Comparison of MODIS and SWAT Evapotranspiration over a Complex Terrain at Different Spatial Scales

Olanrewaju O Abiodun¹, Huade Guan¹, Vincent E.A. Post¹, Okke Batelaan¹

¹National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Australia

Correspondence to: Olanrewaju O Abiodun (lanre.abiodun@flinders.edu.au)

Abstract. In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely-sensed data based ET algorithms and distributed hydrological models has provided improved spatially-upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the two methods of up to 48%, 21% and 16% were observed at respectively 1 km², 5 km² and 10 km² spatial resolutions. Land cover differences, mismatches between the two methods and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

Key words: Evapotranspiration, MOD16, SWAT, complex terrain, spatial scale
1 Introduction

In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance (Nachabe et al., 2005) and yet the most difficult to estimate particularly over complex terrains (Wilson and Guan, 2004). In arid and semi-arid environments ET is a significant sink of groundwater with ET often exceeding precipitation (Domingo et al., 2001; Cooper et al., 2006; Scott et al., 2008; Raz-Yaseef et al., 2012). Reliable estimation of ET is integral to environmental sustainability, conservation, biodiversity and effective water resource management (Cooper et al., 2006; Boé and Terray, 2008; Zhang et al., 2008a; Tabari et al., 2013). Moreover, ET will be one of the most severely impacted hydrological components of the water cycle as a consequence of global climate change (Goyal, 2004).

Reliable, cheap and generally accessible methods of estimating ET are essential to understand its role in catchment processes. ET is principally measured and estimated using ground based measurement tools and/or through various modelling techniques often involving remote sensing (Drexler et al., 2004; Tabari et al., 2013). Ground based measurement methods such as the Bowen Ratio Energy Balance (BREB), Eddy Covariance (EC), Large Aperture Scintillometers (LAS) and lysimeters have been regarded as the most accurate and reliable ET determination methods (Kim et al., 2012a; Rana and Katerji, 2000; Liu et al., 2013b), but they are spatially and/or temporally limited (Wilson et al., 2001; Glenn et al., 2007). Despite the relative reliability of ground based measurement methods, there are inherent uncertainties associated with the different methods, which affect the accuracy of ET measurements (Baldocchi, 2003; Brotzge and Crawford, 2003; Drexler et al., 2004; Zhang et al., 2008a). Ground based measurement methods are particularly prone to significant errors related to instrument installation (Allen et al., 2011). Mu et al. (2011) observed that multiple EC towers on a site can have uncertainties ranging between 10-30% and Liu et al. (2013a) documented uncertainty ranges of over 27% between EC and LAS measurements over the same site on an annual scale. EC towers have also been observed to encounter energy balance closure challenges (Wilson et al., 2002), while other challenges of the EC method such as inaccuracies due to complex terrains have been documented by Feigenwinter et al. (2008). Furthermore, Kalma et al. (2008), conducted a review of remote sensing ET modelling results relative to ground based measurements and contended that the ground based measurement methods were not incontrovertibly more reliable than the remote sensing ET modelling methods. Moreover, most of the ground based measurement methods are usually cost intensive thereby constraining measurements over large areas and thus making spatial extrapolation difficult (Moran and Jackson, 1991).
In more recent years, the spatial challenges associated with ET estimations are being eased by the increased availability of remotely-sensed data. The use of remotely-sensed input data in many surface energy balance algorithms and highly parameterized hydrological models have been extensively documented (Kalma et al., 2008; Hu et al., 2015; Zhang et al., 2016). The advances in remote sensing have seen these methods become prominent in water resource assessment studies (Sun et al., 2009; Vinukollu et al., 2011; Anderson et al., 2011; Long et al., 2014; Zhang et al., 2016).

Several hydrological models and remotely-sensed based surface energy balance models are currently used in ET simulations globally (Zhao et al., 2013; Chen et al., 2014; Larsen et al., 2016; López López et al., 2016; Webster et al., 2017). However, the relative accuracy of these models relative to one another should be extensively explored to improve our understanding of the ET estimation from these algorithms. Two of the more prominent ones will be evaluated in this study – The Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and the MODIS ET product (Mu et al., 2013) derived from remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration (NASA) Aqua and Terra satellites.

The MODIS ET (MOD16) is based on the Penman-Monteith equation, while the SWAT ET algorithm also has the Penman-Monteith equation as one of the three user-selectable methods of estimating ET. In this study, the Penman-Monteith method in SWAT is used for a direct comparison with the MOD16. Moreover, the Penman-Monteith equation is regarded as one of the most reliable methods for ET estimation over various climates and regions (Allen et al., 2005; Allen et al., 2006). While both the MOD16 and SWAT ET use the Penman-Monteith equation, the methods for estimating the parameters of the equation are significantly different between them. For instance, the SWAT Penman-Monteith implementation requires wind speed data for the computation of the aerodynamic resistance, while the MOD16 Penman-Monteith variant does not require wind speed data but instead uses the Biome-BGC model (Thornton, 1998) to estimate the aerodynamic resistance. This study does not seek to evaluate the individual accuracy of either method, but rather to compare the ET results from the water balance-based hydrological model (SWAT) and the energy balance-based model (MOD16) over a complex terrain catchment. The results will be compared temporally on catchment scale and spatio-temporally on sub-catchment.
scales to identify the effects of input data and other drivers of ET estimation in the MOD16 and SWAT ET algorithms.

While the MODIS evapotranspiration has been widely studied and compared to other methods, this is much less the case for SWAT ET (Table 1). Moreover, a graduated spatial scale comparison of both products is yet to be documented over a complex terrain. The objectives of this study are therefore: (1) To simulate and compare the results of the evapotranspiration of SWAT with MOD16 over a complex terrain at a catchment scale in a semi-arid climate; (2) To compare and analyse on graduated spatial scales the correlations between the MOD16 and SWAT ET over a complex terrain catchment; and (3) To determine and analyse the principal drivers of ET for both methods over the study area.
Table 1: Literature studies of MODIS and SWAT evapotranspiration (see Table 2 for climate classification)

