accuracy, surface velocity and runoff in open channels. However, this approach requires a-priori
knowledge on the channel geometry at the random location of the measurement, which is one of the main sources of uncertainty. For this reason, it is assumed that DySc sensors have lower accuracy than StSc. We modified the section 3.1 in the manuscript accordingly.

One of the main and obvious issues in citizen-based observations is to maintain the quality control of the water observations. In this study, the coefficient α is assumed to be a random variable, uniformly distributed between 0.1 and 0.5 based on the type of the social sensors. The high values of α for the StSc and DySc sensors are due to the different sources of uncertainty introduced in the water level estimation and the consequent conversion to discharge, since both hydrological and hydraulic models assimilate flow data.

In case of StSc sensors, water level can easily be measured by citizens using a staff gauge as reference. The main source of uncertainty is introduced in the streamflow estimation from water level by means of the Manning equation or available rating curve. The value of α equal to 0.3 used for StSc is based on our previous studies. In case of DySc sensors, besides the uncertainty in the flow estimation, the assessment of the water level is affected by the uncertainty in the proper knowledge of the cross-section geometry at the random location. For this reason, an error value of 0.5, almost double than for case of StSc, is assumed for DySc sensors.

Unfortunately, we did not have any real crowdsourced observation to test validity of these coefficients. In this study, no sensitivity analysis was performed on the maximum value of α using dynamic sensors. However, we have ran an additional simulation in which the maximum value of α is set equal to 0.8 (during Experiment 3) in order to assess the change in model performance due to data assimilation.

![Scenario 1](image1.png) ![Scenario 2](image2.png) ![Scenario 3](image3.png)

Figure 2. First row: $\mu(N_{SE})$ values in case of high observation error ($\alpha_{\text{max}}=0.8$) in the DySc sensors; Second row: difference between $\mu(N_{SE})$ with $\alpha_{\text{max}}=0.5$ and $\alpha_{\text{max}}=0.8$ for different involvement levels from StSc and DySc (experiment 3)

From the figure you can see higher gradient in the contour lines if compared to the results obtained with α_{max} of 0.5, meaning a higher dependence of $\mu(N_{SE})$ towards StSc sensors since the uncertainty in the DySc sensors is increasing. In addition, Figure 2 shows small differences between $\mu(N_{SE})$ with $\alpha_{\text{max}}=0.5$ and $\alpha_{\text{max}}=0.8$. Due to the already high number of figures and results we have not included this analysis.
in the updated version of the manuscript. We leave the editor to the decision on whether add or not these results in updated version of the manuscript.

Reference:

RC 7: P14L27: Does this indeed mean that for any given time step there is a 40% chance of getting 1 measurement? Even at night? That does not seem realistic. In the figure CEL values of >80% are used. This is certainly not likely. It would be better to at least also zoom in to the much lower and more realistic CEL values. On P25L20 it is mentioned that the results are highly sensitive to the CEL values. This makes it even more important to show only (or mainly) the results for reasonable CEL values!

AC 1: Indeed, we agree with this comment. As the reviewer mentioned, we did not distinguished between observations provided during day time or night time (as addressed in Mazzoleni et al. 2015). This is one of the limitations of this study and it is mentioned in the conclusion section of the revised manuscript.

The reviewer also suggested to focus more on the lower part of the theoretical involvement curve, assuming more realistic CIL value than the ones assumed in our study (CIL>80%). For this reason, we have carried out an additional simulation where the maximum carrying capacity of the logistic curve (K) is considered variable from 0.01 up to 1.

![Figure 3. Difference between $\mu(N_{SE})$ and $\sigma(N_{SE})$ values obtained considering varying values of K for different involvement levels from StSc and DySc during experiment 3](image)

Finally, in the next figure the $\mu(N_{SE})$ obtained with varying values of K are summarized. For a given scenario and value of K, the single value of $\mu(N_{SE})$ is estimated as the mean average of the different $\mu(N_{SE})$ values corresponding to the MCIL for StSc and DySc.