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Reference</th>
<th>Method</th>
<th>Climate</th>
<th>Land Cover Cover</th>
<th>Spatial & temporal extents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD16 vs micrometeorological methods</td>
<td>Ruhoff et al. (2013)</td>
<td>EC validation at 2 sites</td>
<td>Cwa, Cfa</td>
<td>Savanna</td>
<td>3 km x 3 km area, 8 day</td>
</tr>
<tr>
<td></td>
<td>Liu et al. (2013a)</td>
<td>LAS validation at 3 sites</td>
<td>Dwa, Cwa</td>
<td>Orchards, Croplands</td>
<td>1 km x 1 km, annual</td>
</tr>
<tr>
<td></td>
<td>Mu et al. (2011)</td>
<td>EC validation at 46 site</td>
<td>Global</td>
<td>Global</td>
<td>Various</td>
</tr>
<tr>
<td></td>
<td>Kim et al. (2012b)</td>
<td>EC validation at 17 sites</td>
<td>A, Dfb, Dwa, Cfa, Bsk, Am, ET, Aw, Dwc, Dfc, Dfd</td>
<td>Forest, croplands, grassland</td>
<td>3 km x 3 km area, 8 day, 2000-2006</td>
</tr>
<tr>
<td></td>
<td>Velpuri et al. (2013)</td>
<td>EC validation at 60 sites</td>
<td>Bsk, Cfa, Csa, Csb, Dfa, Dfb, Dfc</td>
<td>Cropland, Forest, Woody Savanna, Grassland, Shrubland, Urban</td>
<td>Point scale at EC sites across the United States of America, monthly, 2001 - 2007</td>
</tr>
<tr>
<td>MOD16 vs energy balance models</td>
<td>Jia et al. (2012)</td>
<td>MOD16 validation of ETWatch system</td>
<td>Dwa, Cwa</td>
<td>Farmland, Forest, Grassland, Shrub Forest, Beach land, Bare land, Urban, Paddy field</td>
<td>(1 km x 1 km grid over 318,000 km²), annual , 2002-2009</td>
</tr>
<tr>
<td></td>
<td>Velpuri et al. (2013)</td>
<td>MOD16 vs Gridded Fluxnet ET (GFET)</td>
<td>Bsk, Cfa, Csa, Csb, Dfa, Dfb, Dfc</td>
<td>Cropland, Forest, Woody Savanna, Grassland, Shrubland, Urban</td>
<td>50km, monthly, over the entire United States of America</td>
</tr>
<tr>
<td>MOD16 vs hydrological models</td>
<td>Ruhoff et al. (2013)</td>
<td>MOD16 vs MGB-IPH model</td>
<td>Cwa, Cfa</td>
<td>Forest, Shrubland, Savanna, Woody Savanna, Grassland, Cropland, Urban, Barren land</td>
<td>(1 km x 1 km grid over 145,000 km²), 8 day, 2001</td>
</tr>
<tr>
<td></td>
<td>Velpuri et al. (2013)</td>
<td>MOD16 vs Water Balance ET (WBET)</td>
<td>Bsk, Cfa, Csa, Csb, Dfa, Dfb, Dfc</td>
<td>Cropland, Forest, Woody Savanna, Grassland, Shrubland, Urban</td>
<td>(1 km x 1 km over the entire United States of America), Annual, 2002-2009,</td>
</tr>
<tr>
<td>SWAT vs energy balance models</td>
<td>Gao and Long (2008)</td>
<td>SWAT vs SEBS, SEBAL, P-TSEB, S-TSEB</td>
<td>Dwb</td>
<td>Woodland, Grassland, Cropland</td>
<td>1850 km², 23 June 2005 and 25 July 2005 (2 days only)</td>
</tr>
</tbody>
</table>
Table 2: Köppen-Geiger Climate Classification system (Kottek et al., 2006)

<table>
<thead>
<tr>
<th>Main climate</th>
<th>Precipitation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – equatorial</td>
<td>W – desert</td>
<td>h – hot arid</td>
</tr>
<tr>
<td>B – arid</td>
<td>S – steppe</td>
<td>k – cold arid</td>
</tr>
<tr>
<td>C – warm temperate</td>
<td>f – fully humid</td>
<td>a – hot summer</td>
</tr>
<tr>
<td>D – snow</td>
<td>s – summer dry</td>
<td>b – warm summer</td>
</tr>
<tr>
<td>E – polar</td>
<td>w – winter dry</td>
<td>c – cool summer</td>
</tr>
<tr>
<td></td>
<td>m – monsoonal</td>
<td>d – extremely continental</td>
</tr>
<tr>
<td>F – polar frost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T – polar tundra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g Cwa – Warm temperate, winter dry, hot summer

2 Model Description

2.1 SWAT Model

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed hydrological model designed on the water balance concept. SWAT simulates catchment processes such as evapotranspiration, runoff, crop growth, nutrient and sediment transport on basis of meteorological, soil, land cover data and operational land management practices (Neitsch et al., 2011). The SWAT model has been used in hydrological modelling from sub-catchment scales of under 1 km² (Govender and Everson, 2005) to sub-continental scales (Schuol et al., 2008).

The model discretises a catchment into sub-catchments and further into hydrological response units (HRU), which represent unique combinations of land cover, soil type and slope. The discretisation method employed by SWAT enables the model to simulate catchment processes in detail and to understand the response of unique HRU’s on hydrological processes. Evapotranspiration is simulated at the HRU scale. A comprehensive outline of ET calculations in SWAT is included in Appendix A and Fig. 1 summarizes in a flowchart the SWAT ET algorithm.
2.2 MOD16 Model

The MOD16 provides evapotranspiration estimates for 109.03×10^6 km2 of global vegetated land area at 1 km2 spatial resolution at 8 day, monthly and yearly temporal resolutions since the year 2000 (Mu et al., 2013). The initial version of the MOD16 algorithm used MODIS imagery as part of a Penman-Monteith method as described in Cleugh et al. (2007). The MOD16 algorithm was significantly improved by the inclusion of a sub-algorithm for estimating soil evaporation as a component of total ET (Mu et al., 2007). Further improvements on the MOD16 algorithm such as the calculation and inclusion of night time evapotranspiration, partitioning of evaporation from moist and wet soils were incorporated in the newer version of the algorithm (Mu et al., 2013). In this study, the ET products from the newer version, are used. Details of ET calculations in MOD16 are included in Appendix B while Fig. 2 summarizes in a flowchart the MOD16 ET algorithm.
3 Data and Methods

3.1 Study Area

The study area is the Sixth Creek Catchment of South Australia, located in the western part of the Mount Lofty Ranges, which is a range of highlands separating the Adelaide Plains in the west from the Murray-Darling basin in the east. The western part of the Mount Lofty Ranges runs 90 km north to south, its summit is at 680 m AHD (metres Australian Height Datum) (Sinclair, 1980). It extends from the southernmost part at McLaren Vale on the Fleurieu Peninsula to Freeling in the north over an area of 2189 km². The Sixth Creek Catchment is a complex area, with acute elevation changes over few hundred metres (Fig. 3). The catchment is located close to the summit of the Western Mount Lofty Ranges.