The results of this analysis showed an expected reduction in the model performances for low values of parameter K (which indicates the maximum possible level of involvement). It can be noted that if K is equal to 0.5, although the involvement values are halved, assimilation of crowdsourced observations still provide significant model improvement for all the different scenarios. As expected, $\sigma(N_{SE})$ values tend to increase for low involvement of citizens. From Error! Reference source not found., it can be...
that $\mu(N_{SE})$ values do not follow a linear trend as somehow expected. On the other hand, tends to drop for values of K between 0 and 0.2 (for example in scenario 3), while for higher K values the $\mu(N_{SE})$ do not grow significantly. In particular, for K values higher than 0.5, scenario 2 provides the highest $\mu(N_{SE})$ values. On the other hand, for lower K values than 0.5 scenario 3 is the one leading to better model performances. This is because the presence of enthusiast individuals keeps high involvement values even for low values of K. Regarding the variability of NSE, i.e. $\sigma(N_{SE})$, for values of K lower than 0.4, high $\sigma(N_{SE})$ can be observed in scenario 1. These considerations and other details are reported in the updated version of the manuscript. Figure is included in the revised paper.

RC 8: P18L28-29: This is unclear and not logical. In the case that actual citizen science data are used, you don’t know which measurement is most accurate and so you can’t use this criteria. You would most likely use both measurements. Why was that not done here?

AC 1: Indeed, this issue needs explanation. As mentioned in the conclusions of this study, one of the main problems in citizen science data is the proper definition of the observation error which changes according to the citizen and sensor type. However, in data assimilation methods it is necessary to define both model and observation errors in order to optimally update model states. Based on the assumptions of observation errors for multiple observations, we decided to consider the one with the lowest error. Nonetheless, the approach proposed by the reviewer of using all measurements instead of only the most accurate one is also valid. In that case, each observation will be used in the assimilation scheme based on certain assumptions of observational errors. Less weight is given to the more uncertain observations while more weight is given to the more reliable. We have included this consideration in the updated version of the manuscript (section 4.2).

RC 9: The results (e.g fig 5-6) show that the NSE values are low when the lead time is more than one hour. I miss a discussion on how useful these model simulations are for operational flood management. Is a model prediction with an NSE of 0.4 still useful? It seems unlikely to me that roads can be closed and people evacuated with a lead time that is much less than an hour. Currently there is no discussion about this at all – this really should be included. Also why was NSE used as a criteria and not peak water level or peak flow as well, as in the end that is what is most important in flood management.

AC 9: We agree with the reviewer that for more than 1 hour lead time the results coincide with the ones achieved in open-loop condition (i.e. without data assimilation) using forecasted precipitation as input - which is the current practice for flood forecasting in the catchment used by Alto Adige Water Authority. Any improvement of model performance with respect to this situation provide additional useful information for flood risk management. However, this is valid only to the case in which observations are assimilated within hydraulic model at cross sections close to Vicenza. For operational flood management it is advisable to consider model results in which observations at upstream location of the catchment are assimilated in both hydrological and hydraulic model. This can be observed for example in figure 5 of the manuscript, where for high lead time values (4 hours) assimilation of observations in the hydrological model allows for a better model prediction.

In this study, N_{SE} is used as the only performance measure without considering improvement in the prediction in the peak and rising limb of the hydrograph, which are extremely important in case of operational flood management. Based on reviewer’s comment, we have included additional performance measures, i.e. the relative error between observed water level peak and simulated peak during Experiment 2 (theoretical involvement level scenarios), to better assess the assimilation of crowdsourced observations from an operational point of view.
Where WL_p^0 and WL_p^S are the observed and simulated peak water levels correspondingly.

\[
E_{RR} = \frac{(WL_p^0 - WL_p^S)}{WL_p^0}
\]

Analysis using E_{RR} leads to conclusions similar to those drawn when using N_{SE}. However, smaller error values are obtained in scenarios 3 rather than scenario 1. In addition, it can be observed that E_{RR} values are more sensitive to involvement levels from StSc sensors than from the DySc ones (vertical gradient). More details and discussions are provided in the revised version of the manuscript. Figure 4 is added to the revised paper.

RC 10: Overall, the paper is not particularly well written. For many sentences, a more direct or less complicated sentence structure could be used. This would make the paper much easier to read. Some of the information is given twice (e.g. P3L25-28 = p4L14-15), other information is not really necessary (e.g. P2L25-28). Elsewhere lists with other studies are given without any information about them, thus also not the important aspects that are relevant for this study (e.g. P3L28-32). In other places, there are sentences that may be remnants from moving text around or previous versions that don’t fit with the content of the remainder of the paragraph at all (e.g. P4L15-19). I suggest that the authors critically read through the manuscript, include missing information but also remove sentences that do not fit (i.e. break the flow) or don’t provide any information that is pertinent to this study.

AC 10: Indeed we should have been more careful in writing and structuring. We appreciate reviewer’s comment and suggestions. Based on them, we have re-phrased complicated sentences, removed double text and polished the manuscript. We believe the readability of the paper is improved.
Other specific comments

RC11: Title: The title doesn’t really tell what the paper is about or what the main findings are. I suggest that you consider changing the title to make it much clearer that this is a hypothetical study that assumes that crowd-sourced data is available (using model results as observations)’”

AC11: Thank you for the comment. We have considered your suggestion and adjusted the title which will now read “Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a model study based on the 2013 flood event in the Bacchiglione catchment”.

RC12: P2L13-15: Add references for each of these attempts.

AC12: We have included the reference in the text below L13-15 of the revised version of the manuscript. In particular, (1) Data assimilation techniques (see a detailed review provided by Liu et al. 2012); (2) assimilation of multiple physical sensors; and more recently (Aubert et al., 2003; McCabe et al., 2008; Pan et al., 2008; Lee et al., 2011; Montzka et al., 2012; Pipunic et al., 2013; Andreadis et al., 2015; Lopez Lopez et al., 2015; Rasmussen et al., 2015); 3) assimilation of crowdsourced (CS) observations from static social and dynamic social sensors (Shanley et al., 2013; Buytaert et al., 2014; Lahoz and Schneider, 2014; Fava et al. 2014; Smith et al. 2015; Fohringer et al., 2015; Gaitan et al., 2016; Giuliani et al., 2016; de Vos et al., 2017; Rosser et al., 2017; Starkey et al., 2017; Yu et al., 2017).

RC13: P2L21-29: Remove this text. This may be useful in a report but is not really necessary in a scientific publication.

AC13: We have removed the text as suggested

RC14: P3L7: Are ‘heat flux sensor’ data really that widely available and are they really that useful for flood prediction?

AC14: We removed heat flux sensor, as not really useful for flood prediction

RC15: P3L8: Add references!

AC15: We have include Liu et al. (2012) as main reference

RC16: P3L25-29: I don’t think that it is necessary to include this information. The paper is already very long.

AC16: We have included this information in the second section where a background of citizen involvement theories and methods are briefly described. We believe this section will help the reader to understand the main motivations that drive citizen for sharing data and be engaged within the observatories of water.
RC17: P3L29-32: Either take this list of references out or tell what these studies have looked at and how this is relevant for this study.

AC17: Based on the length of the manuscript, we have removed this text.

RC18: P5L8: I thought that this was done by the civil protection. Make it clear that this is not an “average citizen”. * P5L12: Isn’t the system already operational?

AC18: One of the goals of this study (and the WeSenseIt project) is to involve any kind of citizens in collecting and sharing hydrological measurement for improving model performances and prediction. That is why in P5L8 we referred to “citizens”, or more in particular “active citizens” if they are already involved in the observatory of water. However, the different case studies of the WeSenseIt project have different types of involved (active) stakeholders. In the Bacchiglione catchment, for example, both Civil Protection and active citizens are involved, albeit with different level of involvement. Currently, the Alto Adriatico Water Authority is testing the possibility to make the assimilation of crowdsourced observations in the Bacchiglione catchment operational.

RC19: P5L17: What are typical response times (and/or travel times of the flood wave) for this catchment? Without any information on this, it is not possible to interpret the results for the different lead times.

AC19: The following table shows typical response times for the sub-catchment and the reaches:

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-catchment A</td>
<td>1.5</td>
</tr>
<tr>
<td>Sub-catchment B</td>
<td>3.5</td>
</tr>
<tr>
<td>Sub-catchment C</td>
<td>6.0</td>
</tr>
<tr>
<td>Reach 1</td>
<td>2.2</td>
</tr>
<tr>
<td>Reach 2</td>
<td>2.0</td>
</tr>
<tr>
<td>Reach 3</td>
<td>7.2</td>
</tr>
<tr>
<td>Reach 4</td>
<td>9.5</td>
</tr>
<tr>
<td>Reach 5</td>
<td>3.4</td>
</tr>
<tr>
<td>Reach 6</td>
<td>5.2</td>
</tr>
</tbody>
</table>

We are considering including this information in the revised manuscript.

RC20: P5L24: Were these traffic disruptions indeed due to flooded streets (or due to landslides, etc)?

AC20: Yes, they were mainly due to flooded streets and river closed to overtopping the levee system. We will mention this in the revised manuscript.