Figure 2: Flowchart of the MOD16 ET algorithm (Mu et al., 2011)
Figure 3: Digital elevation model of the Sixth Creek Catchment study area (Gallant et al., 2011),

It covers an area of 44 km2 between 34°52'6.098" to 34°57'54.541"S and 138°42'55.855" to 138°49'27.174"E and has an elevation range of 140 - 625 mAHD (Fig. 3). The land cover consists of 95% forestland with significant Eucalyptus plantation and 5% pasture, shrubs and grasslands (Fig. 4b). Most of the native vegetation is under conservation. The climate is Mediterranean, with warm dry summers and cool wet winters, and is of the type “Csb” according to the Köppen-Geiger classification.

The Sixth Creek Catchment’s complex terrain plays a significant role in its hydrology, with highly localised precipitation events recorded across the historic data record (2002 – 2016) from the two weather stations in the catchment. The weather stations are located 4.5 km apart with elevation difference of over 200 metres (Fig. 3). Differences in annual rainfall of over 400 mm have been recorded between the two weather stations.
The annual precipitation for the period 2002 till 2016 for Station A ranges between 500 – 900 mm and 750-1500 mm for Station B, while the temperature ranges between 10.5 °C and 22.2 °C in the summer months and 3.4 °C and 10 °C in the winter months.

Figure 4: (a) MOD12 land cover used in MOD16 (Friedl et al., 2010); (b) Land Cover (Lymburner et al., 2010)

3.2 Input datasets

The GIS interfaced version of SWAT (ArcSWAT) was used in the hydrological modelling. A 30 m Digital Elevation Model (DEM) (Dowling et al., 2011) of the Sixth Creek Catchment was used to extract the stream network and the catchment area. A detailed soil properties database for the catchment was created from the soil data obtained from the Australian Soil Resource Information System (Johnston et al., 2003). The 250 m land cover map of Australia from Geoscience Australia’s Dynamic Land Cover database (Fig. 4b) was used in the SWAT model. This land cover map was preferred to the 500 m MOD12 land cover map (Fig. 4a) due to its finer spatial resolution and better biome match with local field knowledge. In this study, the 0.01° × 0.01° wind speed data (McVicar et al., 2008), and the 0.05° × 0.05° relative humidity, temperature, rainfall, solar radiation (Jeffrey et al., 2001), were preferred to weather station data. Four 0.05° × 0.05° gridded data cells fall within the boundaries of the catchment and are therefore comparable to the climate components of the two weather stations in the catchment. Moreover, the gridded data used in this study are calibrated using the weather stations across Australia including the two weather stations in the Sixth Creek Catchment, thus maintaining excellent correlation when compared to the weather stations’ measured data. Details of the gridded data methodology and algorithm used in
this study can be found in Jeffrey et al. (2001) and McVicar et al. (2008). The daily gridded climate datasets were
simply averaged over the Sixth Creek Catchment, to obtain values used in this study.

The monthly MOD16 datasets for the years 2000 to 2013, at 1 km² spatial resolution were used in this study (Mu
et al., 2013). Catchment averages were calculated by simple averaging of all the 1 km² cells that fall within the
catchment area.

3.3 SWAT Model Setup and Calibration

The soil, land cover and DEM derived slope data were classified into classes and used to create unique HRU’s.
The properties of each unique HRU determine how it responds to precipitation, and how different hydrological
processes such as streamflow, runoff, lateral flow and evapotranspiration are modelled in the catchment. The
runoff from each HRU is accumulated and routed through the river network to the outlet of the catchment. Driven
by the meteorological input, the model simulates catchment hydrological processes with a daily time step for the
period 2000 to 2013.

The SWAT model is calibrated by fitting simulated streamflow to observed streamflow with the SUFI-2
algorithm. This semi-automatic Latin hypercube sampling algorithm optimizes SWAT model parameters while
attempting to fit the simulated data as close as possible to the observed data using the following objective functions
as measurement of simulation accuracy (Abbaspour, 2007).

Nash Sutcliffe Efficiency (N_{SE}) (Nash and Sutcliffe, 1970),

\[N_{SE} = 1 - \frac{\sum_{n=1}^{N} (Q_n - \bar{Q}_n)^2}{\sum_{n=1}^{N} (Q_n - \bar{Q})^2} \]

where Q_n (m³s⁻¹) is the measured discharge at time n, \bar{Q}_n (m³s⁻¹) is the simulated discharge at time n, \bar{Q} (m³s⁻¹)
is the mean measured discharge and N is the number of time steps.

Ratio of root mean squared error to the standard deviation of measured data (R_{SR}) (Moriasi et al., 2007),

\[R_{SR} = \sqrt{\frac{\sum_{n=1}^{N} (Q_n - \bar{Q}_n)^2}{\sum_{n=1}^{N} (Q_n - \bar{Q})^2}} \]

Percent bias (P_{BIAS}).
Coefficient of determination (R^2),

$$R^2 = \frac{\left(\frac{\sum_{n=1}^{N} (\bar{Q}_n - \bar{Q}) (\bar{Q}_n - \bar{Q})}{\sqrt{\sum_{n=1}^{N} (\bar{Q}_n - \bar{Q})^2 \sum_{n=1}^{N} (\bar{Q}_n - \bar{Q})^2}}\right)^2}{\sqrt{\sum_{n=1}^{N} (\bar{Q}_n - \bar{Q})^2 \sum_{n=1}^{N} (\bar{Q}_n - \bar{Q})^2}}$$

where \bar{Q}_n (m3s$^{-1}$) is the mean simulated discharge.

Kling-Gupta Efficiency (K_{GE}) (Gupta et al., 2009),

$$K_{GE} = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\omega - 1)^2}$$

where r is the linear regression coefficient between the simulated and measured variable, $\omega = \frac{\sigma_m}{\bar{Q}}$, $\alpha = \frac{\sigma_s}{\sigma_m}$, σ_s and σ_m are the standard deviation of simulated and measured data.

After obtaining a satisfactory fit between the simulated and observed streamflow data during calibration, the model is validated by running the model for a different time period using the same parameters from the calibration period. SUFI-2 further incorporates the P-factor and R-factor metric, which gives an indication of the confidence in the calibration exercise. The P-factor (or 95PPU) is the percentage of observed data captured which falls between the 2.5 and 97.5 percentiles (95% prediction uncertainty), while the R-factor is the width of the 95PPU. The P- and R-factors are iteratively determined using Latin Hypercube Sampling. For streamflow calibration and validation to be considered reliable, combined satisfactory values should be obtained of P-factor (> 0.7), R-factor (< 1) (Abbaspour, 2007) and of the objective functions, $N_{GE} (> 0.5), R_{SR} (\leq 0.7)$ and $P_{BIAS} (\pm 25\%)$ (Moriasi et al., 2007).

The calibration process was conducted on daily timescales for the years 2000 to 2005 while the validation was conducted for the years 2007 to 2013. The relatively long periods of streamflow calibration and validation on daily timescales were specifically used to address the potential problem of equifinality of parameters to be optimized. The principle of equifinality has been known to affect semi-distributed models such as SWAT (Qiao et al., 2013). Nevertheless, the use of many observation points has been observed to effectively constrain it (Tobin and Bennett, 2017). In this study, 21 sensitive SWAT model parameters (Table 3) are optimized with SUFI-2 to fit simulated streamflow to the observed streamflow data. In the SUFI-2 algorithm an “r_” and a “v_” prefix
before a SWAT model parameter indicate relative change and replacement change of the actual parameter values respectively.

The resultant SWAT simulated ET was compared with the MOD16 ET using the root mean square error (R_{MSE}), mean difference (M_D), Pearson’s correlation coefficient (R) and coefficient of determination (R^2) metrics.

$$R_{MSE} = \sqrt{\frac{\sum_{n=1}^{N} (x_n - y_n)^2}{N}}$$ \hspace{1cm} (6)

Where x_1 and y_1 are SWAT and MOD16 monthly ET values respectively.

$$M_D = \left(\frac{x_1 + x_2 + \ldots + x_n}{n}\right) - \left(\frac{y_1 + y_2 + \ldots + y_n}{n}\right)$$ \hspace{1cm} (7)

$$R = \frac{\sum_{n=1}^{N} (x_n - \overline{x})(y_n - \overline{y})}{\sqrt{\sum_{n=1}^{N} (x_n - \overline{x})^2 \sum_{n=1}^{N} (y_n - \overline{y})^2}}$$ \hspace{1cm} (8)

$$R^2 = \frac{\left(\sum_{n=1}^{N} (x_n - \overline{x})(y_n - \overline{y})\right)^2}{\left(\sum_{n=1}^{N} (x_n - \overline{x})^2 \sum_{n=1}^{N} (y_n - \overline{y})^2\right)}$$
Table 3: Optimized SWAT parameters and their final range

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Description</th>
<th>Final Parameter Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_CN2.mgt</td>
<td>SCS Runoff Curve Number for moisture condition II</td>
<td>[1+ (-0.048 - 0.122)]</td>
</tr>
<tr>
<td>v_ALPHA_BF.gw</td>
<td>Baseflow recession constant (days)</td>
<td>0.58 - 0.93</td>
</tr>
<tr>
<td>v_GW_DELAY.gw</td>
<td>Groundwater delay time (days)</td>
<td>1.89 - 3.70</td>
</tr>
<tr>
<td>v_GW_REVAP.gw</td>
<td>Groundwater "Revap" coefficient</td>
<td>0.12 - 0.2</td>
</tr>
<tr>
<td>v_ESCO.hru</td>
<td>Soil evaporation compensation factor</td>
<td>0.2 - 0.5</td>
</tr>
<tr>
<td>v_CH_N2.rte</td>
<td>Manning’s “n” value for the main channel</td>
<td>0.05 - 0.15</td>
</tr>
<tr>
<td>r_SURLAG.bsn</td>
<td>Surface runoff lag coefficient</td>
<td>[1+ (0.22 - 1.2)]</td>
</tr>
<tr>
<td>v_ALPHA_BNK.rte</td>
<td>Baseflow alpha factor for bank storage (days)</td>
<td>0.5 - 1</td>
</tr>
<tr>
<td>v_SOL_AWC(..).sol</td>
<td>Available water capacity of the soil layer (mm/mm)</td>
<td>0.24 - 0.71</td>
</tr>
<tr>
<td>r_SOL_K(..).sol</td>
<td>Saturated hydraulic conductivity (mm/hr)</td>
<td>[1+ (-0.99 - -0.39)]</td>
</tr>
<tr>
<td>r_SOL_BD(..).sol</td>
<td>Moist bulk density (g/cm³)</td>
<td>[1+ (-0.37 - -0.04)]</td>
</tr>
<tr>
<td>r_SOL_Z(..).sol</td>
<td>Depth from soil surface to bottom of layer (mm)</td>
<td>[1+ (-0.25 - -0.04)]</td>
</tr>
<tr>
<td>v_EPCO.bsn</td>
<td>Plant uptake compensation factor</td>
<td>0.77 - 1</td>
</tr>
<tr>
<td>v_GWQMN.gw</td>
<td>Threshold depth of water in the shallow aquifer required for return flow to occur (mm)</td>
<td>0 - 500</td>
</tr>
<tr>
<td>v_DEEPST.gw</td>
<td>Initial depth of water in the shallow aquifer (mm)</td>
<td>20000 - 30000</td>
</tr>
<tr>
<td>v_SHALST.gw</td>
<td>Initial depth of water in the deep aquifer (mm)</td>
<td>10000 - 20000</td>
</tr>
<tr>
<td>r_HRU_SLP.hru</td>
<td>Average slope steepness (m/m)</td>
<td>[1+ (-0.24 - 0.15)]</td>
</tr>
<tr>
<td>r_OV_N.hru</td>
<td>Manning’s “n” value for overland flow</td>
<td>[1+ (-0.84 - -0.05)]</td>
</tr>
<tr>
<td>r_SLSUBBSN.hru</td>
<td>Average slope length (m)</td>
<td>[1+ (-0.9 - -0.24)]</td>
</tr>
<tr>
<td>v_REVAPMN.gw</td>
<td>Threshold depth of water in the shallow aquifer required for Revap to occur (mm)</td>
<td>0 - 100</td>
</tr>
<tr>
<td>v_CH_K2.rte</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>6 - 30</td>
</tr>
</tbody>
</table>
4 Results

4.1 Streamflow

The streamflow was calibrated and validated on daily timescales according to the guidelines set out in Moriasi et al. (2007) and Abbaspour (2007) (Table 4, Fig. 5). The result indicates an observed data bracketing of 89% for the calibration and 87% for the validation with both R-factors under 1.