RC21: P6L17: I would not use the word ‘sensor’ in this context. The text will be much clearer when ‘observation’ is used as no sensors are used in the DySc. This is particularly the case for wording such as on P26L9, 10, 13, where the number of observations is mentioned and not a particular sensor.

AC21: Thank you for the comment. We used the term “sensor” to define a device that responds to a physical input (e.g. heat, light, sound, pressure, etc.) and transmits a resulting output representing the status of a physical system. That is why, a citizen using a mobile app to measure flow characteristic can be considered to be sensors as well (called dynamic social sensors). However, an “observation” is not considered to be dynamic since it represents the physical system at a particular location and time, which
is a consequence of the dynamic behaviour of the sensor in time and space. For this reason, we would like to keep the term “sensor” when referring to a dynamic device used by a moving/static citizen to take a measurement of the system.

RC22: *P13L2: A reference is needed here. I don’t think that technicians or hydrologists are necessarily better at estimating depths, volumes or flows than other people. In my experience when multiple hydrologists estimate the depth or flow in a river, their estimates still vary widely.*

AC22: We thank the reviewer for the comment. The uncertainty of a neophyte or interested volunteer can be larger than that of an experienced volunteer or expert technician under the assumption that the experience of a large number of observations, enough training or sufficient background may increase the quality of observations. We agreed with the reviewer that both volunteers and experts are subjected to biases in either qualitative or crowdsourced observations. In a data collection exercise carried out with only technicians, Cortes Arevalo et al. (2016) highlighted the variability of expert collected observations. CS observations can be subjected to (random) bias regardless of their expertise level and pointed out that quality control procedures should done on a regular basis and upon submission regardless of the expertise level. Based on experience of online mapping, Kerle & Hoffman, (2013) pointed out that both volunteers and technicians have difficulties to provide observations, as all possibilities cannot and should probably be covered into the training procedures. Kerle & Hoffman, (2013) suggest that corrective feedback about the consistency of collected observations can improve the quality of results. That is for example against CS observations carried out by the same observer or suggested reference for the observations. In the discussion of results we have made some suggestions. Further research is needed on how corrective feedback can best be provided via mobile and web-based easy-to-use sensors and low-cost monitoring technologies. In the description of the method we have removed any considerations regarding the accuracy of a measurement provided by neophyte volunteer or interested volunteer since they were not represent in the theoretical approach used in this study. In fact, accuracy of the CS observation is due to the particular sensor used and not to the specific expertise of each citizen, which is implicitly considered in the variable random value of the coefficient α.

RC23: *Figure 4: Make it clearer in the caption that these are hypothetical curves and not based on previous studies. If not, please include the reference.*

AC23: Thank you for the comment. We have modified the caption and the description of the Experiment 2 section to underline the theoretical validity of our approach.

RC24: *Figures 4-5: Use different line styles so that the figure is also clear when printed in black and white.*

AC24: Based on reviewer’s comment we have modified line styles and colour to make the figure visible also in black and white (see figure 4 above).

RC25: *Figure 5a: For which lead time is this result? This is not clear from the caption.*

AC25: Figure 5a is referred to lead time 1 hour. However, we have removed this figure as explained in one of the previous replies.
RC26: P21-L1-7: This should be part of the methods (not the results).

AC26: We thank the reviewer of his/her comment. Based on that, we moved the description in P21-L1-7 in the method section Experiment 2.

RC27: P21: Only the mean simulation results are shown and discussed. The variability in the results should at least be mentioned (or shown with an error band in fig 6).

AC27: As previously discussed, we removed figure 6 to give more space to additional analyses on the effect of citizen involvement.

RC28: P23L1-2: Why? This is an interesting result but not discussed. Just saying that results for A are better than for another catchment may be interesting for people working in this basin but not for the readers of HESS. For them it is much more interesting why these results are so different or what can be learned from these differences. Similar on L21-24 (and many other locations throughout the results) what is interesting about this result for people outside this basin/what can be learned from this?

AC28: We completely agree with the reviewer. In the updated version of the manuscript we have divided the section “Results and discussion” in “Results” and “Discussions” respectively. In the discussion section, a more general description of the findings of this research (for example of figure 4 in the updated manuscript) is provided.

RC29: P25L1-4: So here only the water level and not the derived streamflow data are used? But doesn’t that make that the comparison between the static and dynamic sensor network results more difficult? This is unclear and needs to be discussed in more detail! * P28L13-15: Don’t overstretch your results. This study shows the model results for different chosen involvement levels but does not provide any information about the actual motivation. * P29L10: Why is no bias assumed? Isn’t it likely that when people estimate the distance between the water level and the stream bank, there is a bias in the resulting water depth information? * P32L16-18: Add why this was the case.