Table 4: Streamflow calibration and validation results

<table>
<thead>
<tr>
<th></th>
<th>P-factor</th>
<th>R-factor</th>
<th>N_{SE}</th>
<th>R^2</th>
<th>K_{GE}</th>
<th>R_{SR}</th>
<th>P_{BIAS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>0.89</td>
<td>0.66</td>
<td>0.61</td>
<td>0.62</td>
<td>0.71</td>
<td>0.62</td>
<td>-11.1</td>
</tr>
<tr>
<td>Validation</td>
<td>0.87</td>
<td>0.91</td>
<td>0.78</td>
<td>0.78</td>
<td>0.88</td>
<td>0.47</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Table 4 shows better results for the validation than calibration for the N_{SE}, R^2, K_{GE} and R_{SR} metrics, however slightly lower for the P-factor. The results of the calibration and validation exercise on daily timescales show that the model effectively represents the high and low flow periods (Fig. 5).
Sub-catchment scale evapotranspiration

The SWAT ET is calculated at the HRU scale (Fig. 6a), however for direct comparison with the MOD16 ET (Fig. 6c), the HRU ET results were reprocessed into 1 km² cells using simple averaging (Fig. 6b). Figure 6d shows the mean difference between the MOD16 and SWAT ET over the validation period at the 1 km² spatial resolution. The spatial distribution shows no significant correlation, except that in both datasets a trend of higher ET in the northern to central part of the catchment is seen while lower ET is observed in the south-western parts of the catchment. The spatially distributed mean annual ET difference between both methods show that about 30% of the catchment had a difference of ±100 mm/year when compared at the 1 km² spatial scale.
Further analyses were carried out to determine the effect of spatial aggregation on the correspondence between the ET methods. The box and whisker plot in Fig. 7 shows the spread of the difference between the SWAT ET and the MOD16, with the bottom, middle and top of the box indicating the 25th, 50th and 75th quartiles of the distribution. The lowest and highest bars in the plot indicate the minimum and maximum differences between the ET products at the different spatial scales. On the other hand, Fig. 8 shows the minimum and maximum differences between the ET products at different spatial scales for each of the years (2007 - 2013). Figure 7 and 8 show that with increasing cell aggregation the difference in the ET between SWAT and MOD16 is decreasing. At 5 km²,
the correlation was significantly higher with a maximum cell difference in ET of 21% of mean annual catchment ET compared to a maximum difference of 48% at 1 km2 spatial resolution. At 10 km2 spatial resolution, the maximum difference in the ET relative to the mean annual ET was 16%.

Figure 7: Differences between SWAT ET and MOD16 for cell aggregations between 1 and 41 km2. The bottom, middle and top of the whisker indicate the 25th, 50th and 75th quartiles of the distribution, the lowest and highest bars indicate the minimum and maximum differences.
4.3 Catchment Scale Evapotranspiration

To compare the temporal dynamics, the MOD16 and the SWAT ET were also analysed at the catchment scale. Monthly MOD16 ET values at 1 km² resolution were averaged to catchment scale values using the spatial analyst tool in ArcGIS, while ET values from the validated SWAT model on catchment spatial extent and daily timescales were aggregated to monthly timescales. Using the R_{MSE}, M_D, R^2 and R metrics the analysis shows a good correspondence between the two methods at catchment scale, with a maximum annual ET difference and mean ET difference of respectively less than 13 and 6 percent for the period from 2007 to 2013 (Fig. 9).
Figure 9: Monthly comparison of MOD16 and SWAT ET at catchment scale.

5 Discussion

5.1 Differences between SWAT ET and MOD16 Results

The spatial aggregation of the results of SWAT and MOD16 ET clearly exhibit weaker correlations at 1 km² scale compared to the catchment scale analysis. The spatial decreasing ET trend from the north-central to south-western part of the catchment shown by both methods is expected with the closed canopy forest in the north and mid-section of the catchment and a more open canopy in the southern-western parts. The recognized principal sources of differences between the ET methods are associated with land cover mismatches, biome representation, the parameterization methodology of the different components of the Penman-Monteith equation and the Revap component in SWAT; they are discussed in the following sections.
5.1.1 Land Cover

The land cover is an important parameter in the MOD16 and SWAT ET algorithms as it determines the values allocated to biophysical properties such as leaf conductance, boundary layer resistance and vapour pressure deficit (VPD), which significantly impact ET calculations. Land cover mismatches have been observed in past MOD16 studies to pose challenges in ET modeling (Mu et al., 2011; Ruhoff et al., 2013) and it is observed in this study as well. Land cover mismatches at the finer resolutions lead to weak correlation between the ET results at the 1 km² scale. The impact is however less significant at catchment scale. The Geoscience Land cover map has 95% percent forests, while the MOD12 has a classification of 67% forests and 24% woody savanna, with most of the region misclassified as woody savanna having some similar properties of the forests. At catchment scale, the data averaging of the vegetation type parameters contribute to the convergence of the ET results from both methods.

5.1.2 Penman-Monteith Algorithm Parameterization

The MOD16 and SWAT ET algorithm, which are both based on the Penman-Monteith equation but parameterized differently, suggests there will be similarities and differences in the results from both methods. Both algorithms are principally limited on temporal timescales by the available energy to convert liquid water to atmospheric water vapour. Their transpiration and soil evaporation algorithms are also very dependent on vegetation/biome type, VPD, and the soil moisture constraint parameterization (Fig. 10).

Figure 10: Major drivers of MOD16 (left) and SWAT (right) Algorithms (Q: discharge, BPLUT: biome properties lookup table; VPD: vapour pressure deficit).
In the SWAT ET algorithm, the VPD significantly impacts the transpiration through the constraining of the stomatal conductance. Detailed soil data on HRU scale such as layer depth, number of layers, unsaturated hydraulic conductivity and water capacity are crucial for constraining the soil moisture content, which in turn regulates the percolation and recharge into the system. Similarly, the calculated MOD16 ET is significantly impacted by the biome properties lookup table (BPLUT) and the soil moisture constraint function. The BPLUT was calibrated using the response of biomes on flux tower sites globally. The BPLUT contains information on the stomatal response of each biome to temperature, VPD and biophysical parameters. The soil moisture constraint function is applied in the estimation of the soil evaporation and is an important parameter in regions where the saturated zone is close to the ground surface.

The impact of the differences in the parameterization methodology are more significant at smaller spatial scales due to the diverse input data and their associated errors, these impacts become less significant as the outputs are up-scaled (Fig. 8). This trend was also observed by Hong et al. (2009). The convergence of the results of the two methods at catchment scale is also strongly attributed to the simple averaging used in this study to aggregate the ET outputs from the MOD16 and SWAT ET to catchment scales. The simple averaging method has been observed to be the best in flux aggregation after a study of various methods (Ershadi et al., 2013).

5.1.3 Revap

The Revap component of the AET in SWAT is mostly significant in forested catchments with deep rooted trees that can access the saturated zone and as such are governed by land use parameters (Neitsch et al., 2011). However, the relative accuracy of the Revap component of the ET on HRU scales has been questioned (Liu et al., 2015) due to the linear relationship between the Revap coefficient and potential evapotranspiration in SWAT (see Eqn. A23). The Revap component in this study appears consistent with the studies by Benyon et al. (2006) in south-eastern Australia with similar climatic condition as the Sixth Creek Catchment. Benyon et al. (2006) observed that under the combined conditions of highly permeable soils, available groundwater resources of low salinity (<2000 mg/L), a high transmissivity aquifer and groundwater of depths up to 6 m, annual groundwater ET contribution to total ET ranged from 13 – 72% for sampled Eucalyptus tree species. The Sixth Creek Catchment is principally underlain by the highly transmissive and permeable Aldgate Sandstone aquifer, with salinity levels well below 2000 mg/L (Gerges, 1999). Monitoring bores in the Sixth Creek Catchment have recorded standing water levels
of less than 1.5 metres at the end of the rainy winter months. The Sixth Creek Catchment has been identified as one of the principal recharge zones in the Western Mount Lofty Ranges based on the catchment geology and hydrochemical analysis (Green and Zulfic, 2008). A significant portion of the 95% forested part of the Sixth Creek Catchment is a mosaic of various Eucalyptus tree species, thereby corroborating the results of Benyon et al. (2006). The results suggest the Revap is a significant contributor to ET in the Sixth Creek Catchment (Fig. 11) with mean annual contribution of 20% for the years 2007 – 2013, while monthly contributions ranged from 15 – 52 % over the same period. The possibility exists that the linear relationship with PET employed in its calculation on HRU scale may be contributory to the higher range of ET fluctuation seen in the SWAT model on the 1 km² scale when compared to the MOD16, however, that is beyond the scope of this study.

![Total ET vs Revap in SWAT](image)

Fig 11. Monthly comparison of Revap component of the ET and total ET in SWAT.

On catchment scale, the results show that MOD16 simulates higher ET in the winter periods while SWAT simulates higher ET during the summer periods (Fig. 9). Generally, the agreement between the products is more
consistent during the winter seasons when ET is lower. The lesser correlation during higher ET seasons may be related to the linearly determined Revap component of the ET, which is a more dominant process in the summer months when the demand for soil evaporation, plant transpiration and groundwater ET is significantly higher.

5.2 Input data Challenges

The SWAT ET and the MOD16 methods both have challenges associated with input data, which are subsequently propagated through the algorithm. In semi-arid environments such as the Sixth Creek Catchment, high intensity rainfall events are common occurrences, which impacts hydrologic processes such as infiltration and evapotranspiration differently from if the precipitation were evenly distributed through the day (Syed et al., 2003). Yang et al. (2016) observed that the use of hourly rainfall in SWAT significantly improved the modelling of streamflow and hydrological processes. In this study, due to the unavailability of hourly precipitation data, daily precipitation data were used thus neglecting the impact of high intensity precipitation events in the catchment.

Another challenge encountered with the SWAT model is associated with the semi-distributed model methodology. The use of a single value for wind speed, relative humidity and solar radiation for a sub-catchment with spatial scale, which could be in the order of tens of square kilometres, affects the accuracy of hydrological processes at the HRU scale. The “elevation band” method of temperature and precipitation distribution with respect to elevation changes across a catchment was introduced into the SWAT algorithm to attenuate orographic effects in complex terrain catchments (Neitsch et al., 2011). The elevation band algorithm in SWAT has performed well in predominantly snowy, complex terrain catchments, which are significantly larger than the Sixth Creek Catchment with elevation changes in the order of kilometres (Abbaspour et al., 2007; Zhang et al., 2008b; Pradhanang et al., 2011). However, the application of the elevation band algorithm in the non-snowy Odiel River basin (Spain) with Mediterranean climate similar to the Sixth Creek Catchment yielded less than satisfactory results (Galván et al., 2014). In the non-snowy Sixth Creek Catchment, the orographic effects are a dominant atmospheric process when winds are moving from the lower elevations in the north of the catchment to the higher elevations in the South particularly during the winter months. The orographic lift leads to significantly higher precipitation in the south-westerly direction in the Sixth Creek Catchment, which the elevation band algorithm in SWAT does not represent accurately in non-snowy catchments.
The various meteorological and remote sensing input data used in the processing of the MOD16 all have their inherent uncertainties, with cloud cover challenges and coarse resolution resampling (Mu et al., 2011), while errors have been associated with the land cover product used (Ruhoff et al., 2013). The land cover map (MOD12) used in MOD16 (Fig. 4a), in conjunction with the calibrated biome properties lookup table (BPLUT) significantly influences the ET output from the various land covers under different climatic conditions. A more detailed map and local knowledge of the Sixth Creek Catchment indicates that the MOD12 land cover spatially mismatches some biomes (Fig. 4a and 4b). Besides the obvious land cover mismatches that were observed between the input data of the two models, the variety of accepted national, regional and global land cover classification system contributes to the challenges of hydrological modelling. In this MOD12, the “mixed forest” category covered over 50% of the catchment while the category does not exist in the local field map land cover classification. The global standardization and harmonization of land cover maps and biome classification at high resolution may improve model performance.

6 Conclusion

The main objectives of this paper are to compare the ET results from a streamflow calibrated SWAT model and the MOD16 in a complex terrain catchment, to analyse the graduated spatial correlations between MOD16 and SWAT ET and also evaluate the drivers of the ET algorithm in both models.

The calibrated SWAT model using the SUFI-2 algorithm and various objective functions could simulate ET to within 6% of the MOD16 on catchment scale, annually. The P and R factors metrics were observed to be very reliable indicators of a good calibration exercise. Abbaspour (2007) proposed P and R factor minimum benchmarks of >0.7 and <1 respectively for streamflow calibration, in this study the P and R factors >0.8 and <1 were found to produce reliable ET estimates on catchment scales.

Both models show good correlation on catchment scale while biome differences and input spatial scale differences are responsible for weak correlation at finer spatial scales. The challenge of the lack of a globally accepted and harmonised land cover classification system at high resolution was encountered in the study, with two products derived from the MODIS satellite data classifying land cover differently and thus impacting the results from both models. The use of different land covers with different classification systems and parameters have limited impact.
on evapotranspiration modelling at coarse spatial resolutions due to spatial averaging. This is not the case at finer spatial resolutions where the impact of each land cover parameter is prominent. The inherent differences and uncertainties associated with these land cover products will continue to be propagated through the models, thereby promoting divergence in the drive towards more accurate and finer resolution evapotranspiration data products.

While many concerted research efforts have been made in the past (Latham, 2009; Friedl et al., 2010), a globally accepted harmonised world land cover database at high resolution can significantly improve correlation and confidence in high resolution ET products.

The result of the spatial resolution analysis corroborates the view that prevailing ET algorithms and measurement methods will have certain degree of variability due to the complexity of ET estimation and various drivers of the contributory processes. The study shows that correlation at catchment scale does not necessarily translate to correlation at finer spatial scales. The study also highlights the possible challenges of the semi-distributed SWAT ET algorithm in a complex terrain as the input climate data can be a challenge due to spatial resolution and climate variability.

30

Thornton, P. E.: Regional ecosystem simulation: Combining surface-and satellite-based observations to study linkages between terrestrial energy and mass budgets, 1998.

Appendix A: Evapotranspiration in SWAT

SWAT provides the user with three options of modelling ET at the HRU level and at daily temporal resolution (Penman-Monteith, Hargreaves or Priestly-Taylor methods). In this study, the Penman-Monteith method is used.