AC29: Synthetic water level values are used to derive streamflow values in both static and dynamic sensors. We have included more details in the method and experimental setup description. As stated by Gharesifard and Wehn (2016), we acknowledge that stronger motivations or intentions are not only driven by a combination of more positive and favourable attitudes. The motivations also rely on stronger positive social pressure and greater perceived control or self-sufficiency about the means to provide CS observations. Gharesifard and Wehn (2016) further recognized that such rational choices may not apply in case of emergency situations. A simplified model has been formulated under the consideration that: i) only volunteers and/or trained volunteers will participate in providing water level observations. ii) the mobile application available for the project is easy-to-use and accessible for all participants. As mentioned in the paper (experimental setup), we assumed that involvement level is driven by citizen’s own interest, which may be i) own personal purposes, ii) shared or community interests and iii) societal benefits. Each one of this different citizen’s own interests corresponds to a curve in out theoretical (and simplified) approach. That is why, we stated that sharing CS observations driven by feeling of belonging to a community of friends (scenario 2) can help improve flood prediction. Obviously, this is a theoretical result that should be validated with real CS observation and a proper social analysis to better define the involvement curves based on particular motivation of the citizens.

We agree with the reviewer that bias in the CS observations should be included in the simulations. For this reason, the simulations in Experiment 2 are now performed considering CS observations in case of
Bias 2 instead than Bias 1. In addition, we have performed an additional analysis considering negative and positive bias (Bias 3 and 4 in table 3) in the crowdsourced observations assimilated in the experiment 3. The difference between $\mu(NSE)$ values obtained using observations with Bias 2, Bias 3 and Bias 4 are displayed in the next figures. As expected, it can be observed that Bias 4 provides higher NSE values than Bias 2 since model without update underestimate observed streamflow/water level. Moreover, results obtained using observations with Bias 3 have lower NSE than results with Bias 2. However, in both Bias3 and 4, such changes in NSE are very small, leading to the conclusion that assimilation of biased (observations) water level observations during the May 2013 flood event in the Bacchiglione River do not significantly improve or reduce model performances. We have included these analyses and figure 5 in the updated version of the manuscript.

Figure 5. Difference between $\mu(NSE)$ values obtained considering Bias 2 with Bias 3 (first row) and Bias 2 with Bias 4 (second row) different involvement levels from StSc and DySc during experiment 3

RC30: Conclusion: This is not a conclusion of the results or a summary of the main take home messages but rather a list of things that were done. That is much less useful than an actual conclusion.

AC30: We thank the reviewer for her/his valuable comment. In the revised manuscript we have improved the conclusion providing a short summary of the main findings, a critical analysis of the novelty and main take home messages, limitations and recommendations for future studies.

RC31: P33L14-16: Yes this is true but not a part of this study so don’t include it in the conclusion.

AC31: We have removed this sentence

Minor editorial suggestions:
- P1L18: remove ‘for model performance’ and insert ‘for improving model performance’ at the end of the sentence.
- P1L19: insert ‘of inclusion of social sensor data’
- P1L29-30: try to rewrite this sentence to make is clearer and easier to understand.
- P2L2: do you mean ‘maximum’ engagement instead of ‘minimum engagement’?
- P2L13: remove ‘over’
- P2L17-18: replace ‘the benefits’ by ‘how citizen science data could have benefitted’ to make it much clearer that this is a hypothetical situation and actual citizen science data were not available for this event.
- P4L2: Rather than ‘minimize low’ you could say ‘maximize accuracies’
- P4L3-14: This part is about engagement and would fit much better at P5L4 (but this requires a sentence to link it to the previous sentence)
- P4L14-15: Double and not necessary – take out
- P4L16-18: Move to P4L2 where it fits much better.
- P5L29 (and elsewhere): replace ‘arrival time’ by ‘measurement interval’
- Table 1: replace ‘lecture’ by ‘reading’
- P21L4: “random uniform” – this is confusing is it random and variable or uniform?
- P21L15: The caption needs to be improved because it doesn’t explain the figure (the figure is not clear for someone who only reads the caption).
- P32L28: Rewrite this sentence- it is unclear

We thank the reviewer for all these valuable suggestions and comments. We have addressed all of them and include in the updated version of the manuscript.