SWAT initially calculates the potential evapotranspiration (PET) for a reference crop (Alfalfa) using the Penman-Monteith equation for well-watered plants (Jensen et al., 1990):

$$\lambda E_o = \frac{\Delta (R_{net} - G) + \rho c_p e_{sat}^* \gamma}{\Delta + \gamma(1 + r_c)}$$ \hspace{1cm} (A1)

where \(\lambda\) is the latent heat of vaporization (MJ kg\(^{-1}\)); \(E_o\) is the potential evapotranspiration rate (mm/d); \(\Delta\) is the slope of the saturation vapor pressure vs temperature curve (kPa °C\(^{-1}\)); \(R_{net}\) is the net radiation at the surface (MJ m\(^{-2}\) d\(^{-1}\)); \(G\) is the heat flux density to the ground (MJ m\(^{-2}\) d\(^{-1}\)); \(\rho\) is the air density (kg m\(^{-3}\)); \(c_p\) is the specific heat of dry air at constant pressure (J kg\(^{-1}\) K\(^{-1}\)); \(P\) is the atmospheric pressure (kPa); \(e_{sat}\) is saturation vapor pressure of air (kPa); \(e\) is water vapor pressure (kPa); \(r_a\) is the aerodynamic resistance (s m\(^{-1}\)); \(\gamma\) is the psychometric constant (kPa °C\(^{-1}\)) and \(r_c\) is the canopy resistance (s m\(^{-1}\)).

Total ET (AET) in SWAT is made up of four components: canopy evaporation, transpiration, soil evaporation and groundwater ET (Revap). Revap is the movement of water from the saturated zone into the overlying unsaturated zone to supplement the water need for evapotranspiration. The Revap process may be insignificant in regions where the saturated zone is much deeper than the root zone and as such the result is separately reported from the ET result in the SWAT result database. As SWAT calculates Revap separately, for a calculation of AET in regions where the saturated zone is within the root zone, the user should add the Revap result column to the ET calculations. The AET components are calculated from the PET starting with the canopy evaporation. For this first component the following storage equations are used in determining the volume of water available for evaporation from the wet canopy in SWAT

$$C_{day} = C_{mx} \left(\frac{L_{ai}}{L_{ai, mx}} \right)$$ \hspace{1cm} (A2)

when \(R'_{day} \leq C_{day} - R_{int(i)}\):

$$R_{int(f)} = R_{int(i)} + R'_{day} \text{ and } R_{day} = 0$$ \hspace{1cm} (A3)

when \(R'_{day} > C_{day} - R_{int(i)}\):

$$R_{int(f)} = C_{day}, R_{day} = R'_{day} - (C_{day} - R_{int(i)})$$ \hspace{1cm} (A4)
where \(C_{\text{day}} \) is the maximum amount of water that can be stored in the canopy on a given day (mm); \(C_{\text{max}} \) is the amount of water that can be stored in the canopy when the canopy is fully matured (mm); \(L_{\text{at}} \) is the leaf area index on a given day; \(L_{\text{at, max}} \) is the maximum leaf area index when the plant is fully matured; \(R_{\text{int}(t)} \) is the initial amount of free water available in the canopy at the beginning of the day (mm); \(R_{\text{int}(f)} \) is the final amount of free water available in the canopy at the end of the day (mm); \(R'_{\text{day}} \) is the amount of precipitation on a given day before accounting for canopy interception (mm); and \(R_{\text{day}} \) is the amount of precipitation reaching the soil on a given day (mm).

The SWAT ET algorithm initially evaporates as much water as can be accommodated in the PET from the wet canopy. If the total volume of water in canopy storage equals or exceeds PET for the day, then ET is calculated as

\[E_a = E_{\text{can}} = E_0 \]

where \(E_a \) is AET (mm d\(^{-1}\)); \(E_{\text{can}} \) is evaporation from canopy constrained by \(E_0 \), i.e. PET (mm d\(^{-1}\)). However, if the water in canopy storage is less than the PET for the day, transpiration, soil evaporation and Revap are constrained by \(E'_0 \), which is the potential evapotranspiration adjusted for the evaporation of the water on the canopy surface (mm d\(^{-1}\)).

\[E'_0 = E_0 - E_{\text{can}} \]

The second AET component (transpiration) of SWAT is calculated using the following equations;

\[\Delta E_{\text{t,max}} = \frac{\delta(H_{\text{net}}-E)+P}{\delta(t+1)^{\frac{1}{2}}} \]

\[W_z = \left(\frac{E_{\text{t, max}} \times L_{\text{at}}}{L_{\text{at, max}} \times L_{\text{at}} + \tau} \right) \left(1 - e^{-\tau z} \right) \]

\[W'_t = W_t + (W_d \times e_{\text{pc}}) \]

\[W''_t = W'_t \times e^{5\left(1 - (W_d / A_{\text{wct}})\right)} \text{ when } S_{\text{wet}} < 25\% \text{ of } A_{\text{wet}} \]

\[W''_t = W'_t \text{ when } S_{\text{wet}} > 25\% \text{ of } A_{\text{wet}} \]

\[E_{\text{t,1}} = \min\left[W''_t, (S_{\text{wet}} - W_t) \right] \]

\[E_{\text{t}} = \sum_{i=1}^{n} E_{\text{t,1}} \]

where \(E_{\text{t,max}} \) is the maximum transpiration rate (mm/d); \(K = 8.64 \times 10^4 \); \(P \) is the atmospheric pressure (kPa); \(W_z \) is the potential water taken up by plant from the soil surface to a specific depth (mm/d) \(z \); \(\tau \) is the plant water consumption distribution function; \(z \) is the depth from soil surface (mm); \(z_r \) is the plant root depth from soil.
surface (mm); W_l is the potential water consumption by plant in the soil layer l (mm); W'_l is the potential water consumption by plant in the layer l adjusted for demand (mm); W_d is the plant water consumption demand deficit from overlying soil layers (mm); e_{pc} is the plant water consumption compensation factor (-); W^{*}_l is the potential plant water consumption adjusted for initial soil water content (mm); S_{wl} is the soil water content of layer l in a day (mm); A_{wct} is the available water capacity of layer l (mm); W_{pi} is soil water content of layer l at wilting point (mm); E_{lt} is the actual transpiration water volume from layer l in a given day (mm/d); E_{t} is the total actual transpiration by plants in a given day (mm/d). Plant transpiration parameters such as stomatal conductance, maximum leaf area index and maximum plant height are retrieved from a SWAT database while climate data required by the Penman-Monteith method are sourced from input data.

The third AET SWAT component, the soil evaporation on a given day, is a function of the transpiration, degree of shading and potential evapotranspiration adjusted for canopy evaporation. The maximum soil evaporation on a given day (E_s) (mm d$^{-1}$) is calculated as

$$E_s = E_0 C_{V_{soil}}$$ (A14)

$$C_{V_{soil}} = e^{-5.0 \times 10^{-5} CV}$$ (A15)

where $C_{V_{soil}}$ is the soil cover index (-) and CV is the aboveground biomass for the day (kg/ha). The maximum possible soil evaporation in a day is then subsequently adjusted for plant water use (E'_s) (mm d$^{-1}$)

$$E'_s = \min \left(E_s \frac{k_s}{E_s + k_s} \right)$$ (A16)

The SWAT ET algorithm then partitions the evaporative demand between the soils layers, with the top 10 mm of soil accounting for 50% of soil water evaporated. Equation 17 and 18 are used to calculate the evaporative demand at specific depths and evaporative demands for soil layers respectively.

$$E'_{soil,l} = \frac{E_{soil,t} - E_{soil,wt} - e_{eco}}{E_{soil,zt}}$$ (A17)

$$E_{soil,t} = E_{soil,xt} - E_{soil,wt} - e_{eco}$$ (A18)

$$E'_{soil,l} = E_{soil,l} \times \left(2.5 \left(\frac{S_{wl} - F_{cl}}{(F_{cl} - W_{pi})} \right) \right) \text{when } S_{wl} < F_{cl}$$ (A19)

$$E'_{soil,l} = E_{soil,l} \text{ when } S_{wl} > F_{cl}$$ (A20)

$$E_{soil,t} = \min[E'_{soil,l} - 0.8(S_{wl} - W_{pi})]$$ (A21)

$$E_{soil} = \sum_{l=1}^{n} E'_{soil,l}$$ (A22)
where $E_{\text{soil}, z}$ is the water demand for evaporation at depth z (mm); E'_{soil} is the maximum possible water to be evaporated in a day (mm); e_{soil} is the soil evaporation compensation factor; $E_{\text{soil}, l}$ is the water demand for evaporation in layer l (mm); $E_{\text{soil}, l}\text{, }l$ is the evaporative demand at the lower boundary of the soil layer (mm); $E_{\text{soil}, z, u}$ is the evaporative demand at upper boundary of the soil layer (mm); F_{ct} is the water content of the soil layer at field capacity (mm) and $E'_{\text{soil}, l}$ is the volume of water evaporated from soil layer l (mm/d); E_{soil} is the total volume of water evaporated from soil on a given day (mm/d).

The fourth component of the ET calculations in SWAT is referred to as “Revap”. Revap in SWAT is the amount of water transferred from the hydraulically connected shallow aquifer to the unsaturated zone in response to water demand for evapotranspiration. The Revap component in SWAT is akin to ET from groundwater. Revap is often a dominant catchment process in a groundwater dependent ecosystem and it is calculated at the HRU scale. Revap is estimated as a fraction of the potential evapotranspiration (PET) and it is dependent on a threshold depth of water in the shallow aquifer which is set by the user.

$$w_{\text{reap_mx}} = \beta_{\text{reap}} E_0$$ (A23)

$$w_{\text{reap}} = w_{\text{reap_mx}} - a_{\text{thr}} \text{ if } a_{\text{thr}} < a_{\text{sh}} < (a_{\text{thr}} + w_{\text{reap_mx}})$$ (A24)

$$w_{\text{reap}} = 0 \text{ if } a_{\text{sh}} \leq a_{\text{thr}}$$ (A25)

$$w_{\text{reap}} = w_{\text{reap_mx}} \text{ if } a_{\text{sh}} \geq (a_{\text{thr}} + w_{\text{reap_mx}})$$ (A26)

where $w_{\text{reap_mx}}$ is the maximum volume of water transferred to the unsaturated zone in response to water shortages for the day (mm); β_{reap} is the Revap coefficient (-); w_{reap} is the actual volume of water transferred to the unsaturated zone to supplement water shortage for the day (mm); a_{sh} is the water volume stored in the shallow aquifer at the beginning of the day (mm); and the a_{thr} is the threshold water level in the shallow aquifer required for Revap to occur (mm) (Neitsch et al., 2011).
Appendix B: MODIS Evapotranspiration

ET in the MOD16 is a summation of three components: wet canopy evaporation, plant transpiration and soil evaporation. Wet canopy evaporation (λ_{can}) in MOD16 is calculated using a modified version of the Penman-Monteith equation,

$$\lambda_{can} = \frac{\Delta H_{net} F_C + \rho C_P (e_{sat} - e_C) F_{par} r_{wet}}{\Delta + \gamma (F_{wet})}$$

(B1)

Where the parameters are as earlier defined, λ_{can} is the latent heat flux (Wm$^{-2}$); H_{net} is net radiation relative to canopy (Wm$^{-2}$); F_{par} is the fraction of absorbed photosynthetically active radiation; F_{wet} is the fraction of the soil covered by water; r_{tc} is the resistance to latent heat transfer (s m$^{-1}$); ε is the emissivity.

The plant transpiration (λ_E) is calculated using another variation of the Penman-Monteith equation,

$$\lambda_E = \frac{(\Delta H_{net} F_C + \rho C_P (e_{sat} - e_C) F_{par} r_{wet})}{\Delta + \gamma ((1 - F_{wet})}$$

(B2)

The soil evaporation (λ_{soil}) is a summation of the potential soil evaporation ($\lambda_{soil,POT}$) limited by the soil moisture constraint function (Fisher et al., 2008) and the evaporation from wet soil ($\lambda_{wet,soil}$):

$$\lambda_{soil} = \lambda_{wet,soil} + \lambda_{soil,POT} \left(\frac{R_h}{100} \right)^{\frac{V_{PD}}{\phi}}$$

(B3)

$$\lambda_{soil,POT} = \frac{(\Delta H_{net} + \rho C_P (1 - F_{wet}) V_{PD} r_{wet})}{\Delta + \gamma (r_{wet})}$$

(B4)

$$\lambda_{wet,soil} = \frac{(\Delta H_{net} + \rho C_P (1 - F_{wet}) V_{PD} r_{wet})}{\Delta + \gamma (r_{wet})}$$

(B5)

where H_{net} and r_a are relative to the soil surface; r_{tot} is the total aerodynamic resistance to vapor transport (s m$^{-1}$); V_{PD} is the vapor pressure deficit (Pa); R_h is the relative humidity (%); and β is a dimensionless coefficient defining the relative sensitivity of R_h to V_{PD}. In MOD16 the constant ϕ is set to 200.

Total evapotranspiration (λE) in MOD16 is thus calculated as

$$\lambda E = \lambda_{can} + \lambda_E + \lambda_{soil}$$

(B6)